首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the major obstacles which are opposed to the success of anticancer treatment is the cell resistance that generally develops after administration of commonly used drugs. In this study, we try to overcome the tumour cell resistance of doxorubicin (Dox) by developing a cell-penetrating peptide (CPP)-anticancer drug conjugate in aim to enhance its intracellular delivery and that its therapeutic effects. For this purpose, two cell-penetrating peptides, penetratin (pene) and tat, derived from the HIV-1 TAT protein, were chemically conjugated to Dox. The cytotoxicity, intracellular distribution and uptake were accessed in CHO cells (Chinese Hamster Ovarian carcinoma cells), HUVEC (Human Umbilical Vein Endothelial Cells), differentiated NG108.15 neuronal cell and breast cancer cells MCF7drug-sensitive or MDA-MB 231 drug-resistant cell lines. The conjugates showed different cell killing activity and intracellular distribution pattern by comparison to Dox as assessed respectively by MTT-based colorimetric cellular cytotoxicity assay, confocal fluorescence microscopy and FACS analysis. After treatment with 3 μM with Dox-CPPs for 2 h, pene increase the Dox cytotoxicity by 7.19-fold in CHO cells, by 11.53-fold in HUVEC cells and by 4.87-fold in MDA-MB 231 cells. However, cytotoxicity was decreased in NG108.15 cells and MCF7. Our CPPs-Dox conjugate proves the validity of CPPs for the cytoplasmic delivery of therapeutically useful molecules and also a valuable strategy to overcome drug resistance.  相似文献   

2.
In this study, the role of substrate stiffness on the endocytic uptake of a cell-penetrating peptide was investigated. The cell-penetrating peptide, an inhibitor of mitogen-activated protein kinase activated protein kinase II (MK2), enters a primary mesothelial cell line predominantly through caveolae. Using tissue culture polystyrene and polyacrylamide gels of varying stiffness for cell culture, and flow cytometry quantification and enzyme-linked immunoassays (ELISA) for uptake assays, we showed that the amount of uptake of the peptide is increased on soft substrates. Further, peptide uptake per cell increased at lower cell density. The improved uptake seen on soft substrates in vitro better correlates with in vivo functional studies where 10–100 µM concentrations of the MK2 inhibitor cell penetrating peptide demonstrated functional activity in several disease models. Additional characterization showed actin polymerization did not affect uptake, while microtubule polymerization had a profound effect on uptake. This work demonstrates that cell culture substrate stiffness can play a role in endocytic uptake, and may be an important consideration to improve correlations between in vitro and in vivo drug efficacy.  相似文献   

3.
Protein kinase CK2 is emerging as a target in neoplastic diseases. Inhibition of CK2 by small compounds could lead to new therapies by counteracting the elevated CK2 activities found in a variety of tumors. Currently, CK2 inhibitors are primarily evaluated by a radiometric in vitro assay tracing the amount of transferred γ-(32)P from ATP to a substrate peptide. Here, we present two alternative assays abandoning radioisotopes. The first assay is based on F?rster resonance energy transfer between the fluorescence donor EDANS and the acceptor molecule DABCYL within the CK2 substrate peptide [DABCYL]-RRRDDDSDDD-[EDANS]. This peptide comprises a cleavage site for pancreatic elastase, which is located next to the phosphate acceptor serine. Only the non-phosphorylated peptide can be cleaved by elastase, disrupting the FRET effect. Thus fluorescence intensity is inversely correlated with CK2 activity. The second non-radiometric assay deploys the changing of charge that occurs within the peptide substrate RRRDDDSDDD upon phosphorylation by CK2. Substrate and product of a CK2 reaction consequently show a difference in electrophoretic mobility and thus can be separated by capillary electrophoresis. Absorption detection enabled quantification of both peptide species and allowed the determination of IC(50) values. This method facilitated the testing of a small compound library by which benzofuran derivatives were identified as potent CK2 inhibitors with IC(50) values in the submicromolar range.  相似文献   

4.
The cellular penetration (CP) activity of functional molecules has attracted significant attention as one of the most promising new approaches for drug delivery. In particular, cell-penetrating peptides (CPPs) have been studied extensively in cellular engineering. Because there have been few large-scale systematic studies to identify peptide sequences with optimal CP activity or that are suitable for further applications in cell engineering, such as cell-specific penetration and cell-selective culture, we screened and compared the cellular uptake (CU) activity of 54 systematically designed α-helical peptides in HeLa cells. Furthermore, the CU activity of 24 designed peptides was examined in four cell lines using a cell fingerprinting technique and statistical approaches. The CU activities in various cells depended on amino acid residues of peptide sequences as well as charge, α-helical content and hydrophobicity of the peptides. Notably, the mutation of a single residue significantly altered the CU ability of a peptide, highlighting the variability of cell uptake mechanisms. Moreover, these results demonstrated the feasibility of cell-selective culture by conducting cell-selective permeation and death in cultures containing two cell types. These studies may lead to further peptide library design and screening for new classes of CPPs with useful functions.  相似文献   

5.
Maturation of the hepatitis C virus (HCV) polyprotein occurs by a series of proteolytic processes catalyzed by host cell proteases and the virally encoded proteases NS2 and NS3. Although several peptidomimetic inhibitors of NS3 protease have been published, only a few small molecule inhibitors have been reported. In an effort to improve screening efficiency by minimizing the spectral interference of various test compounds, a substrate that contains the longer wavelength fluorescence resonance energy transfer (FRET) pair, TAMRA/QSY-7, was devised. For the optimized substrate T-Abu-Q, with sequence Ac-Asp-Glu-Lys(TAMRA)-Glu-Glu-Abu-Psi(COO)Ala-Ser-Lys(QSY-7)-amide, the kinetic parameters with HCV NS3 protease are K(m)=30 microM, k(cat)=0.6s(-1), and k(cat)/K(m)=20,100s(-1)M(-1). We show that this substrate is suitable for inhibitor analysis and mechanistic studies so long as the substrate concentration is low enough (0.5 microM) to avoid complications from high inner filter effects. The substrate is especially useful with ultra-high-density screening formats, such as microarrayed compound screening technology, because there is less spectral interference from the compounds being tested than with more traditional (EDANS/DABCYL) FRET protease substrates. The merits of the new substrate, as well as potential applications of this FRET pair to other protease substrates, are discussed.  相似文献   

6.
Calpain-1 and -2 are Ca2 +-activated intracellular cysteine proteases that regulate a wide range of cellular functions through the cleavage of their protein substrates. Unlike degradative proteases, calpains make limited, transformative cleavages, typically in accessible sequences linking discrete subdomains, to irreversibly alter substrate functions. The biological roles of calpain and their interplay with calcium signaling are of significant biomedical interest as biomarkers and potential therapeutic targets in a growing number of diseases including Alzheimer's, cancer and fibrosis. Unfortunately, many of the colorimetric and fluorimetric assays that have been developed to study calpain activity suffer from low sensitivity and/or poor calpain specificity. To address the need for a highly sensitive and calpain-specific substrate suitable for in vitro and in vivo calpain activity analysis, we have developed a protein FRET probe. We inserted the optimized calpain cleavage sequence PLFAAR between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) and modulated its flanking sequences for optimal calpain cleavage. We demonstrate greater sensitivity and calpain-specificity of an optimal 16-residue PLFAAR-based FRET substrate compared to a standard α-spectrin-based probe. The 16-residue PLFAAR protein FRET substrate is not significantly cleaved by trypsin, chymotrypsin, cathepsin-L or caspase-3, and is highly sensitive to both calpain-1 and -2. After transfection of the substrate gene into breast cancer cells the PLFAAR protein FRET product was cut in lysed wild-type cells but not in those with a calpain knock-out phenotype. Blockage of substrate cleavage in the lysates by endogenous and exogenous calpastatin was observed, and was overcome by adding extra calpain.  相似文献   

7.
The ubiquitous calpains, mu- and m-calpain, have been implicated in essential physiological processes and various pathologies. Cell-permeable specific inhibitors are important tools to elucidate the roles of calpains in cultivated cells and animal models. The synthetic N-acetylated 27-mer peptide derived from exon B of the inhibitory domain 1 of human calpastatin (CP1B) is unique as a potent and highly selective reversible calpain inhibitor, but is poorly cell-permeant. By addition of N-terminal cysteine residues we have generated a disulfide-conjugated CP1B with the cell-penetrating 16-mer peptide penetratin derived from the third helix of the Antennapedia homeodomain protein. The inhibitory potency and selectivity of CP1B for calpain versus cathepsin B and L, caspase 3 and the proteasome was not affected by the conjugation with penetratin. The conjugate was shown to efficiently penetrate into living LCLC 103H cells, since it prevents ionomycin-induced calpain activation at 200-fold lower concentration than the non-conjugated inhibitor and is able to reduce calpain-triggered apoptosis of these cells. Penetratin-conjugated CP1B seems to be a promising alternative to the widely used cell-permeable peptide aldehydes (e.g. calpain inhibitor 1) which inhibit the lysosomal cathepsins and partially the proteasome as well or even better than the calpains.  相似文献   

8.
A library of fluorescently labeled protein kinase C (PKC) peptide substrates was prepared to identify a phosphorylation-induced reporter of protein kinase activity. The lead PKC substrate displays a 2.5-fold change in fluorescence intensity upon phosphorylation. PKC activity is readily sampled in cell lysates containing the activated PKCs. Immunodepletion of conventional PKCs from the cell lysate eliminates the fluorescence response, suggesting that this peptide substrate is selectively phosphorylated by PKCalpha, beta, and gamma. Finally, living cells microinjected with the peptide substrate exhibit a 2-fold increase in fluorescence intensity upon exposure to a PKC activator. These results suggest that peptide-based protein kinase biosensors may be useful in monitoring the temporal and spatial dynamics of PKC activity in living cells.  相似文献   

9.
In order to evaluate the ability of the cell-penetrating alpha-helical amphipathic model peptide KLALKLALKALKAALKLA-NH(2) (MAP) to deliver peptide nucleic acids (PNAs) into mammalian cells, MAP was covalently linked to the 12-mer PNA 5'-GGAGCAGGAAAG-3' directed against the mRNA of the nociceptin/orphanin FQ receptor. The cellular uptake of both the naked PNA and its MAP-conjugate was studied by means of capillary electrophoresis combined with laser-induced fluorescence detection, confocal laser scanning microscopy and fluorescence-activated cell sorting. Incubation with the fluorescein-labelled PNA-peptide conjugate led to three- and eightfold higher intracellular concentrations in neonatal rat cardiomyocytes and CHO cells, respectively, than found after exposure of the cells to the naked PNA. Correspondingly, pretreatment of spontaneously-beating neonatal rat cardiomyocytes with the PNA-peptide conjugate and the naked PNA slowed down the positive chronotropic effect elicited by the neuropeptide nociceptin by 10- and twofold, respectively. The main reasons for the higher bioavailability of the PNA-peptide conjugate were found to be a more rapid cellular uptake in combination with a lowered re-export and resistance against influences of serum.  相似文献   

10.
Steric blocking peptide nucleic acid (PNA) oligonucleotides have been used increasingly for redirecting RNA splicing particularly in therapeutic applications such as Duchenne muscular dystrophy (DMD). Covalent attachment of a cell-penetrating peptide helps to improve cell delivery of PNA. We have used a HeLa pLuc705 cell splicing redirection assay to develop a series of PNA internalization peptides (Pip) conjugated to an 18-mer PNA705 model oligonucleotide with higher activity compared to a PNA705 conjugate with a leading cell-penetrating peptide being developed for therapeutic use, (R-Ahx-R)4. We show that Pip–PNA705 conjugates are internalized in HeLa cells by an energy-dependent mechanism and that the predominant pathway of cell uptake of biologically active conjugate seems to be via clathrin-dependent endocytosis. In a mouse model of DMD, serum-stabilized Pip2a or Pip2b peptides conjugated to a 20-mer PNA (PNADMD) targeting the exon 23 mutation in the dystrophin gene showed strong exon-skipping activity in differentiated mdx mouse myotubes in culture in the absence of an added transfection agent at concentrations where naked PNADMD was inactive. Injection of Pip2a-PNADMD or Pip2b-PNADMD into the tibealis anterior muscles of mdx mice resulted in ~3-fold higher numbers of dystrophin-positive fibres compared to naked PNADMD or (R-Ahx-R)4-PNADMD.  相似文献   

11.
Peptide nucleic acids (PNAs) are very attractive antisense and antigene agents, but these molecules are not passively taken into cells. Here, using a functional cell assay and fluorescent-based methods, we investigated cell uptake and antisense activity of a tridecamer PNA that targets the HIV-1 polypurine tract sequence delivered using the arginine-rich (R/W)9 peptide (RRWWRRWRR). At micromolar concentrations, without use of any transfection agents, almost 80% inhibition of the target gene expression was obtained with the conjugate in the presence of the endosomolytic agent chloroquine. We show that chloroquine not only induced escape from endosomes but also enhanced the cellular uptake of the conjugate. Mechanistic studies revealed that (R/W)9-PNA conjugates were internalized via pinocytosis. Replacement of arginines with lysines reduced the uptake of the conjugate by six-fold, resulting in the abolition of intracellular target inhibition. Our results show that the arginines play a crucial role in the conjugate uptake and antisense activity. To determine whether specificity of the interactions of arginines with cell surface proteoglycans result in the internalization, we used flow cytometry to examine uptake of arginine- and lysine-rich conjugates in wild-type CHO-K1 and proteoglycan-deficient A745 cells. The uptake of both conjugates was decreased by four fold in CHO-745 cells; therefore proteoglycans promote internalization of cationic peptides, irrespective of the chemical nature of their positive charges. Our results show that arginine-rich cell-penetrating peptides, especially (R/W)9, are a promising tool for PNA internalization.  相似文献   

12.
A sensitive fluorescence assay that employs a new fluorogenic peptide substrate has been developed to continuously measure the proteolytic activity of human renin. The substrate, DABCYL-gaba-Ile-His-Pro-Phe-His-Leu-Val-Ile-His-Thr-EDANS, has been designed to incorporate the renin cleavage site that occurs in the N-terminal peptide of human angiotensinogen. The assay relies upon resonance energy transfer-mediated, intramolecular fluorescence quenching that occurs in the intact peptide substrate. Efficient fluorescence quenching occurs as a result of favorable energetic overlap of the EDANS excited state and the DABCYL absorption, and the relatively long excited state lifetime of the EDANS fluorophore. Cleavage of the substrate by renin liberates the peptidyl-EDANS fragment from proximity with the DABCYL acceptor, restoring the higher, unattenuated fluorescence of the EDANS moiety. This leads to a time-dependent increase in fluorescence intensity, directly related to the extent of substrate consumed by renin cleavage. The kinetics of renin-catalyzed hydrolysis of this substrate have been shown to be consistent with a simple substrate inhibition model with a substrate Km 1.5 μM at physiological pH; Cleavage of the substrate occurs specifically at the Leu-Val bond and corresponds to the renin cleavage site of angiotensinogen, as reported earlier. In this report, we describe in detail the synthesis of the fluorogenic renin substrate and its application in assays of renin activity. Assay sensitivity has been evaluated by a series of enzyme dilution experiments using the continuous assay format, showing that the assay can detect renin as low as 30 ng/ml after a incubation of only 3-5 min. It was estimated that with extended incubation time (2-3 h) the assay can detect renin at 0.5 ng/ml concentration level. An automated, high throughput fluorometric renin assay has been developed for a 96-well microtiter-plate fluorescence reader, which is useful for studies of enzyme inhibitors and enzyme stability.  相似文献   

13.
Uptake of analogs of penetratin,Tat(48-60) and oligoarginine in live cells   总被引:4,自引:0,他引:4  
Cell-penetrating peptides are regarded as promising vectors for intracellular delivery of large, hydrophilic molecules, but their mechanism of uptake is poorly understood. Since it has now been demonstrated that the use of cell fixation leads to artifacts in microscopy studies on the cellular uptake of such peptides, much of what has been considered as established facts must be reinvestigated using live (unfixed) cells. In this work, the uptake of analogs of penetratin, Tat(48-60), and heptaarginine in two different cell lines was studied by confocal laser scanning microscopy. For penetratin, an apparently endocytotic uptake was observed, in disagreement with previous studies on fixed cells found in the literature. Substitution of the two tryptophan residues, earlier reported to be essential for cellular uptake, did not alter the uptake characteristics. A heptaarginine peptide, with a tryptophan residue added in the C-terminus, was found to be internalized by cells via an energy-independent, non-endocytotic pathway. Finally, a crucial role for arginine residues in penetratin and Tat(48-60) was demonstrated.  相似文献   

14.
Calpains, the intracellular proteolytic enzymes, play important roles in various processes in cells. The lack of calpain or its overexpression is thought to be an underlying factor in some diseases. In this study, we report the synthesis of a new group of cell-penetrating calpastatin-peptide conjugates with the activating capacity of m-calpain intracellularly. In these constructs, peptides related to the calpastatin A or C subunit with the capabiliy of activation of isolated m-calpain was covalently conjugated to the C-terminal of penetratin via amide, thioether, or disulfide bond. These conjugates were prepared by solid-phase synthesis and/or by chemical ligation and properly characterized (MS, HPLC). Our results using isolated m-calpain suggest that conjugation does not interfere with the enzyme-activating effect of the calpastatin peptides; in fact, the efficiency of the conjugates was markedly higher. The conjugates with different bonds showed essentially the same level of activation. Internalization experiments with fluorophore (4-[7-hydroxycoumaryl] acetic acid (Hca) at the N-terminal of penetratin and/or 5(6)-carboxyfluorescein (cf)) labeled conjugates show that these constructs are taken up by COS-7 cells. Using cell lysates produced after incubation with the 1:1 (mol/mol) mixture of calpastatin A and C peptide conjugates, we found a significant calpain activating effect. We also noticed that the conjugate even with a disulfide bond between the components seems to be stable and activate m-calpain after intracellular translocation under the conditions studied. To the best of our knowledge, this is the first report to describe conjugates with an m-calpain activating effect on isolated enzymes and more importantly within living cells after transmembrane delivery. Thus, these conjugates seem to be appropriate as molecular tools to activate intracellular m-calpain and to study calpain functions in living cells.  相似文献   

15.
In face of accumulated reports demonstrating that uptake of some cell-penetrating peptides occurs through previously described endocytic pathways, or is a consequence of cell fixation artifacts, we conducted a systematic analysis on the mechanism responsible for the cellular uptake of the S4(13)-PV karyophilic cell-penetrating peptide. The results reviewed here show that the S4(13)-PV peptide is able to very efficiently accumulate inside live cells in a rapid, non-toxic and dose-dependent manner, through a mechanism distinct from endocytosis. Comparative analysis of peptide uptake by mutant cells lacking heparan sulfate proteoglycans demonstrates that, although not mandatory, their presence at cell surface facilitates the cellular uptake of the S4(13)-PV peptide. Furthermore, we demonstrate that upon interaction with lipid vesicles, the S4(13)-PV peptide undergoes significant conformational changes that are consistent with the formation of helical structures. Such conformational changes occur concomitantly with a penetration of the peptide into the lipid bilayer, strongly suggesting that the resulting helical structures are crucial for the non-endocytic cellular uptake of the S4(13)-PV peptide. Overall, our data support that, rather than endocytosis, the cellular uptake of the S4(13)-PV cell-penetrating peptide is a consequence of its direct translocation through cell membranes following conformational changes induced by peptide-membrane interactions.  相似文献   

16.
Design of a Tumor Homing Cell-Penetrating Peptide for Drug Delivery   总被引:1,自引:0,他引:1  
The major drawbacks with conventional cancer chemotherapy are the lack of satisfactory specificity towards tumor cells and poor antitumor activity. In order to improve these characteristics, chemotherapeutic drugs can be conjugated to targeting moieties e.g. to peptides with the ability to recognize cancer cells. We have previously reported that combining a tumor homing peptide with a cell-penetrating peptide yields a chimeric peptide with tumor cell specificity that can carry cargo molecules inside the cells. In the present study, we have used a linear breast tumor homing peptide, CREKA, in conjunction with a cell-penetrating peptide, pVEC. This new chimeric peptide, CREKA–pVEC, is more convenient to synthesize and moreover it is better in translocating cargo molecules inside cancer cells as compared to previously published PEGA–pVEC peptide. This study demonstrates that CREKA–pVEC is a suitable vehicle for targeted intracellular delivery of a DNA alkylating agent, chlorambucil, as the chlorambucil–peptide conjugate was substantially better at killing cancer cells in vitro than the anticancer drug alone.  相似文献   

17.
The ability to track the distribution and differentiation of stem cells by high-resolution imaging techniques would have significant clinical and research implications. In this study, a model cell-penetrating peptide was used to carry gadolinium particles for magnetic resonance imaging of the mesenchymal stem cells. The mesenchymal stem cells were isolated from rat bone marrow by Percoll and identified by osteogenic differentiation in vitro. The cell-penetrating peptides labeled with fluorescein-5-isothiocyanate and gadolinium were synthesized by a solid-phase peptide synthesis method and the relaxivity of cell-penetrating peptide-gadolinium paramagnetic conjugate on 400 MHz nuclear magnetic resonance was 5.7311 +/- 0.0122 m mol(-1) s(-1), higher than that of diethylenetriamine pentaacetic acid gadolinium (p < 0.05). Fluorescein imaging confirmed that this new peptide could internalize into the cytoplasm and nucleus. Gadolinium was efficiently internalized into mesenchymal stem cells by the peptide in a time- or concentration-dependent fashion, resulting in intercellular T1 relaxation enhancement, which was obviously detected by 1.5 T magnetic resonance imaging. Cytotoxicity assay and flow cytometric analysis showed the intercellular contrast medium incorporation did not affect cell viability and membrane potential gradient. The research in vitro suggests that the newly constructed peptides could be a vector for tracking mesenchymal stem cells.  相似文献   

18.
Recent evidence suggests that cell cycle-related molecules play pivotal roles in multiple forms of cell death in post-mitotic neurons. Nevertheless, it remains unclear what molecular mechanisms are involved in the regulation of expression levels and activities of these molecules. We showed previously that treatment with extracellular glutamate decreases cyclin-dependent kinase inhibitor p27 before neuronal cell death. In this study, we demonstrate that reductions of both p27 and neuronal viability were dependent on activity of calpain, a Ca(2+)-dependent protease, but not on activity of caspase 3. Interestingly, the glutamate-induced reduction of p27 was not dependent on the ubiquitin-proteasome system. In fact, p27 was present only in the neuronal nucleus, whereas calpain 1, a ubiquitous calpain, was observed both in the neuronal nucleus and cytoplasm in control cultures. Glutamate treatment did not change the localization patterns of p27 and calpain 1. It reduced p27 expression level in the nucleus in a calpain-dependent manner. In vitro experiments using neuronal cell lysate and p27 recombinant protein revealed that p27 was degraded as a substrate of activated calpain 1. These results suggest that calpain(s), activated by glutamate treatment, degrade(s) p27 in the nucleus of neurons, which might promote aberrant cell cycle progression.  相似文献   

19.
Prostate cancer is the most common cancer among men beyond 50 years old, and ranked the second in mortality. The level of Prostate-specific antigen (PSA) in serum has been a routine biomarker for clinical assessment of the cancer development, which is detected mostly by antibody-based immunoassays. The proteolytic activity of PSA also has important functions. Here a genetically encoded biosensor based on fluorescence resonance energy transfer (FRET) technology was developed to measure PSA activity. In vitro assay showed that the biosensor containing a substrate peptide ‘RLSSYYSGAG’ had 400% FRET change in response to 1 µg/ml PSA within 90 min, and could detect PSA activity at 25 ng/ml. PSA didn’t show enzymatic activity toward the biosensor in serum solution, likely reflecting the existence of other inhibitory factors besides Zn2+. By expressing the biosensor on cell plasma membrane, the FRET responses were significant, but couldn’t distinguish well the cultured prostate cancer cells from non-prostate cancer cells under microscopy imaging, indicating insufficient speci- ficity to PSA. The biosensor with the previously known ‘HSSKLQ’ substrate showed little response to PSA in solution. In summary, we developed a genetically encoded FRET biosensor to detect PSA activity, which may serve as a useful tool for relevant applications, such as screening PSA activation substrates or inhibitors; the purified biosensor protein can also be an alternative choice for measuring PSA activity besides currently commercialized Mu-HSSKLQ-AMC substrate from chemical synthesis.  相似文献   

20.
In face of accumulated reports demonstrating that uptake of some cell-penetrating peptides occurs through previously described endocytic pathways, or is a consequence of cell fixation artifacts, we conducted a systematic analysis on the mechanism responsible for the cellular uptake of the S413-PV karyophilic cell-penetrating peptide. The results reviewed here show that the S413-PV peptide is able to very efficiently accumulate inside live cells in a rapid, non-toxic and dose-dependent manner, through a mechanism distinct from endocytosis. Comparative analysis of peptide uptake by mutant cells lacking heparan sulfate proteoglycans demonstrates that, although not mandatory, their presence at cell surface facilitates the cellular uptake of the S413-PV peptide. Furthermore, we demonstrate that upon interaction with lipid vesicles, the S413-PV peptide undergoes significant conformational changes that are consistent with the formation of helical structures. Such conformational changes occur concomitantly with a penetration of the peptide into the lipid bilayer, strongly suggesting that the resulting helical structures are crucial for the non-endocytic cellular uptake of the S413-PV peptide. Overall, our data support that, rather than endocytosis, the cellular uptake of the S413-PV cell-penetrating peptide is a consequence of its direct translocation through cell membranes following conformational changes induced by peptide-membrane interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号