首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The levels of cAMP-dependent protein kinases were measured in developing rat brain by a variety of methods. The regulatory subunit (R) was measured both by [3H]cAMP binding and by 8-N3-[32P]cAMP incorporation. The catalytic subunit (C) was measured by an assay of histone kinase activity. Data were calculated per mg protein. Neither R nor C levels changed significantly in either membranes or cytosol during development. The ratio of R to C was essentially unity in the cerebra of both newborn (2-day-old) and adult (40-day-old) rats. Polyacrylamide-gel electrophoresis resolved two regulatory subunits (R-I) and (R-II) which were derived from the Type I and Type II cAMP-dependent protein kinases, respectively. 8-N3-[32P]cAMP incorporation into Proteins R-I and R-II indicated that the amounts of Proteins R-I and R-II did not change significantly in either membranes or cytosol during development.  相似文献   

2.
Whether or not various cytosolic protein kinases (and especially the type I cAMP-dependent protein kinase) of rat ventral prostate are specifically regulated with respect to total activity or specific activity by androgen has been investigated. Following androgen deprivation, the total activity per prostate of cAMP-dependent protein kinase (with histone as substrate) changed little at 24 h, declining by about 20% at 96 h. Under these conditions, its specific activity remained unaltered at 24 h, but was markedly enhanced at 96 h postorchiectomy. Type II cAMP-dependent protein kinase in rat ventral prostate cytosol was the only form of cAMP-dependent protein kinases present as determined by measurement of catalytic activity as well as [32P]-8-N3-cAMP binding to the regulatory subunits. There was no alteration in the distribution of the isoenzymes of cAMP-dependent protein kinases or the response of these kinase activities to cAMP owing to castration of animals. The prostatic cytosol also contains free regulatory subunit (with molecular weight similar to that of regulatory subunit R1) which coelutes with type II cAMP-dependent protein kinase. This finding was confirmed by using [32P]-8-N3-cAMP photoaffinity labeling of cAMP-binding proteins. With respect to cAMP-independent protein kinase (measured with dephosphophosvitin as substrate), a decline of 31% in its specific activity was observed in cytosol of prostates from rats castrated for a period of 24 h without significant further change at later periods following castration. However, there was a marked progressive reduction in total activity of this enzyme per prostate (loss of 72% at 96 h postorchiectomy). The increase in specific activity of cAMP-dependent, but not cAMP-independent, protein kinase in the face of decreasing total activity in the cytosol at later periods of castration (e.g., at 96 h) may reflect a slower loss of the former enzyme protein than the bulk of the cytosolic proteins. Administration of testosterone to castrated animals prevented these changes. These data do not indicate a specific regulation by steroid of the type I cAMP-dependent protein kinase in the prostate. Rather, the cAMP-independent protein kinase (with dephosphophosvitin as substrate) appears to be modulated by the androgenic status of the animal.  相似文献   

3.
3',5'-Cyclic adenosine monophosphate (cAMP) modulates prostaglandin production in human amnion membranes. The major effects of cAMP are presumably mediated through the phosphorylation of specific regulatory phosphoproteins following cAMP activation of cAMP-dependent protein kinase. Cyclic AMP-dependent protein kinase and phosphoproteins have not previously been characterized in human amnion. Total homogenates, cytosol, and membrane fractions from human amnion were examined for [3H]cAMP binding activity and cAMP-dependent kinase activity. cAMP-dependent kinase activity was barely detectable in crude amnion fractions. Cytosol was therefore partially purified by DEAE column chromatography for further examination. Two peaks of coincident [3H]cAMP binding and cAMP-dependent kinase activity were demonstrated at 70 and 140 mM NaCl, characteristic of the Type I and Type II cAMP-dependent protein kinase isozymes. [3H]cAMP binding to the material from both peak fractions was saturable and reversible. Scatchard analysis of [3H]cAMP binding to the peak fractions was linear for peak I and curvilinear for peak II. Assuming a one-site model, [3H]cAMP binding to the Type I isozyme showed a KD = 4.17 x 10(-8) M and Bmax = 73 pmole/mg protein; using a two-site model, [3H]cAMP binding to the high-affinity site for the Type II isozyme had a KD = 3.94 x 10(-8) M and Bmax = 6.3 pmole/mg protein. Other cyclic nucleotides competed for these [3H]cAMP binding sites with a potency order of cAMP much greater than cGMP greater than (BU)2cAMP.cAMP caused a dose-dependent increase in cAMP-dependent kinase activity in the peak fractions; half-maximal activation was observed with 5.0 x 10(-8) M cAMP. The ability of cAMP to increase phosphorylation of endogenous proteins in both crude amnion cytosol and cytosol from cultures of amnion epithelial cells was assessed using [32P]ATP, SDS-polyacrylamide gel electrophoresis and autoradiography. cAMP stimulated 32P incorporation into three proteins having Mr = 80,000, 54,000, and 43,000 (P less than .01). Half-maximal 32P incorporation into these proteins occurred at 1.0 x 10(-7) M cAMP. cAMP-dependent kinase is present in human amnion; specific cAMP-enhanced phosphoproteins are also present. Hormones elevating cAMP levels in amnion may exert their effects by activating cAMP-dependent kinase and phosphorylating these phosphoproteins.  相似文献   

4.
A novel method for rapidly determining the amount and degree of association-dissociation of the Type I and Type II cAMP-dependent protein kinases has been developed and validated. Antibodies directed against the regulatory subunits of Type I and Type II cAMP-dependent protein kinases were used. The antibodies formed complexes with holoenzymes and regulatory subunits which were precipitated by goat anti-rabbit IgG (immunoglobulin G). These complexes bound [3H]cAMP with an apparent Kb of 20 nM for protein kinase I and 80 nM for protein kinase II. Immunoprecipitated protein kinases I and II were catalytically active when incubated with cAMP, [gamma-32P]ATP, and histone H2B. When mixtures of the two kinase isoenzymes or cytosol were incubated with various amounts of [3H]cAMP and the isoenzymes were separated by precipitation with antisera specific for each isoenzyme, the amount of [3H]cAMP associated with immunoprecipitates was proportional to the concentration of [3H]cAMP. In contrast, the catalytic activity that was immunoprecipitated varied inversely with the concentration of [3H]cAMP, showing that the activation of protein kinase could be assessed by the disappearance of catalytic activity from the immunoprecipitates. In the absence of MgATP protein kinase I was activated by a 10-fold lower concentration of cAMP than protein kinase II. However, when MgATP was added to the incubation, there was no significant difference in the binding of [3H]cAMP or dissociation of catalytic subunits of the two isoenzymes. The anti-R antibodies were also used to rapidly quantitate the concentration of regulatory subunits and the relative ratio of protein kinases I and II in tissue cytosols.  相似文献   

5.
Two protein bands, present in cytosol fractions from each of seven rat tissues examined, specifically incorporated 32P-labeled 8-azidoadenosine 3':5'-monophosphate (8-N3-[32P]cAMP), a photoaffinity label for cAMP-binding sites. These proteins had apparent molecular weights of 47,000 and 54,000 on a sodium dodecyl sulfate-polyacrylamide gel electrophoresis system. These two proteins were characterized in three of the tissues, namely, heart, uterus, and liver, by the total amount of 8-N3-[32P]cAMP incorporation, by the dissociation constant (Kd) for 8-N3-[32P]cAMP, and by the nucleotide specific inhibition of 8-N3-[32P]cAMP incorporation. Several lines of evidence were obtained that the protein with an apparent molecular weight of 47,000 represents the regulatory subunit of a type I cAMP-dependent protein kinase, while the protein with an apparent molecular weight of 54,000 represents the regulatory subunit of a type II cAMP-dependent protein kinase. Almost all of the cAMP receptor protein found in the cytosol of these tissues, as measured by 8-N3-[32P]cAMP incorporation, was associated with these two protein kinases, in agreement with the idea that most effects of cAMP are mediated through protein kinases. The photoaffinity labeling with 8-N3-[32P]cAMP can be used to estimate quantitatively the amounts of regulatory subunit of type I and type II cAMP-dependent protein kinases in various tissues.  相似文献   

6.
Protein phosphokinase activity from the cytosol (105,000 X g soluble fraction) of testes from sexually mature rats has been resolved be DEAE-cellulose chromatography in three forms of protein kinase, cAMP-dependent protein kinases I and II and cAMP-independent protein kinase III. Adenosine 3':5'-monophosphate-binding activity (cAMP-binding activity) was associated with protein kinases I and II but not with protein kinase III. Protein kinases I, II, and III exhibited different pH optima, cyclic nucleotide dependency, and relative substrate specificity. Protein kinases I and II were inhibited by a heat-stable protein inhibitor from rat skeletal muscle, whereas protein kinase III was not inhibited. According to previously established criteria (Traugh, J. A., Ashby, C.D., and Walsh D. A. (1974) Methods Enzymol. 38, 290-299) protein kinases I and II can be classified as cAMP-dependent holoenzymes consisting of regulatory and catalytic subunits. Protein kinase III is a cAMP-independent protein kinase.  相似文献   

7.
Liver post-mitochondrial supernatant from diabetic rats showed a decrease in the [3H] cAMP binding activity which was associated with a decrease in the number of cAMP binding sites. On the other hand, the cAMP binding activity of nuclear fractions from diabetic rat liver was not significantly different than that of control. The cAMP binding activity of post-mitochondrial supernatant was further analyzed by using 8-azido-[32P] cAMP, a photoaffinity probe for cAMP binding sites. The diabetic supernatants showed a selective reduction in the photolabeling of a protein band representing the regulatory subunit of type I cAMP-dependent protein kinase without any appreciable change in the photolabeling of regulatory subunit of type II cAMP-dependent protein kinase.  相似文献   

8.
Subcellular fractionation of oviduct tissue from estrogen-treated chicks indicated that the bulk of the protein kinase activity of this tissue is located in the cytoplasmic and nuclear fractions, DEAE-cellulose chromatography of cytosol revealed a major peak of cAMP stimulatable activity eluting at 0.2 M KCl. This peak was further characterized and found to exhibit properties consistent with cytoplasmic cAMP dependent protein kinases isolated from other tissues; it had a Km for ATP of 2 X 10(-5) M, preferred basic proteins such as histones, as substrate, and had a M of 165 000. Addition of 10(-6) M cAMP caused the holoenzyme to dissociate into cAMP binding regulatory subunit and a protein kinase catalytic subunit. Extraction of purified oviduct nuclei with 0.3 M KCl released greater than 80% of the kinase activity in this fraction. Upon elution from phospho-cellulose, the nuclear extract was resolved into two equal peaks of kinase activity (designated I and II). Peak I had a sedimentation coefficient of 3S and a Km for ATP of 13 muM. while peak II had a sedimentation coefficient of 6S and a Km for ATP of 9 muM. Both enzymes preferred alpha-casein as a substrate over phosvitin or whole histone, although they exhibited different salt-activity profiles. The cytoplasmic and nuclear enzymes were well separated on phospho-cellulose and this resin was used to quantitate the amount of cAMP dependent histone kinase activity in the nucleus and the amount of casein kinase activity in the cytosol. Protein kinase activity in nuclei from estrogen-stimulated chicks was found to be 40% greater than hormone-withdrawn animals. This increase in activity was not due to translocation of the cytoplasmic protein kinase in response to hormone, but to an increase in nuclear (casein) kinase activity. During the course of this work, we observed small but significant amounts of cAMP binding activity very tightly bound to the nuclear fraction. Solubilization of the binding activity by sonication in high salt allowed comparison studies to be performed which indicated that the nuclear binding protein is identical with the cytoplasmic cAMP binding regulatory subunit. The possible role of the nuclear binding activity is discussed.  相似文献   

9.
The phosphorylation of the intermediate filament protein vimentin was examined under in vitro conditions. Cell cytosol and Triton-insoluble cytoskeleton preparations from nonmitotic and mitotically selected mouse L-929 cells exhibited vimentin kinase activity that is apparently cAMP and Ca2+ independent. The level of vimentin kinase activity was greater in preparations from mitotically selected cells than nonmitotic cells. Addition of Ca2+ to mitotic cytosol decreased net vimentin phosphorylation. Dephosphorylation experiments indicated that there is phosphatase activity in these preparations which is stimulated by addition of Ca2+. Fractionation of cytosol from nonmitotic cells on DEAE-Sephacel and phosphocellulose revealed a single major vimentin kinase activity (peak I). Fractionation of cytosol from mitotically selected cells yielded a similar activity (peak I) and an additional vimentin kinase activity (peak II) that was not found in nonmitotic preparations. Based on substrate specificity and lack of inhibition to characteristic inhibitors, the semipurified peak I and II vimentin kinase activities appear to be cAMP-independent enzymes that are distinct from casein kinases I and II. Phosphopeptide mapping studies indicated that both peak I and peak II vimentin kinases phosphorylate tryptic peptides in the NH2-terminal region of vimentin that are phosphorylated in intact cells. Electron microscopic examination of reconstituted vimentin filaments phosphorylated with both semipurified kinases indicated that phosphorylation induced filament disassembly. These experiments indicate that the increased phosphorylation of vimentin during mitosis may be catalyzed by a discrete cAMP-independent protein kinase. In addition, preparations from mitotic cells exhibited a Ca2+-stimulated phosphatase activity, suggesting that Ca2+ may play a regulatory role in vimentin dephosphorylation during mitosis.  相似文献   

10.
Dissociation and reassociation of regulatory (R) and catalytic (C) subunits of cAMP-dependent protein kinases I and II were studied in intact AtT20 cells. Cells were stimulated with 50 microM forskolin to raise intracellular cAMP levels and induce complete dissociation of R and C subunits. After the removal of forskolin from the incubation medium cAMP levels rapidly declined to basal levels. Reassociation of R and C subunits was monitored by immunoprecipitation of cAMP-dependent protein kinase activity using anti-R immunoglobulins. The time course for reassociation of R and C subunits paralleled the loss of cellular cAMP. Total cAMP-dependent protein kinase activity and the ratio of protein kinase I to protein kinase II seen 30 min after the removal of forskolin was the same as in control cells. Similar results were seen using crude AtT20 cell extracts treated with exogenous cAMP and Mg2+. Our data showed that after removal of a stimulus from AtT20 cells inactivation of both cAMP-dependent protein kinase isoenzymes occurred by the rapid reassociation of R and C subunits to form holoenzyme. Our studies also showed that half of the type I regulatory subunit (RI) present in control cells contained bound cAMP. This represented approximately 30% of the cellular cAMP in nonstimulated cells. The cAMP bound to RI was resistant to hydrolysis by cyclic nucleotide phosphodiesterase but was dissociated from RI in the presence of excess purified bovine heart C. The RI subunits devoid of C may function to sequester cAMP and, thereby, prevent the activation of cAMP-dependent protein kinase activity in nonstimulated AtT20 cells.  相似文献   

11.
Cyclic AMP-dependent protein kinase and 3H-cAMP-binding activities were determined in normal Balb 3T3 cells and compared with the same preparations from SV40, chemical, and spontaneous transformants of 3T3 cells. The cytosolic protein kinase activities and protein kinase activity ratios were similar in all cell lines, although when the normal 3T3 cytosol was prepared by homogenization it contained less 3H-cAMP binding activity than the transformed 3T3 cytosols. The Triton X-100 treated particulate fractions from the normal and transformed 3T3 cells contained similar protein kinase and binding activities. The isozymic profile of cAMP-dependent protein kinases was examined by DEAE-chromatography. The 3T3 cells contained only type II isozyme in either cytosolic or membrane fractions. All transformants of the 3T3 cells contained both type I and type II isozymes. Other cell cultures, including chicken embryo fibroblasts, rat kidney cells, and human or calf endothelial cells contained type I and type II isozymes. Binding of the photoaffinity analogue of cAMP, 8-N3 cAMP, to the regulatory subunits of protein kinases in sonicates obtained from Balb 3T3 and SV 3T3 cells followed by separation on SDS polyacrylamide electrophoresis showed that the amount of RII subunit was approximately equal in the two cell lines. RI in Balb 3T3 cells was detectable but in a much lower quantity than in SV 3T3 cells. The cyclic AMP dependent-protein kinases from Balb 3T3 cells appears to be different from SV 3T3 cells by three criteria: 3H-cAMP binding in homogenates, DEAE chromatographic separation of isozymes, and 8-N3 cAMP binding.  相似文献   

12.
cAMP-dependent protein kinases are known to be activated by dissociation. There are two types of these enzymes in the mammalian cytosol with similar catalytic subunits but regulatory subunits. With enzymes of type I, ATP counteracts the activation by cAMP. Recent studies of the binding sites of these enzymes for these ligands are reviewed.  相似文献   

13.
Changes in the activities of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinases in response to prostaglandin (PG)E2-induced elevation of intracellular cAMP level were investigated with a murine macrophage-like cell line, P388D1. Photoaffinity labeling with 8-azido-[32P]cAMP showed that untreated P388D1 cells possess two types of cAMP-binding proteins of m.w. 49,000 and 52,000, respectively, in the cytosol fraction in a ration of 1:8. They must represent regulatory subunits (RI and RII, respectively) of cAMP-dependent protein kinases, because affinity chromatography on a column of omega-aminohexyl-agarose of the cytosol fraction clearly separated two fractions that exhibited the enzymatic activities and cAMP-binding activities. Photoaffinity labeling of these fractions with 8-azido-[32P]cAMP confirmed the separation of two types of isoenzymes, because each cAMP-dependent protein kinase active fraction was associated with only one type of regulatory subunit. The exposure of P388D1 cells to exogenously added PGE2 (1 microM) caused about 7.5-fold increase in the intracellular cAMP level within 30 sec. The cAMP level then sharply dropped to about 100 pmol/10(7) cells, remained at this level for about 20 min, and then gradually increased to 200 pmol/10(7) (about fivefold over the control). The enzyme assay of the cytosol demonstrated that the activation of cAMP-dependent protein kinases closely follows the kinetics of the intracellular cAMP level. The activation of the enzyme was specific for PGE2 and was not triggered by 1 microM PGF2 alpha or PGD2 which have been shown to be unable to activate adenylate cyclase of P388D1 cells. The PGE2-induced increase in the intracellular cAMP level appeared to activate preferentially the type I isoenzyme, inasmuch as the enzymatic activity of this type separated by the affinity chromatography of the cytosol of PGE2-exposed cells was lower in the presence than in the absence of cAMP, whereas the type II enzyme activity remained responsive to exogenously added cAMP.  相似文献   

14.
The properties of the cAMP-dependent protein kinases in AtT20 mouse pituitary tumor cells were characterized by a combination of immunological and biochemical techniques. Ninety per cent of the total cAMP-dependent protein kinase was in the 40,000 X g supernatant fraction. Protein kinases I and II were immunoprecipitated with specific antisera directed against their regulatory subunits. The immunoprecipitated kinases bound [3H]cAMP and were catalytically active when incubated with [gamma-32P]ATP-Mg and protamine or histone H2B. Immunoprecipitated protein kinases I and II bound [3H]cAMP with apparent Kb values of 1.5 and 15 nM, respectively. Regulatory subunit concentrations in AtT20 cells were measured by immunoprecipitation of [3H]cAMP-R complexes. R-I and R-II levels were 2.7 and 3.0 pmol of [3H]cAMP binding activity per mg of cytosolic protein, respectively, however, the ratio of protein kinase II to protein kinase I was 2.5 indicating the presence of a significant amount of free R-I. This was confirmed by DEAE-cellulose chromatography and the isolation of immunoreactive R-I devoid of protein kinase activity. A significant amount of R-I also coeluted with protein kinase II when AtT20 cell extracts were subjected to DEAE-cellulose chromatography. In quantitative immunoprecipitation experiments, 0.1 microliter of anti-brain R-II serum complexed up to 0.5 pmol of the [3H]cAMP-binding activity of protein kinase II prepared from bovine and rat brain, and AtT20 cells while 2 microliter of anti-brain R-II serum was required to precipitate an equal amount of protein kinase II from bovine skeletal muscle showing that the protein kinase II in AtT20 cells contained the neural-specific R-II subunit.  相似文献   

15.
The photoaffinity probe (32P) 8-N3 cAMP was used to label the cAMP binding proteins in washed ejaculated human sperm. Three saturable binding proteins were photolabeled in both intact and disrupted cells with apparent molecular weights of 55,000, 49,000 and 40,000 daltons corresponding to the regulatory subunits of type II and type I cAMP-dependent protein kinase (cAMP-PK) and to an endogenous proteolytic product of the regulatory subunits, respectively. Photoincorporation in the three proteins could be totally blocked by preincubating the cells with cAMP. Cell-free seminal plasma was found to be free of detectable (32P) 8-N3 cAMP-binding proteins. The 8-N, cAMP was also effective in stimulating endogenous cAMP-PK activity in intact and disrupted sperm. A substantial amount of (32P) 8-N3 cAMP binding to types I and II regulatory subunits and cAMP-PK activity was detected on washed intact cells. Intact cells bound 1.80 pmol of (32P) 8-N3 cAMP/mg protein and had cAMP-PK activity of 824 units/10(8) cells. Disrupted cells bound 3.95 pmol (32P) 8-N3 cAMP/mg protein and had a cAMP-PK activity of 2,206 units/10(8) cells. The data presented support the concept of two classes of cAMP receptors being differentially available to externally added (32P) 8-N3 cAMP and proteases. Cellular membrane integrity and membrane sidedness are discussed as possible explanations for the observation reported.  相似文献   

16.
The age-dependent changes in the cAMP-binding activity of renal papillary cytosol were studied in intact rats and in animals with experimental delay in development of the concentrating renal function induced by hydrocortisone injection in early postnatal period. The age dynamics of specific cAMP binding in the experimental group differ significantly from that in intact and control (sham injected) animals. It is suggested that the developmental changes in experimental animal kidneys are due to disturbances in hormonal regulation of renal tissue differentiation caused by the changes in intracellular receptors of cAMP. Another possible reason for the observed delay of development of the renal function is the weakening of the stimulating effect of endogenous cAMP on the genome function due to cAMP receptor deficiency in the cell.  相似文献   

17.
Differentiation of human peripheral blood monocytes into macrophages was accompanied by induction of the regulatory subunit of cAMP-dependent protein kinase I as determined by photoaffinity labeling of cytosol proteins with 8-N3-[32P]cAMP and DEAE-Sephacel chromatography. The appearance of cAMP-dependent protein kinase I in macrophages was not due to translocation from the particulate fraction of monocytes. The regulatory subunit of cAMP-dependent protein kinase II was present in both monocytes and in vitro-differentiated macrophages. Protein kinase I in macrophages demonstrated higher affinity for 8-N3-cAMP (KD = 0.7 nM) than did protein kinase II from either monocytes (KD = 14.5 nM) or macrophages (KD = 4.9 nM). These studies demonstrate induction of the regulatory subunit of cAMP-dependent protein kinase I during the differentiation of a normal human cell and support the hypothesis that cAMP may regulate some stages of differentiation.  相似文献   

18.
Summary Protein-bound cyclic AMP (cAMP) levels in cultured rat Sertoli cells have been determined after exposure to follicle-stimulating hormone (FSH) and agents which elevate intracellular cAMP or mimic cAMP action. Changes in the content of protein-bound cAMP were correlated with changes in receptor availability determined by measuring [3H] cAMP binding. Using the photoaffinity analog of cAMP, 8-N3 [32P] cAMP, two major cAMP-binding proteins in Sertoli cell cytosol, with molecular weights of 47 000 and 53 000 daltons, were identified as regulatory subunits of type I and type II cAMP-dependent protein kinases, respectively. Densitometric analysis of autoradiograms demonstrated differential activation of the two isozymes in response to treatment with FSH and other agents. Results of this study demonstrate the value of measuring changes in protein-bound cAMP and the utility of the photoaffinity labeling technique in correlating hormone-dependent processes in which activation of cAMP-dependent protein kinase occurs.  相似文献   

19.
The hormonal regulation of adenylate cyclase, cAMP-dependent protein kinase activation, and adrenocorticotropic hormone (ACTH) secretion was studied in AtT20 mouse pituitary tumor cells. Corticotropin releasing factor (CRF) stimulated cAMP accumulation and ACTH release in these cells. Maximal ACTH release was seen with 30 nM CRF and was accompanied by a 2-fold rise in intracellular cAMP. When cells were incubated with both 30 nM CRF and 0.5 mM 3-methylisobutylxanthine (MIX) cAMP levels were increased 20-fold, however, ACTH release was not substantially increased beyond release seen with CRF alone. The activation profiles of cAMP-dependent protein kinases I and II were studied by measuring residual cAMP-dependent phosphotransferase activity associated with immunoprecipitated regulatory subunits of the kinases. Cells incubated with CRF in the absence of MIX showed concentration-dependent activation of protein kinase I which paralleled stimulation of ACTH release. Protein kinase II was minimally activated. When cells were exposed to CRF in the presence of 0.5 mM MIX there was still a preferential activation of protein kinase I, although 50% of the cytosolic protein kinase II was activated. Complete activation of both protein kinases I and II was seen when cells were incubated with 0.5 mM MIX and 10 microM forskolin. Under these conditions cAMP levels were elevated 80-fold. CRF, isoproterenol, and forskolin stimulated adenylate cyclase activity in isolated membranes prepared from AtT20 cells. CRF and isoproterenol stimulated cyclase activity up to 5-fold while forskolin stimulated cyclase activity up to 15-fold. Our data demonstrate that ACTH secretion from AtT20 cells is mediated by small changes in intracellular levels of cAMP and activation of only a small fraction of the total cytosolic cAMP-dependent protein kinase in these cells is required for maximal ACTH secretion.  相似文献   

20.
The types and subunit composition of cAMP-dependent protein kinases in soluble rat ovarian extracts were investigated. Results demonstrated that three peaks of cAMP-dependent kinase activity could be resolved using DEAE-cellulose chromatography. Based on the sedimentation of cAMP-dependent protein kinase and regulatory subunits using sucrose density gradient centrifugation, identification of 8-N3[32P]cAMP labeled RI and RII in DEAE-cellulose column and sucrose gradient fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and Scatchard analysis of the cAMP-stimulated activation of the eluted peaks of kinase activity, the following conclusions were drawn regarding the composition of the three peaks of cAMP-dependent protein kinase activity: peak 1, eluting with less than or equal to 0.05 M potassium phosphate, consisted of the type I form of cAMP-dependent protein kinase; peak 2, eluting with 0.065-0.11 M potassium phosphate, consisted of free RI and a type II tetrameric holoenzyme; peak 3, eluting with 0.125 M potassium phosphate, consisted of an apparent RIIC trimer, followed by the elution with 0.15 M potassium phosphate of free RII. The regulatory subunits were confirmed as authentic RI and RII based upon their molecular weights and autophosphorylation characteristics. The more basic elution of the type II holoenzyme with free RI was not attributable to the ionic properties of the regulatory subunits, based upon the isoelectric points of photolabeled RI and RII and upon the elution location from DEAE-cellulose of RI and RII on dissociation from their respective holoenzymes by cAMP. This is the first report of a type II holoenzyme eluting in low salt fractions with free RI, and of the presence of an apparent RIIC trimer in a soluble tissue extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号