首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guo Z G  Li X F  Liu X Y 《农业工程》2012,32(1):44-49
Plateau pika (Ochotona curzoniae) is a key component of alpine meadow ecosystem in the Qinghai- Tibetan Plateau, and the increase of its number leads plant components of alpine meadow ecosystem to adaptively response. A field survey was carried out to determine the response of alpine meadow community to population densities of plateau pika by using available burrow density to replace the population density of plateau pika. This study showed that the height of alpine meadow communities gradually increased, and the cover of alpine meadow communities firstly decreased, and then increased as the available burrow density increased. With the increase of available burrow density, the richness index of alpine meadow communities firstly decreased and then increased, and the evenness index of alpine meadow communities firstly increased and then decreased, however, the diversity index of alpine meadow communities firstly increased, and then decreased, finally increased. In the increasing process of available burrow density, the total plant biomass and the unpalatable plant biomass firstly decreased and then increased, and the palatable plant biomass firstly increased and then decreased, indicating that the palatable plant biomass was the highest and the unpalatable plant biomass was the lowest at 14 available burrow per 625 m2. In the economic groups of plant biomass, the weed biomass was the highest and the legume biomass was the lowest at any available burrow densities, and the grass biomass and the sedge biomass were related to available burrow densities, indicating that the sedge biomass were bigger than the grass biomass at 3 available burrow per 625 m2, inverse at 54 available burrow per 625 m2, similar between 3 and 34 available burrow per 625 m2. Accompanying by the increase of available burrow densities, the legume biomass and the sedge biomass significantly decreased (P < 0.05) and the legume became disappearance at 54 available burrow per 625 m2; the grass biomass firstly increased and then decreased, peaking at 14 available burrow per 625 m2. The weed biomass firstly decreased and then increased, and was the lowest at 14 available burrow per 625 m2. This study suggested that the responses of alpine meadow communities to population density of plateau pika at 14 available burrows per 625 m2 were more sensitive than that at other available burrow per 625 m2 from plant species diversity, biomass, height, cover and economic group.  相似文献   

2.
增温对青藏高原高寒草原生态系统碳交换的影响   总被引:1,自引:0,他引:1  
碳交换是影响草地生态系统碳汇功能的关键过程,对气候变暖极为敏感。青藏高原分布着大面积的高寒草原,其碳汇功能对气候变暖的响应对区域碳循环过程具有重要的影响。为探究高寒草原生态系统碳交换过程对增温的响应,2012—2014年,在青藏高原班戈县进行了模拟增温对高寒草原生态系统碳交换过程影响的研究。结果表明,增温对高寒草原碳交换各组分的影响存在年际差异,但总体上对碳交换存在负面影响。3年平均结果显示,增温显著降低了高寒草原地上生物量、总生态系统生产力(GEP)、生态系统呼吸(ER)和净生态系统碳交换量(NEE)(P0.05),平均降幅分别为15.1%、36.8%、19.2%和51.5%。增温条件下3年平均土壤呼吸(SR)较对照无显著变化(P0.05),但2013年增温显著降低了SR(P0.05),降幅达18.1%。增温对SR与ER的比值具有一定的促进作用,最高增幅达到40.0%。GEP、ER、SR和NEE与土壤温度和土壤水分无显著相关(P0.05),而GEP、ER和NEE与空气温度呈显著的负相关关系(P0.05)。增温引起的干旱胁迫以及地上生物量降低是导致高寒草原NEE降低的主要原因。研究表明,全球变暖会一定程度降低青藏高原高寒草原的碳汇功能。  相似文献   

3.

Aims

To assess the effects of atmospheric N deposition on the C budget of an alpine meadow ecosystem on the Qinghai–Tibetan Plateau, it is necessary to explore the responses of soil-atmosphere carbon dioxide (CO2) exchange to N addition.

Methods

Based on a multi-form, low-level N addition experiment, soil CO2 effluxes were monitored weekly using the static chamber and gas chromatograph technique. Soil variables and aboveground biomass were measured monthly to examine the key driving factors of soil CO2 efflux.

Results

The results showed that low-level N input tended to decrease soil moisture, whereas medium-level N input maintained soil moisture. Three-year N additions slightly increased soil inorganic N pools, especially the soil NH 4 + -N pool. N applications significantly increased aboveground biomass and soil CO2 efflux; moreover, this effect was more significant from NH 4 + -N than from NO 3 ? -N fertilizer. In addition, the soil CO2 efflux was mainly driven by soil temperature, followed by aboveground biomass and NH 4 + -N pool.

Conclusions

These results suggest that chronic atmospheric N deposition will stimulate soil CO2 efflux in the alpine meadow on the Qinghai–Tibetan Plateau by increasing available N content and promoting plant growth.  相似文献   

4.

Background

Understanding how grasslands are affected by a long-term increase in temperature is crucial to predict the future impact of global climate change on terrestrial ecosystems. Additionally, it is not clear how the effects of global warming on grassland productivity are going to be altered by increased N deposition and N addition.

Methodology/Principal Findings

In-situ canopy CO2 exchange rates were measured in a meadow steppe subjected to 4-year warming and nitrogen addition treatments. Warming treatment reduced net ecosystem CO2 exchange (NEE) and increased ecosystem respiration (ER); but had no significant impacts on gross ecosystem productivity (GEP). N addition increased NEE, ER and GEP. However, there were no significant interactions between N addition and warming. The variation of NEE during the four experimental years was correlated with soil water content, particularly during early spring, suggesting that water availability is a primary driver of carbon fluxes in the studied semi-arid grassland.

Conclusion/Significance

Ecosystem carbon fluxes in grassland ecosystems are sensitive to warming and N addition. In the studied water-limited grassland, both warming and N addition influence ecosystem carbon fluxes by affecting water availability, which is the primary driver in many arid and semiarid ecosystems. It remains unknown to what extent the long-term N addition would affect the turn-over of soil organic matter and the C sink size of this grassland.  相似文献   

5.
Guo Z G  Zhou X R  Hou Y 《农业工程》2012,32(2):104-110
The available burrow densities of plateau pika (Ochotona curzoniae) regulate the soil physicochemical property in alpine meadow. A field survey was conducted to investigate the effect of available burrow densities of plateau pika on soil physicochemical property of bare land (bare patch produced by burrowing behavior of plateau pika) and vegetation land (land covered with vegetation). This study indicated that the increase in available burrow of plateau pika caused the soil water content at 0–10 cm layer of bare land and that at 10–20 cm of vegetation land to reduce, and caused the soil water content at 10– 20 cm layer of bare land and that at 0–10 cm layer of vegetation land to firstly increase and then decline. In the increasing process of available burrow of plateau pika, the soil silt content firstly increased and then decreased, and soil sand content firstly decreased and then increased. With the increase of available burrow of plateau pika, the soil porosity at 0–10 cm layer of bare land and that at 10–20 cm layer of vegetation land decreased, while the soil porosity at 10–20 cm layer of bare land and that at 0–10 cm of vegetation land firstly increased and then decreased. Soil pH value, soil organic matter, total nitrogen and total phosphorus content firstly increased and then decreased, peaking at 14 available burrows per 625 m2, while total soil potassium content did not respond to available burrow densities of plateau pika. This study suggested that the proper available burrows existing in the alpine meadow increased soil permeability, accelerated soil moisture to penetrate deeply, increased the proportion of soil silt, and improved the soil nutrient; however, this beneficial effect was strongly influenced by the available burrow density of plateau pika, implying that plateau pika did not benefit soil structure when its available burrow was over 34 number/625 m2.  相似文献   

6.

Background and aims

Nitrogen deposition and altered precipitation regime are likely to change plant growth, biomass allocation and community structure, which may influence susceptibility of ecosystem functions (i.e. ecosystem carbon exchange) to extreme climatic events, such as drought.

Methods

In a meadow steppe, we deployed a drought treatment on a long-term water and nitrogen addition experiment to investigate resource abundance changes induced variation in the sensitivity of ecosystem carbon exchange to extreme drought.

Results

Compared to the control plots, long-term water and nitrogen addition caused a strong increase in biomass, and a reduction in diversity and root/shoot ratio. Net ecosystem CO2 exchange (NEE) in water and nitrogen addition plots were more sensitive to drought stress than the control plots. The enhanced NEE drought sensitivity (SNEE) in nitrogen fertilization habitat is associated with changes in aboveground biomass and root/shoot ratio, rather than variation in species diversity, while SNEE in the unfertilized plots was controlled by root/shoot ratio. Compared to the water and nitrogen addition plots, the control plots had the highest percentage recovery of ecosystem carbon exchange (RNEE) during the rehydration period. RNEE is likely determined by aboveground biomass and level of damage in the photosynthetic organ.

Conclusion

These findings suggest that long-term changes in precipitation regimes and nitrogen deposition may significant alter the susceptibility of key ecosystem processes to drought stress.
  相似文献   

7.

Aims

To determine the effect of grassland degradation on the soil carbon pool in alpine grassland.

Methods

In this study, we calculated the carbon pool in the above-and below-ground biomass, the soil microbial biomass carbon pool, the total organic carbon pool and the soil total carbon.

Results

Grassland degradation has resulted in decreases in biomass and carbon content and has changed the ratio of roots to shoots. However, there was less influence of degradation on dead root biomass. There was most likely a lag effect of changes in dead root biomass following grassland degradation. In the alpine grassland ecosystem, the carbon pool in soil accounts for more than 92 % of the total carbon both in vegetation and soil. The carbon in alpine grassland is stored primarily in the form of total organic carbon below-ground. As organic carbon decreases, the ratio of the microbial biomass carbon pool to the total organic carbon pool increases and then declines with increasing degradation level. Along the grassland degradation gradient, the total vegetation biomass (above-and below-ground) and the soil carbon pool (microbial biomass C, total organic C and total C) all decreased.  相似文献   

8.

Aims

Litter, as afterlife of plants, plays an important role in driving belowground decomposition processes. Here we tested effects of litter species identity and diversity on carbon (C) and nitrogen (N) dynamics during litter decomposition in N-limited alpine meadow soil from the Qinghai–Tibet Plateau.

Methods

We incubated litters of four meadow species, a sedge (“S”, Kobresia humilis), a grass (“G”, Elymus nutans), a herb (“H”, Saussurea superba), and a legume (“L”, Oxytropis falcata), in monoculture and in mixture with meadow soil. CO2 release was measured 21 times during the incubation, and soil available N and microbial biomass C and N were measured before and after the experiment.

Results

The organic C decay rate did not differ much among soils amended with monocultures or mixtures of litter, except in the H, S, L, and S+H treatments, which had much higher decay rates. Potential decomposable C pools were lowest in the control, highest in the L treatment, and intermediate in the S treatment. Mineralized N was completely immobilized by soil microbes in all treatments except the control, S+L, and S+G+L treatments. Litter mixtures had both additive and non-additive effects on CO2-C emission (mainly antagonistic effects), net N mineralization (mainly synergistic), and microbial biomass C and N (both). Overall, these parameters were not significantly correlated with litter species richness. Similarly, microbial C or N was not significantly correlated with litter N content or C/N. However, cumulative CO2-C emission and net N mineralization were positively correlated with litter N content and negatively correlated with litter C/N.

Conclusions

Litter N content and C/N rather than litter species richness drove the release of CO2-C and net available N in this ecosystem. The antagonistic effects of litter mixtures contributed to a modest release of CO2-C, but their synergistic effects enhanced net available N. We suggest that in alpine meadow communities, balancing species with high and low N contents will benefit soil carbon sequestration and plant competition for available N with soil microbes.  相似文献   

9.

Background and aims

The warming of the planet in recent decades has caused rapid, widespread permafrost degradation on the Qinghai–Tibet Plateau. These changes may significantly affect soil moisture content and nutrient supply, thereby affecting ecosystem structure and function. This study aimed to describe the dynamic changes in thaw depth, assess the relationship between thaw depth and soil moisture content, and analyze the changes in species composition and water-use efficiency in response to permafrost degradation.

Methods

We surveyed species composition, thaw depth, ground temperature, soil moisture, nutrient content, and foliar stable carbon isotope compositions to gain insights into the response of alpine grassland ecosystems to permafrost degradation on the Qinghai-Tibet Plateau.

Results

Moisture content of the surface layer decreased with increasing thaw depth. The correlation between thaw depth and surface soil moisture content was strongest in June and decreased in July and August. The strongest correlation occurred at a depth of 20 cm to 30 cm. The dominant species shifted from Cyperaceae in alpine meadow to mesoxerophytes in alpine steppe before finally shifting to xerophytes in alpine desert steppe. Thaw depth correlation was significantly negative with organic C content (r?=??0.49, P?<?0.05) and with total N content (r?=??0.62, P?<?0.01). The leaf δ13C of Carex moorcroftii increased with increasing thaw depth and followed a linear relationship (R 2?=?0.85, P?=?0.008).

Conclusions

Permafrost degradation decreases surface soil moisture and soil nutrient supply capacity. Increasing permafrost degradation decreases the number of plant families and species, with hygrophytes and mesophytes gradually replaced by mesoxerophytes and xerophytes. The water-use efficiency of plants improved in response to increasing water stress as surface layers dried during permafrost degradation. Permafrost on the Qinghai–Tibetan Plateau is expected to further degrade as global warming worsens. Therefore, more attention should be dedicated to the response of alpine ecosystems during permafrost degradation.  相似文献   

10.

Aims

To study the relationship between changes in soil properties and plant community characters produced by grazing in a meadow steppe grassland and the composition and diversity of spore-producing arbuscular mycorrhizal fungi (AMF).

Methods

A field survey was carried out in a meadow steppe area with a gradient of grazing pressures (a site with four grazing intensities and a reserve closed to grazing). The AMF community composition (characterized by spore abundance) and diversity, the vegetation characters and soil properties were measured, and root colonization by AMF was assessed.

Results

AMF diversity (richness and evenness) was higher under light to moderate grazing pressure and declined under intense grazing pressures. Results of multiple regressions indicated that soil electrical conductivity was highly associated with AMF diversity. The variation in AMF diversity was partially associated to the density of tillers of the dominant grass (Leymus chinensis), the above and below-ground biomass and the richness of the plant community.

Conclusions

We propose that the relationship between plants and AMF is altered by environmental stress (salinity) which is in turn influenced by animal grazing. Direct and indirect interactions between vegetation, soil properties, and AMF community need to be elucidated to improve our ability to manage these communities.  相似文献   

11.
Climate is a driver of terrestrial ecosystem carbon exchange, which is an important product of ecosystem function. The Qinghai–Tibetan Plateau has recently been subjected to a marked increase in temperature as a consequence of global warming. To explore the effects of warming on carbon exchange in grassland ecosystems, we conducted a whole‐year warming experiment between 2012 and 2014 using open‐top chambers placed in an alpine meadow, an alpine steppe, and a cultivated grassland on the central Qinghai–Tibetan Plateau. We measured the gross primary productivity, net ecosystem CO2 exchange (NEE), ecosystem respiration, and soil respiration using a chamber‐based method during the growing season. The results show that after 3 years of warming, there was significant stimulation of carbon assimilation and emission in the alpine meadow, but both these processes declined in the alpine steppe and the cultivated grassland. Under warming conditions, the soil water content was more important in stimulating ecosystem carbon exchange in the meadow and cultivated grassland than was soil temperature. In the steppe, the soil temperature was negatively correlated with ecosystem carbon exchange. We found that the ambient soil water content was significantly correlated with the magnitude of warming‐induced change in NEE. Under high soil moisture condition, warming has a significant positive effect on NEE, while it has a negative effect under low soil moisture condition. Our results highlight that the NEE in steppe and cultivated grassland have negative responses to warming; after reclamation, the natural meadow would subject to loose more C in warmer condition. Therefore, under future warmer condition, the overextension of cultivated grassland should be avoided and scientific planning of cultivated grassland should be achieved.  相似文献   

12.

Aim

Understanding and predicting ecosystem functioning such as biomass accumulation requires an accurate assessment of large-scale patterns of biomass distribution and partitioning in relation to climatic and soil environments.

Methods

We sampled above- and belowground biomass from 26 sites spanning 1500 km in Inner Mongolian grasslands, compared the difference in aboveground, belowground biomass and below-aboveground biomass ratio (AGB, BGB, and B/A, respectively) among meadow steppe, typical steppe, and desert steppe types. The relationships between AGB, BGB, B/A and climatic and soil environments were then examined.

Results

We found that AGB and BGB differed significantly among three types of grasslands while B/A did not differ. Structural equation model analyses indicated that mean annual precipitation was the strongest positive driver for AGB and BGB. AGB was also positively associated with soil organic carbon, whereas B/A was positively associated with total soil nitrogen.

Conclusions

These results indicated that precipitation positively influence plant production in Inner Mongolian grasslands. Contrary to the prediction from the optimal partitioning hypothesis, biomass allocation to belowground increased with soil total nitrogen, suggesting that more productive sites may increase belowground allocation as an adaptive strategy to potentially high fire frequencies.  相似文献   

13.

Background and aims

Few studies have investigated the effect of nitrogen (N) fertilizer on ecosystem respiration (Re) under mixed legume and grass pastures sown at different seeding ratios,and data are almost entirely lacking for alpine meadow of the Tibetan Plateau. Our aim was to test the hypothesis that although a combination of legumes with grass and N fertilizer increases Re the combination decreases Re intensity (i.e. Re per unit of aboveground biomass) due to greater increases in aboveground biomass compared to increases in Re.

Methods

This hypothesis was tested using different seeding ratios of common vetch (Vicia sativa L.) and oat (Avena sativa L.) with and without N fertilizer on the Tibetan plateau in 2009 and 2010. Re was measured using a static closed opaque chamber. Re intensity was estimated as the ratio of seasonal average Re during the growing season to aboveground biomass.

Results

Compared with common vetch monoculture pasture, mixed legume-grass pastures only significantly decreased Re intensity (with a decrease of about 75 %–87 %) in the drought year 2009 due to greater increases in aboveground biomass compared to increases in Re. There were no significant differences in Re and Re intensity among different seeding ratios of oat and common vetch in either year. N fertilizer significantly decreased Re intensity for common vetch monoculture pasture by 24.5 % in 2009 and 69.5 % in 2010 although it did not significantly affect plant production and Re.

Conclusions

From the perspective of forage yield and Re, planting mixed legume-grass pastures without N fertilizer is a preferable way to balance the twin objectives of forage production and mitigation of atmospheric greenhouse gas emissions in alpine regions.  相似文献   

14.

Background and Aims

Climate warming and increased atmospheric nitrogen (N) deposition both have the potential to increase plant productivity over the next century, yet they can also increase decomposition and respiration. Our aim was to examine the extent to which warming and N addition can, on balance, alter net ecosystem CO2 exchange (NEE) in a grass-dominated system.

Methods

We measured NEE responses to warming and N addition over two growing seasons in a temperate old field using steady-state flow-through chambers, which allowed for the integrated measurement of respiration and photoassimilation effects on net CO2 flux over diel periods. We also assessed the relationship between NEE and plant biomass responses to the warming and N treatments.

Results

In both years, our study system was a net source of carbon (C) during the snow-free season. N addition did not significantly affect diel NEE or dark respiration in either year, despite a doubling in aboveground plant biomass in response to N addition in the second year, and a corresponding increase in peak daily net CO2 photoassimilation in N addition plots. The warming treatment also had no significant effect on NEE, although the flow-through chambers required warming to be temporarily halted during NEE measurements.

Conclusions

Overall, our results both highlight the potential divergence of plant and soil responses to N addition and demonstrate the capacity for a grass-dominated system to function as a net source of C in consecutive years.  相似文献   

15.
青藏高原高寒草原生态系统是我国特有的生态系统类型,由于受到人为破坏的影响,目前该地区草原生态系统功能退化,优良牧草减少,有毒植物蔓延。高原鼠兔(Ochotona curzoniae)和高原鼢鼠(Myospalax baileyi)是青藏高原东缘高寒草原中最重要的两种小型哺乳动物,其采食行为和挖掘洞穴的生活特性必然对生态系统产生影响,但其与有毒植物之间的互作关系尚未揭示。基于此,在甘肃省玛曲县河曲马场自然生长的高寒草原生态系统中开展了有毒植物的分布与高原鼠兔、高原鼢鼠之间的相关性研究。结果表明,该高寒草原生态系统中分布有毒植物27种,分属于菊科、豆科、毛茛科等11科。在此基础上,测定了该地区有毒植物的生物多样性指数、均匀度指数和丰富度指数,并探究了单位面积条件下有毒植物的分布特征与高原鼠兔和高原鼢鼠种群密度之间的相关性,发现该地区高寒草原有毒植物的蔓延与高原鼠兔的密度之间存在密切的负相关关系(P0.05),而与高原鼢鼠的相关性不显著(P0.05)。  相似文献   

16.
Plateau pika burrows are common feature of degraded grassland in the Qinghai–Tibet Plateau (QTP) and serve as an important indicator of pika activity and grassland degradation. However, the current understanding of the spatial pattern changes of pika burrows and their critical thresholds across a degradation gradient in alpine grassland is deficient. In this study, we investigated and quantified changes in the spatial pattern of plateau pika burrows under typical degraded alpine shrub meadows in the northeastern QTP using an unmanned aerial vehicle and landscape pattern metrics. The degradation of the alpine shrub meadow leads to a change in landscape pattern from a two‐layered structure of alpine shrub and alpine meadow to a mosaic of alpine meadow and bare soil, with plateau pika burrows scattered throughout. Moderate degradation is the tipping point for changes in surface landscape patterns, followed by the disappearance of alpine shrub, the retreat of alpine meadows and the encroachment of bare soil, and the increasing density and size of pika burrows. The area characteristics of alpine meadows have influenced changes in the spatial pattern of pika burrow, and maintaining its proportional area is a vital measure to control the threat of pika burrows to pastures. The results of this paper provide a methodological reference and guidance for the sustainable utilization of grassland on the QTP.  相似文献   

17.
Ran Liu  Ellen Cieraad  Yan Li 《Plant and Soil》2013,373(1-2):799-811

Background and aims

The response of plants and soil to rain pulses determines seasonal variations in the exchange of materials and energy at the ecosystem scale in arid and semi-arid regions. We assessed how the ecosystem carbon exchange (NEE) of desert halophyte communities of different plant functional-types responds to summer precipitation pulses in Tamarix and Haloxylon communities.

Methods

Plant water status, photosynthetic gas exchange, soil respiration and net ecosystem carbon exchange were measured to test the hypothesis that high physiological sensitivity may induce a greater changes in NEE resulting from the summer precipitation pulses in Haloxylon community.

Results

Plant water status and photosynthetic assimilation did not differ before and after summer precipitation pulses in either community. In contrast, soil respiration and NEE responded strongly to summer precipitation events in both communities. At the ecosystem level, precipitation pulses induced a pulse of CO2 release, rather than absorption. The NEE response to summer precipitation was less in the deep-rooted Tamarix community, compared to the shallow-rooted Haloxylon community, which was even converted into a carbon source after summer precipitation inputs. As a result, the effect of summer precipitation inputs on soil respiration was more important than the plant (carbon assimilation) response in determining the ecosystem response to episodic precipitation pulses.  相似文献   

18.

Background and Aims

Rock fragments within topsoil have important effects on soil properties and plant growth. This study mainly aimed to investigate the relationships between rock fragments, soil carbon (C) and nitrogen (N) densities and vegetation biomass in an alpine steppe.

Methods

Rock fragments, plant and soil samples were collected from four topographic positions (top, upper, lower, and bottom) on a hillslope.

Results

Volumetric rock fragment content within the 0–30 cm soil profile varied from 17.8 to 30.5%, the upper position value was significantly greater (P < 0.05) than those at other positions. The highest aboveground biomass was observed at the lower position (921 kg ha?1), while the highest belowground biomass within the 0–30 cm profile was found at the upper position (4460 kg ha?1). More fine earth and plant litter input accompanied by lower C and N losses induced by rainfall erosion resulted in higher soil organic C and total N densities (28.6 Mg C ha?1 and 2.87 Mg N ha?1) at the lower position.

Conclusions

Rock fragments may promote root growth but limit aboveground biomass production, and can therefore change the biomass distribution pattern. Our findings provide more evidence for scientifically assessing alpine steppe productivity.
  相似文献   

19.

Background

The plateau pika (Ochotona curzoniae) is an underground-dwelling mammal, native to the Tibetan plateau of China. A set of 10 polymorphic microsatellite loci has been developed earlier. Its reliability for parentage assignment has been tested in a plateau pika population. Two family groups with a known pedigree were used to validate the power of this set of markers.

Results

The error in parentage assignment using a combination of these 10 loci was very low as indicated by their power of discrimination (0.803 - 0.932), power of exclusion (0.351 - 0.887), and an effectiveness of the combined probability of exclusion in parentage assignment of 99.999%.

Conclusion

All the offspring of a family could be assigned to their biological mother; and their father or relatives could also be identified. This set of markers therefore provides a powerful and efficient tool for parentage assignment and other population analyses in the plateau pika.  相似文献   

20.

Aims

This study investigates how burrow-nesting, colonial seabirds structure the spatial patterns of soil and plant properties (including soil and leaf N) and tests whether burrow density drives these spatial patterns within each of six individual islands that vary greatly in burrow density.

Methods

Within individual islands, we compared semivariograms (SVs) with and without burrows as a spatial trend. We also used SVs to describe and compare the spatial patterns among islands for each of 16 soil and plant variables.

Results

Burrow density within a single island was only important in determining spatial structuring in one-fifth of the island-variable combinations tested. Among islands, some variables (i.e., soil pH, δ15N, and compaction; microbial biomass and activity) achieved peak spatial variance on intermediate-density islands, while others (i.e., net ammonification, net nitrification, NH4 +, NO3 -) became increasingly variable on densely burrowed islands.

Conclusions

Burrow density at the within-island scale was far less important than expected. Seabirds and other ecosystem engineers whose activities (e.g., nutrient subsidies, soil disturbance) influence multiple spatial scales can increase spatial heterogeneity even at high densities, inconsistent with a “hump-shaped” relationship between resource availability and heterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号