首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yuan W  Yuan J  Zhang F  Xie X 《Biomacromolecules》2007,8(4):1101-1108
Well-defined ethyl cellulose-graft-poly(epsilon-caprolactone) (EC-g-PCL) graft copolymers were successfully synthesized via ring-opening polymerization (ROP) of epsilon-caprolactone (CL) with an ethyl cellulose (EC) initiator and a tin 2-ethylhexanoate (Sn(Oct)2) catalyst in xylene at 120 degrees C. Then, novel ethyl cellulose-graft-poly(epsilon-caprolactone)-block-poly(L-lactide) (EC-g-PCL-b-PLLA) graft-block copolymers were prepared by ROP of L-lactide (L-LA) with a hydroxyl-terminated EC-g-PCL macroinitiator and Sn(Oct)2 catalyst in bulk at 120 degrees C. Various graft and block lengths of EC-g-PCL and EC-g-PCL-b-PLLA copolymers were obtained by adjusting the molar ratios of CL monomer to EC and the L-LA monomer to CL. The thermal properties and crystalline morphologies of EC-g-PCL and EC-g-PCL-b-PLLA copolymers were different from those of linear PCL. The in vitro degradation rate of EC-g-PCL-b-PLLA was faster than those of linear PCL and EC-g-PCL due to the presence of PLLA blocks.  相似文献   

2.
A biodegradable block copolymer (PCL-b-PLLA, M(n) = 1.72 x 10(4), M(w)/M(n) = 1.37) of poly(epsilon-caprolactone) (PCL) and poly(L-lactide) (PLLA) with very low crystallinity was obtained by forming the inclusion complex between alpha-cyclodextrin molecules and PCL-b-PLLA followed by coalescence of the guest polymer chains. Films of the as-synthesized and coalesced copolymer samples, PCL and PLLA homopolymers of approximately the same chain lengths as the corresponding blocks of PCL-b-PLLA, and a physical blend of PCL/PLLA homopolymers with the same molar composition as PCL-b-PLLA were prepared by melt-compression molding between Teflon plates. Subsequently, the in vitro biodegradation behavior of these films was studied in phosphate buffer solution containing lipase from Rhizopus arrhizus, by means of ultraviolet spectra, attenuated total reflectance FTIR spectra, differential scanning calorimetry, wide-angle X-ray diffraction measurements, and weight loss analysis. PCL segments were found to degrade much faster than PLLA segments, both in the pure state and in copolymer or blend samples. Consistent with our expectation, suppression of the phase separation, as well as a decrease of crystallinity, in the coalesced copolymer sample led to a much faster enzymatic degradation than that of either as-synthesized copolymer or the PCL/PLLA physical blend sample, especially during the early stages of biodegradation. Thus the biodegradation behavior of biodegradable block copolymers, which is of decisive importance in drug delivery and controlled release systems, may be regulated by the novel and convenient means recently reported by us.(1)  相似文献   

3.
A series of novel amphiphilic triblock copolymers of poly(ethyl ethylene phosphate) and poly(-caprolactone) (PEEP-PCL-PEEP) with various PEEP and PCL block lengths were synthesized and characterized. These triblock copolymers formed micelles composed of a hydrophobic core of poly(-caprolactone) (PCL) and a hydrophilic shell of poly(ethyl ethylene phosphate) (PEEP) in aqueous solution. The micelle morphology was spherical, determined by transmission electron microscopy. It was found that the size and critical micelle concentration values of the micelles depended on both hydrophobic PCL block length and PEEP hydrophilic block length. The in vitro degradation characteristics of the triblock copolymers were investigated in micellar form, showing that these copolymers were completely biodegradable under enzymatic catalysis of Pseudomonas lipase and phosphodiesterase I. These triblock copolymers were used for paclitaxel (PTX) encapsulation to demonstrate the potential in drug delivery. PTX was successfully loaded into the micelles, and the in vitro release profile was found to be correlative to the polymer composition. These biodegradable triblock copolymer micelles are potential as novel carriers for hydrophobic drug delivery.  相似文献   

4.
An innovative type of triblock copolymer that maintains and even increases the mechanical properties of poly(l-lactide) (PLLA) and poly(ε-caprolactone) (PCL) with a controlled, predictable, and rapid degradation profile has been synthesized. Elastic triblock copolymers were formed from the hydrophobic and crystalline PLLA and PCL with an amorphous and hydrophilic middle block of poly(but-2-ene-1,4-diyl malonate) (PBM). The polymers were subjected to degradation in PBS at 37 °C for up to 91 days. Prior to degradation, ductility of the PLLA-PBM-PLLA was approximately 4 times greater than that of the homopolymer of PLLA, whereas the modulus and tensile stress at break were unchanged. A rapid initial hydrolysis in the amorphous PBM middle block changed the microstructure from triblock to diblock with a significant reduction in ductility and molecular weight. The macromolecular structure of the triblock copolymer of PLLA and PBM generates a more flexible and easier material to handle during implant, with the advantage of a customized degradation profile, demonstrating its potential use in future biomedical applications.  相似文献   

5.
Eight-armed poly(ethylene glycol)-poly(trimethylene carbonate) star block copolymers (PEG-(PTMC)(8)) linked by a carbamate group between the PEG core and the PTMC blocks were synthesized by the metal-free, HCl-catalyzed ring-opening polymerization of trimethylene carbonate using an amine-terminated eight-armed star PEG in dichloromethane. Although dye solubilization experiments, nuclear magnetic resonance spectroscopy, and dynamic light scattering clearly indicated the presence of aggregates in aqueous dispersions of the copolymers, no physical gelation was observed up to high concentrations. PEG-(PTMC(9))(8) was end-group-functionalized using acryloyl chloride and photopolymerized in the presence of Irgacure 2959. When dilute aqueous dispersions of PEG-(PTMC(9))(8)-Acr were UV irradiated, chemically cross-linked PEG-PTMC nanoparticles were obtained, whereas irradiation of more concentrated PEG-(PTMC(9))(8)-Acr dispersions resulted in the formation of photo-cross-linked hydrogels. Their good mechanical properties and high stability against hydrolytic degradation make photo-cross-linked PEG-PTMC hydrogels interesting for biomedical applications such as matrices for tissue engineering and controlled drug delivery systems.  相似文献   

6.
Biocompatible amphiphilic block copolymers comprised of poly(ethylene glycol) (PEG) as the hydrophilic component and a poly(methylcarboxytrimethylene carbonate) (PMTC) as a hydrophobic backbone having either poly(L-lactide) (L-PLA) or poly(D-lactide) (D-PLA) branches were prepared by organocatalytic ring-opening polymerization (ROP). The polycarbonate backbone was prepared by copolymerization of two different MTC-type monomers (MTCs) including a tetrahydropyranyloxy protected hydroxyl group, a masked initiator for a subsequent ROP step. Interestingly, the organic catalyst used in the ROP of MTCs was also effective for acetylation of the hydroxyl end-groups by the addition of acetic anhydride added after polymerization. Acidic deprotection of the tetrahydropyranyloxy (THP) protecting group on the carbonate chain generated hydroxyl functional groups that served as initiators for the ROP of either D- or L-lactide. Comb-shaped block copolymers of predictable molecular weights and narrow polydispersities (approximately 1.3) were prepared with up to 8-PLA branches. Mixtures of the D- and L-lactide based copolymers were studied to understand the effect of noncovalent interactions or stereocomplexation on the properties.  相似文献   

7.
Degradation of natural and synthetic polyesters under anaerobic conditions   总被引:4,自引:0,他引:4  
Often, degradability under anaerobic conditions is desirable for plastics claimed to be biodegradable, e.g. in anaerobic biowaste treatment plants, landfills and in natural anaerobic sediments. The biodegradation of the natural polyesters poly(beta-hydroxybutyrate) (PHB), poly(beta-hydroxybutyrate-co-11.6%-beta-hydroxyvalerate) (PHBV) and the synthetic polyester poly(epsilon-caprolactone) (PCL) was studied in two anaerobic sludges and individual polyester degrading anaerobic strains were isolated, characterized and used for degradation experiments under controlled laboratory conditions. Incubation of PHB and PHBV films in two anaerobic sludges exhibited significant degradation in a time scale of 6-10 weeks monitored by weight loss and biogas formation. In contrast to aerobic conditions, PHB was degraded anaerobically more rapidly than the copolyester PHBV, when tested with either mixed cultures or a single strained isolate. PCL tends to degrade slower than the natural polyesters PHB and PHBV. Four PHB and PCL degrading isolates were taxonomically identified and are obviously new species belonging to the genus Clostridium group I. The depolymerizing enzyme systems of PHB and PCL degrading isolates are supposed to be different. Using one isolated strain in an optimized laboratory degradation test with PHB powder, the degradation time was drastically reduced compared to the degradation in sludges (2 days vs. 6-10 weeks).  相似文献   

8.
Random copolymers were prepared by Candida antarctica lipase B (Novozyme-435) catalyzed copolymerization of omega-pentadecalactone (PDL) with epsilon-caprolactone (CL). Over the whole composition range PDL-CL copolymers are highly crystalline (melting enthalpy by differential scanning calorimetry, above 100 J/g; crystallinity degree by wide-angle X-ray scattering, WAXS, 60-70%). The copolymers melt at temperatures that linearly decrease with composition from that of poly(omega-pentadecalactone) (PPDL; 97 degrees C) to that of poly(epsilon-caprolactone) (PCL; 59 degrees C). The WAXS profiles of PCL and PPDL homopolymers are very similar, except for the presence in PPDL of the (001) reflection at 2theta = 4.58 degrees that corresponds to a 19.3 angstroms periodicity in the chain direction. In PDL-CL copolymers the intensity of this reflection decreases with increasing content of CL units and vanishes at 50 mol % CL, as a result of randomization of the ester group alignment and loss of chain periodicity. PDL-CL copolymers crystallize in a lattice that gradually changes from that of one homopolymer to that of the other, owing to comonomer isomorphous substitution. Cocrystallization of comonomer units is also shown by a random PDL-CL copolymer obtained in a polymerization/transesterification reaction catalyzed by C. antarctica lipase B (Novozyme-435) starting from preformed PCL and PDL monomer.  相似文献   

9.
Two amphiphilic AB block copolymers, containing a highly compatible poly(epsilon-caprolactone) (PCL) block connected to a poly(dimethylsiloxane) (PDMS) block having a low surface energy, are synthesized and characterized in terms of their dispersion in a presynthesized PCL matrix. X-ray photoelectron spectroscopy, contact angle measurements, atomic force microscopy, and optical microscopy are used to describe the evolution of the surface chemical composition, as well as the surface and bulk morphology of the PCL/copolymer blends as a function of the nature and weight surface free energy and the dispersion of the copolymers in the blends, leading to important modifications of the bulk and the surface morphology. These differences are interpreted in terms of the impact of the block copolymers on the semicrystalline polymer structure and related properties in the prospect of using the surfactants to improve the synthesis of PCL in supercritical CO(2).  相似文献   

10.
The terminal amino groups of polysarcosine, poly(γ-benzyl l-glutamate), and poly(ε-benzyloxycarbonyl-l-lysine) were haloacetylated. The mixture of the terminally haloacetylated poly(α-amino acid) and styrene or methyl methacrylate was photoirradiated in the presence of Mn2(CO)10, or heated with Mo(CO)6, yielding A-B-A-type block copolymers consisting of poly(α-amino acid) (the A component) and vinyl polymer (the B component). The block copolymers were characterized, and the present investigation revealed that the thermally initiated polymerization of vinyl compounds by the trichloroacetyl poly(α-amino acid)/Mo(CO)6 system was the most suitable for the synthesis of the α-amino acid/vinyl compound block copolymers. The A-B-A type block copolymers showed higher antithrombogenicity than the corresponding homopolymers. In particular, a film of the A-B-A-type block copolymer of poly[Glu(OBzl)] and polystyrene possessed a microphase-separated structure and did not induce a conformational change of fibrinogen adsorbed, leading to a high antithrombogenicity.  相似文献   

11.
An efficient living ring-opening polymerization (ROP) of a permethoxylated epsilon-caprolactone [(OMe)CL] catalyzed by yttrium(III) isopropoxide was developed for the synthesis of degradable protein-resistant polymers [P(OMe)CL]. The lactone monomer was efficiently prepared from a reduced sugar, D-dulcitol. Kinetic studies of the ROP revealed a linear dependence of ln[M]0/[M] on polymerization time as well as a linear correlation between the number-averaged molecular weight (M(n)) and monomer conversion; both support it is a living polymerization. A series of block copolymers of our permethoxylated lactone with epsilon-caprolactone [P(OMe)CL-b-PCL] were synthesized and fully characterized. In thermal analyses only single T(g)s were observed in all the block copolymers, suggesting that P(OMe)CL and PCL blocks are fully miscible. Finally, surface plasmon resonance (SPR) sensograms demonstrated that both P(OMe)CL and the P(OMe)CL-b-PCL block copolymers exhibit excellent resistance to fibrinogen and lysozyme.  相似文献   

12.
Glycopolymer-polypeptide triblock copolymers of the structure, poly(l-alanine)-b-poly(2-acryloyloxyethyl-lactoside)-b-poly(l-alanine) (AGA), have been synthesized by sequential atom transfer radical polymerization (ATRP) and ring-opening polymerization (ROP). Controlled free radical polymerization of 2-O-acryloyl-oxyethoxyl-(2,3,4,6-tetra-O-acetyl-beta-d-galactopyranosyl)-(1-4)-2,3,6-tri-O-acetyl-beta-d-glucopyranoside (AEL) by ATRP with a dibromoxylene (DBX)/CuBr/bipy complex system was used to generate a central glycopolymer block. Telechelic glycopolymers with diamino end groups were obtained by end group transformation and subsequently used as macroinitiators for ROP of l-alanine N-carboxyanhydride monomers (Ala-NCA). Gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy analysis demonstrated that copolymer molecular weight and composition were controlled by both the molar ratios of the Ala-NCA monomer to macroinitiator and monomer conversion and exhibited a narrow distribution (Mw/Mn = 1.06-1.26). FT-IR spectroscopy of triblock copolymers revealed that the ratio of alpha-helix/beta-sheet increased with poly(l-alanine) block length. Of note, transmission electron microscopy (TEM) demonstrated that selected amphiphilic glycopolymer-polypeptide triblock copolymers self-assemble in aqueous solution to form nearly spherical aggregates of several hundreds nanometer in diameter. Significantly, the sequential application of ATRP and ROP techniques provides an effective method for producing triblock copolymers with a central glycopolymer block and flanking polypeptide blocks of defined architecture, controlled molecular weight, and low polydispersity.  相似文献   

13.
Inclusion complexed (IC) and coalesced biodegradable poly(epsilon-caprolactone) (PCL), poly(L-lactic acid) (PLLA), and their diblock copolymer (PCL-b-PLLA) were achieved by forming ICs between host alpha-cyclodextrin(alpha-CD) and guest PCL, PLLA, and PCL-b-PLLA, followed by removing the alpha-CD host with an amylase enzyme. FTIR spectra of the coalesced polymers reveal that the host alpha-CD can be completely removed, without polymer degradation, by treatment with an amylase enzyme. The melting and crystallization behavior of these CD-IC treated polymers, which are crystallizable, biodegradable, and bioabsorbable, are investigated by differential scanning calorimetry (DSC) and polarized optical microscopy. Results show that coalescence increased the crystallinities of the homopolymers but decreased that of the diblock copolymer. The Avrami exponent (n), derived from both isothermal and nonisothermal crystallization models for homo-PCL and -PLLA and the PCL and PLLA blocks in the diblock copolymer samples coalesced from their ICs, is close to 4, indicating homogeneous crystallization, whereas crystallization of the blocks in the as-synthesized diblock copolymer yields an Avrami exponent around 3, indicating heterogeneous crystallization. All of these results demonstrate that the PCL and PLLA homopolymers and blocks in the IC-coalesced samples are more readily and homogeneously crystallized than those in the as-synthesized samples or their physical blend, even though the level of crystallinity in the IC-coalesced diblock copolymer is significantly lower. Moreover, unlike the as-synthesized diblock copolymer, the crystallization of PCL and PLLA blocks in the IC-coalesced diblock copolymer are not influenced by their covalent connection.  相似文献   

14.
Biodegradable polyurethane urea (PUU) elastomers are ideal candidates for fabricating tissue engineering scaffolds with mechanical properties akin to strong and resilient soft tissues. PUU with a crystalline poly(ε-caprolactone) (PCL) macrodiol soft segment (SS) showed good elasticity and resilience at small strains (<50%) but showed poor resilience under large strains because of stress-induced crystallization of the PCL segments, with a permanent set of 677 ± 30% after tensile failure. To obtain softer and more resilient PUUs, we used noncrystalline poly(trimethylene carbonate) (PTMC) or poly(δ-valerolactone-co-ε-caprolactone) (PVLCL) macrodiols of different molecular weights as SSs that were reacted with 1,4-diisocyanatobutane and chain extended with 1,4-diaminobutane. Mechanical properties of the PUUs were characterized by tensile testing with static or cyclic loading and dynamic mechanical analysis. All of the PUUs synthesized showed large elongations at break (800-1400%) and high tensile strength (30-60 MPa). PUUs with noncrystalline SSs all showed improved elasticity and resilience relative to the crystalline PCL-based PUU, especially for the PUUs with high molecular weight SSs (PTMC 5400 M(n) and PVLCL 6000 M(n)), of which the permanent deformation after tensile failure was only 12 ± 7 and 39 ± 4%, respectively. The SS molecular weight also influenced the tensile modulus in an inverse fashion. Accelerated degradation studies in PBS containing 100 U/mL lipase showed significantly greater mass loss for the two polyester-based PUUs versus the polycarbonate-based PUU and for PVLCL versus PCL polyester PUUs. Basic cytocompatibility was demonstrated with primary vascular smooth muscle cell culture. The synthesized families of PUUs showed variable elastomeric behavior that could be explained in terms of the underlying molecular design and crystalline behavior. Depending on the application target of interest, these materials may provide options or guidance for soft tissue scaffold development.  相似文献   

15.
The anaerobic degradability of natural and synthetic polyesters is investigated applying microbial consortia (3 sludges, 1 sediment) as well as individual strains isolated for this purpose. In contrast to aerobic conditions, the natural homopolyester polyhydroxybutyrate (PHB) degrades faster than the copolyester poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV). For the synthetic polyester poly(epsilon-caroplacton) (PCL), microbial degradation in the absence of oxygen could be clearly demonstrated; however, the degradation rate is significantly lower than for PHB and PHBV. Other synthetic polyesters such as poly(trimethylene adipate) (SP3/6), poly(tetramethylene adipate) (SP4/6), and aliphatic-aromatic copolyesters from 1,4-butanediol, terephthalic acid, and adipic acid (BTA-copolymers) exhibit only very low anaerobic microbial susceptibility. A copolyester with high amount of terephthalic acid (BTA 40:60) resisted the anaerobic breakdown even under thermophilic conditions and/or when blended with starch. For the synthetic polymers, a number of individual anaerobic strain could be isolated which are able to depolymerize the polymers and selected strains where identified as new species of the genus Clostridium or Propionispora. Their distinguished degradation patterns point to the involvement of different degrading enzymes which are specialized to depolymerize either the natural polyhydroxyalkanoates (e.g., PHB), the synthetic polyester PCL, or other synthetic aliphatic polyesters such as SP3/6. It can be supposed that these enzymes exhibit comparable characteristics as those described to be responsible for aerobic polyester degradation (lipases, cutinases, and PHB-depolymerases).  相似文献   

16.
A series of biodegradable amphiphilic graft polymers were successfully synthesized by grafting poly(epsilon-caprolactone) (PCL) sequences onto a water-soluble poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide] (PHEA) backbone. The graft copolymers were prepared through the ring-opening polymerization of epsilon-caprolactone (CL) initiated by the macroinitiator PHEA with pendant hydroxyl groups without adding any catalyst. By controlling the feed ratio of the macroinitiator to the monomer, the copolymers with different branch lengths and properties can be obtained. The successful grafting of PCL sequences onto the PHEA backbone was verified by FTIR, 1H NMR, and combined size-exclusion chromatography and multiangle laser light scattering (SEC-MALLS) analysis. The hydrolytic degradation and enzymatic degradation of these graft copolymers were investigated. The results show the hydrolytic degradation rate increases with increasing content of hydrophilic PHEA backbone. While the enzymatic degradation rate is affected by two competitive factors, the catalytic effect of Pseudomonas cepacia lipase on the degradation of PCL branches and the hydrophilicity which depends on the copolymer composition. In situ observation of the degradation under polarizing light microscope (PLM) demonstrates the different degradation rates of different regions in the polymer samples.  相似文献   

17.
Hu X  Liu S  Chen X  Mo G  Xie Z  Jing X 《Biomacromolecules》2008,9(2):553-560
A new biodegradable amphiphilic block copolymer, poly(ethylene glycol)-b-poly(L-lactide-co-9-phenyl-2,4,8,10-tetraoxaspiro[5,5]undecan-3-one) [PEG-b-P(LA-co-PTO)], was successfully prepared by ring-opening polymerization (ROP) of L-lactide (LA) and functionalized carbonate monomer 9-phenyl-2,4,8,10-tetraozaspiro[5,5]undecan-3-one (PTO) in the presence of monohydroxyl poly(ethylene glycol) as macroinitiator using Sn(Oct)2 as catalyst. NMR, FT-IR, and GPC studies confirmed the copolymer structure. It could self-assemble into micelles in aqueous solution with critical micelle concentration (CMC) in the magnitude of mg/L, which changed with the composition of the copolymer. After catalytic hydrogenation, copolymers with active hydroxyl groups were obtained. Adhesion and proliferation of Vero cells on the copolymer films showed that the synthesized copolymers were good biocompatible materials. In vitro degradation of the copolymer before and after deprotection was investigated in the presence of proteinase K. The free hydroxyl groups on the copolymers were capable of further modification with biotin. This new amphiphilic block copolymer has great potential for both drug encapsulation and conjugate because of its low CMC and the presence of active hydroxyl groups.  相似文献   

18.
Block copolymers were prepared by ring-opening polymerization of epsilon-caprolactone in the presence of monohydroxyl or dihydroxyl poly(ethylene glycol) (PEG), using Zn powder as catalyst. The resulting poly(epsilon-caprolactone) (PCL)-PEG diblock and PCL-PEG-PCL triblock copolymers were characterized by various analytical techniques such as NMR, size-exclusion chromatography, differential scanning calorimetry, and X-ray diffraction. Both copolymers were semicrystalline polymers, the crystalline structure being of the PCL type. Films were prepared by casting dichloromethane solutions of the polymers on a glass plate. Square samples with dimensions of 10 x 10 mm were allowed to degrade in a pH = 7.0 phosphate buffer solution containing Pseudomonas lipase. Data showed that the introduction of PEG blocks did not decrease the degradation rate of poly(epsilon-caprolactone).  相似文献   

19.
"Stealth" nanoparticles made from polymer micelles have been widely explored as drug carriers for targeted drug delivery. High stability (i.e., low critical micelle concentration (CMC)) is required for their intravenous applications. Herein, we present a "core-surface cross-linking" concept to greatly enhance nanoparticle's stability: amphiphilic brush copolymers form core-surface cross-linked micelles (nanoparticles) (SCNs). The amphiphilic brush copolymers consisted of hydrophobic poly(epsilon-caprolactone) (PCL) and hydrophilic poly(ethylene glycol) (PEG) or poly(2-(N,N-dimethylamino)ethyl methacrylate) (PDMA) chains were synthesized by macromonomer copolymerization method and used to demonstrate this concept. The resulting SCNs were about 100 times more stable than micelles from corresponding amphiphilic block copolymers. The size and surface properties of the SCNs could be easily tailored by the copolymer's compositions.  相似文献   

20.
Poly(ε-caprolactone) (PCL)/poly(trimethylene carbonate) (PTMC) blend nanofibers have been prepared for the first time using an electrospinning process. The mixed dichloromethane (DCM) and N,N-dimethylformamide (DMF) (75/25, v/v) was found to be the most suitable solvent for electrospinning. Various blends of PCL/PTMC solutions were investigated for the formation of nano-scale fibers and it was found that the average diameter of the fibers was reduced and the morphology became finer when PTMC content was increased. FT-IR and DSC analysis indicated that the molecular interactions between PCL and PTMC were weak and they were phase-separated in the fibers. Due to the biocompatible properties of PCL and PTMC, the spun nanofibers developed here could have applications in the biomedical field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号