首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tremmel D  Duarte M  Videira A  Tropschug M 《FEBS letters》2007,581(10):2036-2040
FKBP22 is a dimeric protein in the lumen of the endoplasmic reticulum, which exhibits a chaperone as well as a PPIase activity. It binds via its FK506 binding protein (FKBP) domain directly to the Hsp70 chaperone BiP that stimulates the chaperone activity of FKBP22. Here we demonstrate additionally the association of FKBP22 with the molecular chaperones and folding catalysts Grp170, alpha-subunit of glucosidase II, PDI, ERp38, and CyP23. These proteins are associated with FKBP22 in at least two protein complexes. Furthermore, we report an essential role for FKBP22 in the development of microconidiophores in Neurospora crassa.  相似文献   

2.
Interaction of the Hsp90 cochaperone cyclophilin 40 with Hsc70   总被引:1,自引:0,他引:1       下载免费PDF全文
The high-affinity ligand-binding form of unactivated steroid receptors exists as a multicomponent complex that includes heat shock protein (Hsp)90; one of the immunophilins cyclophilin 40 (CyP40), FKBP51, or FKBP52; and an additional p23 protein component. Assembly of this heterocomplex is mediated by Hsp70 in association with accessory chaperones Hsp40, Hip, and Hop. A conserved structural element incorporating a tetratricopeptide repeat (TPR) domain mediates the interaction of the immunophilins with Hsp90 by accommodating the C-terminal EEVD peptide of the chaperone through a network of electrostatic and hydrophobic interactions. TPR cochaperones recognize the EEVD structural motif common to both Hsp90 and Hsp70 through a highly conserved clamp domain. In the present study, we investigated in vitro the molecular interactions between CyP40 and FKBP52 and other stress-related components involved in steroid receptor assembly, namely Hsp70 and Hop. Using a binding protein-retention assay with CyP40 fused to glutathione S-transferase immobilized on glutathione-agarose, we have identified the constitutively expressed form of Hsp70, heat shock cognate (Hsc)70, as an additional target for CyP40. Deletion mapping studies showed the binding determinants to be similar to those for CyP40-Hsp90 interaction. Furthermore, a mutational analysis of CyP40 clamp domain residues confirmed the importance of this motif in CyP40-Hsc70 interaction. Additional residues thought to mediate binding specificity through hydrophobic interactions were also important for Hsc70 recognition. CyP40 was shown to have a preference for Hsp90 over Hsc70. Surprisingly, FKBP52 was unable to compete with CyP40 for Hsc70 binding, suggesting that FKBP52 discriminates between the TPR cochaperone-binding sites in Hsp90 and Hsp70. Hop, which contains multiple units of the TPR motif, was shown to be a direct competitor with CyP40 for Hsc70 binding. Similar to Hop, CyP40 was shown not to influence the adenosine triphosphatase activity of Hsc70. Our results suggest that CyP40 may have a modulating role in Hsc70 as well as Hsp90 cellular function.  相似文献   

3.
Hsp70 is a highly conserved protein that refolds misfolded proteins and has numerous housekeeping functions which regulate apoptosis and other cell activities. Hsp70 consists of a nucleotide binding domain which binds ATP and a substrate binding domain that binds misfolded proteins. The substrate binding domain contains a peptide binding pocket which is covered by a helical lid. In humans, there are three major cytosolic Hsp70 isotypes, Hsp70-8, Hsp70-1 and Hsp70-2. Leukemic and numerous other cancer cells have a greater amount of Hsp70-1 and -2, which help the cancer cells inhibit apoptosis in response to stress. This review summarizes the structure and role of Hsp70 proteins in cancer survival.  相似文献   

4.
Hsp90 assembles with steroid receptors and other client proteins in association with one or more Hsp90-binding cochaperones, some of which contain a common tetratricopeptide repeat (TPR) domain. Included in the TPR cochaperones are the Hsp70-Hsp90-organizing protein Hop, the FK506-binding immunophilins FKBP52 and FKBP51, the cyclosporin A-binding immunophilin CyP40, and protein phosphatase PP5. The TPR domains from these proteins have similar x-ray crystallographic structures and target cochaperone binding to the MEEVD sequence that terminates Hsp90. However, despite these similarities, the TPR cochaperones have distinctive properties for binding Hsp90 and assembling with Hsp90.steroid receptor complexes. To identify structural features that differentiate binding of FKBP51 and FKBP52 to Hsp90, we generated an assortment of truncation mutants and chimeras that were compared for coimmunoprecipitation with Hsp90. Although the core TPR domain (approximately amino acids 260-400) of FKBP51 and FKBP52 is required for Hsp90 binding, the C-terminal 60 amino acids (approximately 400-end) also influence Hsp90 binding. More specifically, we find that amino acids 400-420 play a critical role for Hsp90 binding by either FKBP. Within this 20-amino acid region, we have identified a consensus sequence motif that is also present in some other TPR cochaperones. Additionally, the final 30 amino acids of FKBP51 enhance binding to Hsp90, whereas the corresponding region of FKBP52 moderates binding to Hsp90. Taking into account the x-ray crystal structure for FKBP51, we conclude that the C-terminal regions of FKBP51 and FKBP52 outside the core TPR domains are likely to assume alternative conformations that significantly impact Hsp90 binding.  相似文献   

5.
6.
FK506-binding proteins (FKBPs) are cellular receptors for the immunosuppressant FK506 and rapamycin. They belong to the ubiquitous peptidyl-prolyl cis/trans isomerases (PPIases) family, which can catalyze the cis/trans isomerization of peptidyl-prolyl bond in peptides and proteins. In previous work, we revealed that mouse FKBP23 binds immunoglobulin binding protein (BiP), the major heat shock protein (Hsp) 70 chaperone in the ER, and the binding is interrelated with [Ca2+]. Furthermore, the binding can suppress the ATPase activity of BiP through the PPIase activity of FKBP23. In this work, FKBP23 is demonstrated to mediate functions of BiP by catalyzing the Pro117cis/trans conformational interconversion in the ATPase domain of BiP. This result may provide new understanding to the novel role of PPIase as a molecular switch.  相似文献   

7.
Kurek I  Pirkl F  Fischer E  Buchner J  Breiman A 《Planta》2002,215(1):119-126
Peptidyl-prolyl cis-trans isomerases (PPIases) catalyse protein folding by accelerating the slow step of cis-trans isomerisation of peptidyl-prolyl bonds. Wheat (Triticum aestivum L.) FKBP73 (wFKBP73) is a peptidyl-prolyl cis-trans isomerase belonging to the FK506-binding protein (FKBP) family. It comprises three FKBP12-like domains, tetratricopeptide repeats and a calmodulin-binding domain (CaMbd). In vitro studies indicated that wFKBP73 possesses PPIase activity, binds calmodulin and forms a heterocomplex with mammalian p23 and wheat Hsp90 in wheat-germ lysate. To further study the role of wFKBP73 we have analysed its chaperone properties. Using the thermal unfolding and aggregation of citrate synthase (CS) as a model system, we have shown that the plant wFKBP73 exhibits chaperone activity, being able to suppress CS aggregation independently of its PPIase activity. The wFKBP73 interacts transiently with non-native CS and slows down its inactivation kinetics, whereas the mammalian homologue, hFKBP52 binds tightly to CS and does not affect its rate of inactivation. Hence, the first plant FKBP shown to function as a molecular chaperone has a mode of action different from that of the mammalian FKBP52.  相似文献   

8.
Localization of the chaperone domain of FKBP52   总被引:3,自引:0,他引:3  
FKBP52, a multidomain peptidyl prolyl cis/trans-isomerase (PPIase), is found in complex with the chaperone Hsp90 and the co-chaperone p23. It displays both PPIase and chaperone activity in vitro. To localize these two activities to specific regions of the protein, we created and analyzed a set of fragments of FKBP52. The PPIase activity toward both peptides and proteins is confined entirely to domain 1 (amino acids 1-148). The chaperone activity, however, resides in the C-terminal part of FKBP52, mainly in the region between amino acids 264 and 400 (domain 3). Interestingly, this domain also contains the tetratricopeptide repeats, which are responsible for the binding to C-terminal amino acids of Hsp90. Competition assays with a C-terminal Hsp90 peptide suggest that the non-native protein and Hsp90 are bound by different regions within this domain.  相似文献   

9.
The auxilin family of J-domain proteins load Hsp70 onto clathrin-coated vesicles (CCVs) to drive uncoating. In vitro, auxilin function requires its ability to bind clathrin and stimulate Hsp70 ATPase activity via its J-domain. To test these requirements in vivo, we performed a mutational analysis of Swa2p, the yeast auxilin ortholog. Swa2p is a modular protein with three N-terminal clathrin-binding (CB) motifs, a ubiquitin association (UBA) domain, a tetratricopeptide repeat (TPR) domain, and a C-terminal J-domain. In vitro, clathrin binding is mediated by multiple weak interactions, but a Swa2p truncation lacking two CB motifs and the UBA domain retains nearly full function in vivo. Deletion of all CB motifs strongly abrogates clathrin disassembly but does not eliminate Swa2p function in vivo. Surprisingly, mutation of the invariant HPD motif within the J-domain to AAA only partially affects Swa2p function. Similarly, a TPR point mutation (G388R) causes a modest phenotype. However, Swa2p function is abolished when these TPR and J mutations are combined. The TPR and J-domains are not functionally redundant because deletion of either domain renders Swa2p nonfunctional. These data suggest that the TPR and J-domains collaborate in a bipartite interaction with Hsp70 to regulate its activity in clathrin disassembly.  相似文献   

10.
FKBP23 was found in mouse endoplasmic reticulum (ER) in 1998. It consists of an N-terminal peptidyl-prolyl cis/trans isomerase (PPIase) domain and a C-terminal domain with Ca2+ binding sites. Previously, we reported that FKBP23 specifically binds to BiP, the main protein of the molecular chaperone Hsp70 in ER lumen, and the binding is interrelated with the Ca2+ concentration. In this work we have found the existence of the complex FKBP23/BiP by separation of an ER extract using gel filtration chromatography (GFC), and that the existence of this complex is Ca2+-interrelated. This result further verified the Ca2+-interrelated binding of these two proteins in vivo.  相似文献   

11.
Hsp90 is a molecular chaperone that acts in concert with Hsp70 to mediate the folding of many important regulatory proteins (e.g., protein kinases) into functional conformations. The chaperone activity of Hsp90 is primarily regulated by its cochaperones. For example, the Hsp90 cochaperone Cdc37 recruits Hsp90 to protein kinases as well as inhibiting its ATPase activity to promote the binding of Hsp90 to protein kinases. Harc is a structurally related Hsp90 cochaperone with a three-domain structure in which the middle domain binds Hsp90. In contrast to Cdc37 though, Harc also binds to Hsp70 and Hop (Hsp70/Hsp90 organizing protein). Here we demonstrate that deletion of the C-terminal domain of Harc abolished the binding of Hsp70 and Hop and reduced the affinity of Hsp90 binding to Harc. Significantly, the C-terminal domain of Harc bound Hsp70, but it did not bind Hop or Hsp90. Size exclusion chromatography of cell lysates revealed that Hop only formed a complex with Harc in the presence of Hsp90 and Hsp70, consistent with a model in which the interaction of Hop with Harc is mediated via the binding of Hop to Harc-bound Hsp90 and Hsp70. Notably, heat shock resulted in a marked decrease in the solubility of Harc, a response that was further augmented by the deletion of the C-terminal domain of Harc. This latter finding is especially interesting given that bioinformatics analysis indicated that cells may express splice variants of Harc that encode C-terminally truncated Harc isoforms. Together, these findings indicate that the C-terminal domain of Harc is a key determinant of its cochaperone functions.  相似文献   

12.
FKBP38 is a negative effector of the anti-apoptotic Bcl-2 protein in neuroblastoma cells. The interaction with Bcl-2 and the enzyme activity of FKBP38 depend on prior binding of calmodulin-Ca(2+) (CaM-Ca(2+)) at high Ca(2+) concentrations. The FKBP38 protein structure contains three tetratricopeptide repeat (TPR) motifs corresponding to the Hsp90 interaction sites of other immunophilins. In this study we show that the TPR domain of FKBP38 interacts with the C-terminal domain of Hsp90, but only if the FKBP38-CaM-Ca(2+) complex is preformed. Hence, FKBP38 is the first example of a TPR-containing immunophilin that interacts cofactor-dependently with Hsp90. In the ternary Hsp90-FKBP38-CaM-Ca(2+) complex the active site of FKBP38 is blocked, thus preventing interactions with Bcl-2. The dual control of the active site cleft of FKBP38 by CaM-Ca(2+) and Hsp90 highlights the importance of the enzyme activity of the FKBP38-CaM-Ca(2+) complex in the regulation of programmed cell death.  相似文献   

13.
FK506 binding proteins (FKBPs) belong to the family of peptidyl prolyl cis-trans isomerases (PPIases) catalyzing the cis/trans isomerisation of Xaa-Pro bonds in oligopeptides and proteins. FKBPs are involved in folding, assembly and trafficking of proteins. However, only limited knowledge is available about the roles of FKBPs in the endoplasmic reticulum (ER) and their interaction with other proteins. Here we show the ER located Neurospora crassa FKBP22 to be a dimeric protein with PPIase and a novel chaperone activity. While the homodimerization of FKBP22 is mediated by its carboxy-terminal domain, the amino-terminal domain is a functional FKBP domain. The chaperone activity is mediated by the FKBP domain but is exhibited only by the full-length protein. We further demonstrate a direct interaction between FKBP22 and BiP, the major Hsp70 chaperone in the ER. The binding to BiP is mediated by the FKBP domain of FKBP22. Interestingly BiP enhances the chaperone activity of FKBP22. Both proteins form a stable complex with an unfolded substrate protein and thereby prevent its aggregation. These results suggest that BiP and FKBP22 form a folding helper complex with a high chaperoning capacity in the ER of Neurospora crassa.  相似文献   

14.
Confocal microscopy images revealed that the tetratricopeptide repeat motif (TPR) domain immunophilin FKBP51 shows colocalization with the specific mitochondrial marker MitoTracker. Signal specificity was tested with different antibodies and by FKBP51 knockdown. This unexpected subcellular localization of FKBP51 was confirmed by colocalization studies with other mitochondrial proteins, biochemical fractionation, and electron microscopy imaging. Interestingly, FKBP51 forms complexes in mitochondria with the glucocorticoid receptor and the Hsp90/Hsp70-based chaperone heterocomplex. Although Hsp90 inhibitors favor FKBP51 translocation from mitochondria to the nucleus in a reversible manner, TPR domain-deficient mutants of FKBP51 are constitutively nuclear and fully excluded from mitochondria, suggesting that a functional TPR domain is required for its mitochondrial localization. FKBP51 overexpression protects cells against oxidative stress, whereas FKBP51 knockdown makes them more sensitive to injury. In summary, this is the first demonstration that FKBP51 is a major mitochondrial factor that undergoes nuclear-mitochondrial shuttling, an observation that may be related to antiapoptotic mechanisms triggered during the stress response.  相似文献   

15.
For many years, there has been uncertainty concerning the reason for Hsp70 translocation to the nucleus and nucleolus. Herein, we propose that Hsp70 translocates to the nucleus and nucleoli in order to participate in pathways related to the protection of the nucleoplasmic DNA or ribosomal DNA from single-strand breaks. The absence of Hsp70 in HeLa cells, via Hsp70 gene silencing (knockdown), indicated the essential role of Hsp70 in DNA integrity. Therefore, HeLa Hsp70 depleted cells were very sensitive in heat treatment and their DNA breaks were multiple compared to that of control HeLa cells. The molecular mechanism with which Hsp70 performs its role at the level of nucleus and nucleolus during stress was examined. Hsp70 co-localizes with PARP1 in the nucleus/nucleoli as was observed in confocal studies and binds to the BCRT domain of PARP1 as was revealed with protein–protein interaction assays. It was also found that Hsp70 binds simultaneously to XRCC1 and PARP-1, indicating that Hsp70 function takes place at the level of DNA repair and possibly at the base excision repair system. Making a hypothetical model, we have suggested that Hsp70 is the molecule that binds and interrelates with PARP1 creating the repair proteins simultaneously, such as XRCC1, at the single-strand DNA breaks. Our data partially clarify a previously unrecognized cellular response to heat stress. Finally, we can speculate that Hsp70 plays a role in the quality and integrity of DNA. Outlining prior scientific knowledge on the subject and novel information: The role of Hsp70 translocation to the nucleus and nucleolus during heat stress has been nearly unknown. It has been proposed that this biological phenomenon is correlated to Hsp70-chaperoning activity. Furthermore, some previous observations in yeast have revealed that Rad9 complexes—Rad9 being the prototype DNA-damage checkpoint gene—contain Ssa1 and or Ssa2 chaperone proteins, both reconstituting the functions of the corresponding Hsp70 in mammalian cells. Here, we propose that Hsp70 translocates to the nuclei/nucleoli during heat stress, binds to PARP-1 and/or XRCC1, and protects HeLa cells from increased single-strand DNA breaks.  相似文献   

16.
The human Hsp90 co-chaperone FKBP52 belongs to the family of FK506-binding proteins, which act as peptidyl-prolyl isomerases. FKBP52 specifically enhances the signaling of steroid hormone receptors, modulates ion channels and regulates neuronal outgrowth dynamics. In turn, small-molecule ligands of FKBP52 have been suggested as potential neurotrophic or anti-prostate cancer agents. The usefulness of available ligands is however limited by a lack of selectivity. The immunophilin FKBP52 is composed of three domains, an FK506-binding domain with peptidyl-prolyl isomerase activity, an FKBP-like domain of unknown function and a TPR-clamp domain, which recognizes the C-terminal peptide of Hsp90 with high affinity. The herein reported crystal structures of FKBP52 reveal that the short linker connecting the FK506-binding domain and the FKBP-like domain acts as a flexible hinge. This enhanced flexibility and its modulation by phosphorylation might explain some of the functional antagonism between the closely related homologs FKBP51 and FKBP52. We further present two co-crystal structures of FKBP52 in complex with the prototypic ligand FK506 and a synthetic analog thereof. These structures revealed the molecular interactions in great detail, which enabled in-depth comparison with the corresponding complexes of the other cytosolic FKBPs, FKBP51 and FKBP12. The observed subtle differences provide crucial insights for the rational design of ligands with improved selectivity for FKBP52.  相似文献   

17.
Stimulation of the weak ATPase activity of human hsp90 by a client protein.   总被引:7,自引:0,他引:7  
Heat shock protein 90 (Hsp90) is a molecular chaperone involved in the folding and assembly of a limited set of "client" proteins, many of which are involved in signal transduction pathways. In vivo, it is found in complex with additional proteins, including the chaperones Hsp70, Hsp40, Hip and Hop (Hsp-interacting and Hsp-organising proteins, respectively), as well as high molecular mass immunophilins, such as FKBP59, and the small acidic protein p23. The role of these proteins in Hsp90-mediated assembly processes is poorly understood. It is known that ATP binding and hydrolysis are essential for Hsp90 function in vivo and in vitro.Here we show, for the first time, that human Hsp90 has ATPase activity in vitro. The ATPase activity is characterised using a sensitive assay based on a chemically modified form of the phosphate-binding protein from Escherichia coli. Human Hsp90 is a very weak ATPase, its activity is significantly lower than that of the yeast homologue, and it has a half-life of ATP hydrolysis of eight minutes at 37 degrees C. Using a physiological substrate of Hsp90, the ligand-binding domain of the glucocorticoid receptor, we show that this "client" protein can stimulate the ATPase activity up to 200-fold. This effect is highly specific and unfolded or partially folded proteins, which are known to bind to Hsp90, do not affect the ATPase activity. In addition, the peroxisome proliferator-activated receptor, which is related in both sequence and structure to the glucocorticoid receptor but which does not bind Hsp90, has no observable effect on the ATPase activity.We establish the effect of the co-chaperones Hop, FKBP59 and p23 on the basal ATPase activity as well as the client protein-stimulated ATPase activity of human Hsp90. In contrast with the yeast system, human Hop has little effect on the basal rate of ATP hydrolysis but significantly inhibits the client-protein stimulated rate. Similarly, FKBP59 has little effect on the basal rate but stimulates the client-protein stimulated rate further. In contrast, p23 inhibits both the basal and stimulated rates of ATP hydrolysis.Our results show that the ATPase activity of human Hsp90 is highly regulated by both client protein and co-chaperone binding. We suggest that the rate of ATP hydrolysis is critical to the mode of action of Hsp90, consistent with results that have shown that both over and under-active ATPase mutants of yeast Hsp90 have impaired function in vivo. We suggest that the tight regulation of the ATPase activity of Hsp90 is important and allows the client protein to remain bound to Hsp90 for sufficient time for activation to occur.  相似文献   

18.
The tetratricopeptide repeat domain (TPR)-containing co-chaperone Hsp-organising protein (Hop) plays a critical role in mediating interactions between Heat Shock Protein (Hsp)70 and Hsp90 as part of the cellular assembly machine. It also modulates the ATPase activity of both Hsp70 and Hsp90, thus facilitating client protein transfer between the two. Despite structural work on the individual domains of Hop, no structure for the full-length protein exists, nor is it clear exactly how Hop interacts with Hsp90, although it is known that its primary binding site is the C-terminal MEEVD motif. Here, we have undertaken a biophysical analysis of the structure and binding of Hop to Hsp90 using a variety of truncation mutants of both Hop and Hsp90, in addition to mutants of Hsp90 that are thought to modulate the conformation, in particular the N-terminal dimerisation of the chaperone. The results establish that whilst the primary binding site of Hop is the C-terminal MEEVD peptide of Hsp90, binding also occurs at additional sites in the C-terminal and middle domain. In contrast, we show that another TPR-containing co-chaperone, CyP40, binds solely to the C-terminus of Hsp90.Truncation mutants of Hop were generated and used to investigate the dimerisation interface of the protein. In good agreement with recently published data, we find that the TPR2a domain that contains the Hsp90-binding site is also the primary site for dimerisation. However, our results suggest that residues within the TPR2b may play a role. Together, these data along with shape reconstruction analysis from small-angle X-ray scattering measurements are used to generate a solution structure for full-length Hop, which we show has an overall butterfly-like quaternary structure.Studies on the nucleotide dependence of Hop binding to Hsp90 establish that Hop binds to the nucleotide-free, ‘open’ state of Hsp90. However, the Hsp90-Hop complex is weakened by the conformational changes that occur in Hsp90 upon ATP binding. Together, the data are used to propose a detailed model of how Hop may help present the client protein to Hsp90 by aligning the bound client on Hsp70 with the middle domain of Hsp90. It is likely that Hop binds to both monomers of Hsp90 in the form of a clamp, interacting with residues in the middle domain of Hsp90, thus preventing ATP hydrolysis, possibly by the prevention of association of N-terminal and middle domains in individual Hsp90 monomers.  相似文献   

19.
20.
In addition to its role as a molecular chaperone, heat shock protein 72 (Hsp72) protects cells against a wide range of apoptosis inducing stresses. However, it is unclear if these two roles are functionally related or whether Hsp72 inhibits apoptosis by a mechanism independent of chaperone activity. The N-terminal adenosine triphosphatase domain, substrate-binding domain and the C-terminal EEVD regulatory motif of Hsp72 are all essential for chaperone activity. In this study, we show that Hsp72 mutants with a functional substrate-binding domain but lacking chaperone activity retain their ability to protect cells against apoptosis induced by heat and tumor necrosis factor alpha. In contrast, a deletion mutant lacking a functional substrate-binding domain has no protective capacity. The ability of the Hsp72 substrate-binding domain to inhibit apoptosis independent of the regulatory effects of the adenosine triphosphate-binding domain indicates that the inhibition of apoptosis may involve a stable binding interaction with a regulatory substrate rather than Hsp72 chaperone activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号