首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study is to determine the effect of high hydrostatic pressure (HHP) on inactivation of Alicyclobacillus acidoterrestris vegetative cells in a model system (BAM broth) and in orange, apple and tomato juices. The shelf-life stability of pressurized juices is also studied. In general the viability loss was enhanced significantly as the level of pressure and temperature were increased (P < 0.05). 4.70 log cycle reduction was obtained after pressurization at 350 MPa at 50 °C for 20 min in BAM broth whereas thermal treatment at 50 °C for 20 min caused only 1.13 log cycle inactivation showing the effectiveness of HHP treatment on inactivation. The D values for pressure (350 MPa at 50 °C) and temperature (50 °C) treatments were 4.37 and 18.86 min in BAM broth, respectively. All juices were inoculated with A. acidoterrestris cells to 106 c.f.u./ml and were pressurized at 350 MPa at 50 °C for 20 min. More than 4 log cycle reduction was achieved in all juices studied immediately after pressurization. The pressurized juices were also stored up to 3 weeks at 30 °C and the viable cell numbers of A. acidoterrestris in orange, apple and tomato juices were 3.79, 2.59 and 2.27 log cycles, respectively after 3 weeks. This study has indicated that A. acidoterrestris vegetative cells can be killed by HHP at a predictable rate even at temperatures at which the microorganism would normally grow.  相似文献   

2.
Murine norovirus (strain MNV-1), a propagable norovirus, was evaluated for susceptibility to high-pressure processing. Experiments with virus stocks in Dulbecco's modified Eagle medium demonstrated that at room temperature (20 degrees C) the virus was inactivated over a pressure range of 350 to 450 MPa, with a 5-min, 450-MPa treatment being sufficient to inactivate 6.85 log(10) PFU of MNV-1. The inactivation of MNV-1 was enhanced when pressure was applied at an initial temperature of 5 degrees C; a 5-min pressure treatment of 350 MPa at 30 degrees C inactivated 1.15 log(10) PFU of virus, while the same treatment at 5 degrees C resulted in a reduction of 5.56 log(10) PFU. Evaluation of virus inactivation as a function of treatment times ranging from 0 to 150 s and 0 to 900 s at 5 degrees C and 20 degrees C, respectively, indicated that a decreasing rate of inactivation with time was consistent with Weibull or log-logistic inactivation kinetics. The inactivation of MNV-1 directly within oyster tissues was demonstrated; a 5-min, 400-MPa treatment at 5 degrees C was sufficient to inactivate 4.05 log(10) PFU. This work is the first demonstration that norovirus can be inactivated by high pressure and suggests good prospects for inactivation of nonpropagable human norovirus strains in foods.  相似文献   

3.
High pressure is an alternative to thermal processing and is used to preserve food. Listeria monocytogenes is a bacterium which grows at low temperature, is able to multiply under vacuum, and is responsible for food poisoning. Pressures of 100, 200, 300 and 400 MPa were used for 5, 10 and 15 min at 20 degrees C on pure culture, and on apple and plum jam baby food artificially contaminated with Listeria. Pure culture was also to test pressures of 200, 300, 350 and 400 MPa at 5 degrees C for 30 min. The results were analysed statistically and showed that there were no significant differences between pressures of 100 and 200 MPa at 5, 10 and 15 min. However, at 300 MPa, there were significant differences at 15 min. When the pressure treatment was 400 MPa, significant differences were observed at pressure times of 5, 10 and 15 min. The results were fitted to a linear curve. In pure culture, no viable cells were detected after high pressure treatment of 350 MPa for 30 min at 5 degrees C. The use of low temperature helps to maintain the sensory properties of the product.  相似文献   

4.
Application of high hydrostatic pressure (200, 300, 350 and 400 MPa) at 5 degrees C for 30 min to different micro-organisms, including Gram-positive and Gram-negative bacteria, moulds and yeasts, proved to be more effective in inactivating these organisms than treatments at 20 degrees C for 10 min and at 10 degrees C for 20 min. Moulds, yeasts, Gram-negative bacteria and Listeria monocytogenes were most sensitive, and their populations were completely inactivated at pressures between 300 and 350 MPa. The same conditions of pressure, temperature, and time were applied to different vegetables (lettuce, tomato, asparagus, spinach, cauliflower and onion), achieving reductions of from 2-4 log units in both viable mesophiles and moulds and yeasts at pressures of between 300 and 400 MPa. Sensory characteristics were unaltered, especially in asparagus, onion, tomato and cauliflower, though slight browning was observed in cauliflower at 350 MPa. Flow cytometry was applied to certain of the microbial populations used in the above experiment before and after the pressurization treatment. The results were indicative of differing percentage survival rates depending on micro-organism type, with higher survival rates for Gram-positive bacteria, except L. monocytogenes, than in the other test micro-organisms. Growth of survivors was undetectable using the plate count method, suggesting that micro-organisms suffering from pressure stress were metabolically inactive though alive. The pressurization treatments did not inactivate the peroxidase responsible for browning in vegetables. Confocal microscopic examination of epidermal tissue from onion showed that the enzyme had been displaced to the cell interior. Use of low temperatures and moderately long pressurization times yielded improved inactivation of micro-organisms and better sensorial characteristics of the vegetables, and should lower industrial costs.  相似文献   

5.
Among food-borne pathogens, some strains could be resistant to hydrostatic pressure treatment. This information is necessary to establish processing parameters to ensure safety of pressure-pasteurized foods (N. Kalchayanand, A. Sikes, C. P. Dunne, and B. Ray, J. Food Prot. 61:425–431, 1998). We studied variation in pressure resistance among strains of Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella species at two temperatures of pressurization. Early-stationary-phase cells in 1% peptone solution were pressurized at 345 MPa either for 5 min at 25°C or for 5, 10, or 15 min at 50°C. The viability loss (in log cycles) following pressurization at 25°C ranged from 0.9 to 3.5 among nine L. monocytogenes strains, 0.7 to 7.8 among seven S. aureus strains, 2.8 to 5.6 among six E. coli O157:H7 strains, and 5.5 to 8.3 among six Salmonella strains. The results show that at 25°C some strains of each species are more resistant to pressure than the others. However, when one resistant and one sensitive strain from each species were pressurized at 345 MPa and 50°C, the population of all except the resistant S. aureus strain was reduced by more than 8 log cycles within 5 min. Viability loss of the resistant S. aureus strain was 6.3 log cycles even after 15 min of pressurization. This shows that strains of food-borne pathogens differ in resistance to hydrostatic pressure (345 MPa) at 25°C, but this difference is greatly reduced at 50°C. Pressurization at 50°C, in place of 25°C, will ensure greater safety of foods.  相似文献   

6.
7.
Mycobacterium abscessus is an important hospital-acquired pathogen involved in infections associated with medical, surgical, and biopharmaceutical materials. In this work, we investigated the pressure-induced inactivation of two strains [2544 and American Type Culture Collection (ATCC) 19977] of M. abscessus in combination with different temperatures and pH conditions. For strain 2544, exposure to 250 MPa for 90 min did not significantly inactivate the bacteria at 20 °C, whereas at ?15 °C, there was complete inactivation. Exposure to 250 MPa at ≥60 °C caused rapid inactivation, with no viable bacteria after 45 min. With 45 min of exposure, there were no viable bacteria at any temperature when a higher pressure (350 MPa) was used. Extremes of pH (4 or 9) also markedly enhanced the pressure-induced inactivation of bacteria at 250 MPa, with complete inactivation after 45 min. In comparison, exposure of this strain to the disinfecting agent glutaraldehyde (0.5 %) resulted in total inactivation within 5 min. Strain 19977 was more sensitive to high pressure but less sensitive to glutaraldehyde than strain 2544. These results indicate that high hydrostatic pressure in combination with other physical parameters may be useful in reducing the mycobacterial contamination of medical materials and pharmaceuticals that are sensitive to autoclaving.  相似文献   

8.
AIMS: To investigate potential resuscitation of Listeria monocytogenes and Salmonella Typhimurium after high hydrostatic pressure treatments. METHODS AND RESULTS: Pressure treatments were applied at room temperature for 10 min on bacterial suspensions in buffers at pH 7 and 5.6. Total bacterial inactivation (8 log(10) CFU ml(-1) of bacterial reduction) obtained by conventional plating was achieved regarding both micro-organisms. Treatments at 400 MPa in pH 5.6 and 600 MPa in pH 7 for L. monocytogenes and at 350 MPa in pH 5.6 and 400 MPa in pH 7 for S. Typhimurium were required respectively. A 'direct viable count' method detected some viable cells in the apparently totally inactivated population. Resuscitation was observed for the two micro-organisms during storage (at 4 and 20 degrees C) after almost all treatments. In the S. Typhimurium population, 600 MPa, 10 min, was considered as the treatment achieving total destruction because no resuscitation was observed under these storage conditions. CONCLUSIONS: We suggest a delay before performing counts in treated samples in order to avoid the under-evaluation of surviving cells. SIGNIFICANCE AND IMPACT OF THE STUDY: The resuscitation of pathogen bacteria after physical treatments like high hydrostatic pressure has to be considered from the food safety point of view. Further studies should be performed in food products to study this resuscitation phenomenon.  相似文献   

9.
Listeriosis is an important food-borne disease that causes high rates of morbidity and mortality. For reasons that are not clear, most large outbreaks of human listeriosis involve Listeria monocytogenes serotype 4b. Relatively little is known about the pathogenesis of listeriosis following gastrointestinal exposure to food-borne disease isolates of L. monocytogenes. In the present study, we investigated the pathogenesis of systemic infection by the food-borne isolate Scott A in an intragastric (i.g.) mouse challenge model. We found that the severity of infection with L. monocytogenes Scott A was increased in mice made neutropenic by administration of monoclonal antibody RB6-8C5. This observation was similar to a previous report on a study with the laboratory strain L. monocytogenes EGD. Prior administration of sodium bicarbonate did not enhance the virulence of L. monocytogenes strain Scott A for i.g. inoculated mice. Following i.g. inoculation of mice, two serotype 4b strains of L. monocytogenes (Scott A and 101M) achieved a greater bacterial burden in the spleen and liver and elicited more severe histopathological damage to those organs than did a serotype 1/2a strain (EGD) and a serotype 1/2b stain (CM). Of the four strains tested, only strain CM exhibited poor survival in synthetic gastric fluid in vitro. The other three strains exhibited similar patterns of survival at pHs of greater than 5 and relatively rapid (<30 min) loss of viability at pHs of less than 5.0. Growth of L. monocytogenes Scott A at temperatures of 12.5 to 37 degrees C did not affect its ability to cause systemic infection in i.g. inoculated mice. These observations suggest that the serotype 4b L. monocytogenes strains Scott A and 101M possess one or more virulence determinants that make them better able to cause systemic infection following inoculation via the g.i. tract than do the serotype 1/2 strains EGD and CM.  相似文献   

10.
An isolate of L. monocytogenes Scott A that is tolerant to high hydrostatic pressure (HHP), named AK01, was isolated upon a single pressurization treatment of 400 MPa for 20 min and was further characterized. The survival of exponential- and stationary-phase cells of AK01 in ACES [N-(2-acetamido)-2-aminoethanesulfonic acid] buffer was at least 2 log units higher than that of the wild type over a broad range of pressures (150 to 500 MPa), while both strains showed higher HHP tolerance (piezotolerance) in the stationary than in the exponential phase of growth. In semiskim milk, exponential-phase cells of both strains showed lower reductions upon pressurization than in buffer, but again, AK01 was more piezotolerant than the wild type. The piezotolerance of AK01 was retained for at least 40 generations in rich medium, suggesting a stable phenotype. Interestingly, cells of AK01 lacked flagella, were elongated, and showed slightly lower maximum specific growth rates than the wild type at 8, 22, and 30 degrees C. Moreover, the piezotolerant strain AK01 showed increased resistance to heat, acid, and H(2)O(2) compared with the wild type. The difference in HHP tolerance between the piezotolerant strain and the wild-type strain could not be attributed to differences in membrane fluidity, since strain AK01 and the wild type had identical in situ lipid melting curves as determined by Fourier transform infrared spectroscopy. The demonstrated occurrence of a piezotolerant isolate of L. monocytogenes underscores the need to further investigate the mechanisms underlying HHP resistance of food-borne microorganisms, which in turn will contribute to the appropriate design of safe, accurate, and feasible HHP treatments.  相似文献   

11.
Pulsed electric field (PEF)-resistant and PEF-sensitive Listeria monocytogenes strains were sublethally treated with electric pulses at 15 kV/cm for 29 micro s and held at 25 degrees C for 5 to 30 min prior to protein extraction. The levels of the molecular chaperones GroEL, GroES, and DnaJ were determined by immunoblotting. After 10 to 20 min after sublethal PEF treatment, a transient decrease in molecular chaperone expression was observed in the PEF-sensitive strain (Scott A). The levels of GroEL and DnaJ increased back to the basal expression level within 30 min. A substantial decrease in GroES expression persisted for at least 30 min after PEF treatment. Chaperone expression was suppressed after PEF treatment to a smaller extent in the PEF-resistant (OSY-8578) than in the PEF-sensitive strain, and no clear expression pattern was identified in OSY-8578. Inactivation of Scott A and OSY-8578 in phosphate buffer was compared when lethal PEF (27.5 kV/cm, 144 micro s) and heat (55 degrees C, 10 min) were applied in sequence. When PEF and heat treatments were applied separately, the populations of L. monocytogenes Scott A and OSY-8578 decreased 0.5 to 0.6 log CFU/ml. Cells treated first with PEF and incubated at 25 degrees C for 10 min showed substantial sensitivity to subsequent heat treatment; the decrease in counts for Scott A and OSY-8578 was 6.1 and 2.8 log CFU/ml, respectively. The sequence and time lapse between the two treatments were crucial for achieving high inactivation rates. It is concluded that PEF sensitized L. monocytogenes to heat and that maximum heat sensitization occurred when chaperone expression was at a minimum level.  相似文献   

12.
A strain of Listeria monocytogenes isolated from a drain in a food-processing plant was demonstrated, by determination of D values, to be more resistant to the lethal effect of heat at 56 or 59 degrees C following incubation for 45 min in tryptose phosphate broth (TPB) at pH 12.0 than to that of incubation for the same time in TPB at pH 7.3. Cells survived for at least 6 days when they were suspended in TPB at pHs 9.0, 10.0, and 11.0 and stored at 4 or 21 degrees C. Cells of L. monocytogenes incubated at 37 degrees C for 45 min and then stored for 48 or 144 h in TPB at pH 10.0 were more resistant to heat treatment at 56 degrees C than were cells stored in TPB at pH 7.3. The alkaline-stress response in L. monocytogenes may induce resistance to otherwise lethal thermal-processing conditions. Treatment of cells in 0.05 M potassium phosphate buffer (pH 7.00 +/- 0.05) containing 2.0 or 2.4 mg of free chlorine per liter reduced populations by as much as 1.3 log(10) CFU/ml, while treatment with 6.0 mg of free chlorine per liter reduced populations by as much as 4.02 log(10) CFU/ml. Remaining subpopulations of chlorine-treated cells exhibited some injury, and cells treated with chlorine for 10 min were more sensitive to heating at 56 degrees C than cells treated for 5 min. Contamination of foods by L. monocytogenes cells that have survived exposure to processing environments ineffectively cleaned or sanitized with alkaline detergents or disinfectants may have more severe implications than previously recognized. Alkaline-pH-induced cross-protection of L. monocytogenes against heat has the potential to enhance survival in minimally processed as well as in heat-and-serve foods and in foods on holding tables, in food service facilities, and in the home. Cells surviving exposure to chlorine, in contrast, are more sensitive to heat; thus, the effectiveness of thermal processing in achieving desired log(10)-unit reductions is not compromised in these cells.  相似文献   

13.
High hydrostatic pressure is a new technology in the food processing industry, and is used for cold pasteurization of food products. However, the pressure inactivation of food-borne microorganisms requires very high pressures (generally more than 400 MPa) and long pressure holding times (5 min or more). Carrying out pressure processing at low temperatures without freezing can reduce these parameters, which presently limit the application of this technology, in keeping the quality of fresh raw product. The yeast, Saccharomyces cerevisiae and the bacterium, Lactobacillus plantarum were pressurized for 10 min at temperatures between -20 and 25 degrees C and pressure between 100 and 350 MPa. Pressurization at subzero temperatures without freezing significantly enhanced the effect of pressure. For example, at a pressure of 150 MPa, the decrease in temperature from ambient to -20 degrees C allowed an increase in the pressure-induced inactivation from less than 1 log up to 7-8 log for each microorganism studied. However, for comparable inactivation levels, the kinetics of microorganism inactivation did not differ, which suggests identical inactivation mechanisms. Implications of water thermodynamical properties like compression, protein denaturation, as well as membrane phase transitions, are discussed.  相似文献   

14.
Resistance of micro-organisms to high pressure is variable and directly related to extrinsic and intrinsic factors. Pressures of 100, 200, 300, 350 and 400 MPa were applied at 20°C for 10 min and at 10°C for 20 min using strains of Gram-positive and Gram-negative bacteria, moulds and yeasts, as well as spores of Gram-positive bacteria. The results showed that at pressures of 100 and 200 MPa, decreases in microbial populations were not significant, whereas the populations of all the micro-organisms tested decreased considerably at a pressure of 300 MPa. A pressure of 300 MPa at 10°C for 20 min was required to completely reduce the population of Saccharomyces cerevisiae , and a pressure of 350 MPa was needed to reduce most of the Gram-negative bacteria and moulds. The Gram-positive bacteria were more resistant, and pressures of 400 MPa were unable to completely reduce their populations. The different pressures employed had little effect on the initial numbers of spores. The initial populations of viable aerobic mesophiles and moulds and yeasts in vegetables (lettuce and tomatoes) decreased 1 log unit at pressures of 300 MPa and above under both sets of experimental treatment conditions. However, treatment at that pressure also resulted in alterations in the organoleptic properties of the samples. In the tomatoes, the skin loosened and peeled away, though the flesh remained firm, and colour and flavour were unchanged. The lettuce remained firm but underwent browning; flavour was unaffected. In vegetables use of moderate pressures in combination with other treatment conditions would appear to be required to reduce the populations of contaminating micro-organisms while avoiding the undesirable alterations in organoleptic properties that take place at 300 MPa.  相似文献   

15.
Human illness and death have resulted from the consumption of milk, cheese, and cole slaw contaminated with Listeria monocytogenes. Since the effects of temperature, NaCl, and pH on the growth of the organism in cabbage were unknown, a series of experiments was designed to investigate these factors. Two strains (LCDC 81-861 and Scott A, both serotype 4b) were examined. At 30 degrees C, the viable population of the LCDC 81-861 strain increased in sterile unclarified cabbage juice (CJ) containing 0 to 1.5% NaCl; a decrease in the population of both strains occurred in juice containing greater than or equal to 2% NaCl. At 5 degrees C, the population of the Scott A strain in CJ containing up to 5% NaCl was reduced by about 90% over a 70-day period; the LCDC 81-861 strain was more sensitive to refrigeration but remained viable in CJ containing less than or equal to 3.5% NaCl for 70 days. Growth in CJ at 30 degrees C resulted in a decrease in pH from 5.6 to 4.1 within 8 days. Death of L. monocytogenes occurred at 30 degrees C when the organism was inoculated into sterile CJ adjusted to pH less than or equal to 4.6 with lactic acid. No viable cells were detected after 3 days at pH less than or equal to 4.2. At 5 degrees C, the rate of death at pH less than or equal to 4.8 was slower than at 30 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Human illness and death have resulted from the consumption of milk, cheese, and cole slaw contaminated with Listeria monocytogenes. Since the effects of temperature, NaCl, and pH on the growth of the organism in cabbage were unknown, a series of experiments was designed to investigate these factors. Two strains (LCDC 81-861 and Scott A, both serotype 4b) were examined. At 30 degrees C, the viable population of the LCDC 81-861 strain increased in sterile unclarified cabbage juice (CJ) containing 0 to 1.5% NaCl; a decrease in the population of both strains occurred in juice containing greater than or equal to 2% NaCl. At 5 degrees C, the population of the Scott A strain in CJ containing up to 5% NaCl was reduced by about 90% over a 70-day period; the LCDC 81-861 strain was more sensitive to refrigeration but remained viable in CJ containing less than or equal to 3.5% NaCl for 70 days. Growth in CJ at 30 degrees C resulted in a decrease in pH from 5.6 to 4.1 within 8 days. Death of L. monocytogenes occurred at 30 degrees C when the organism was inoculated into sterile CJ adjusted to pH less than or equal to 4.6 with lactic acid. No viable cells were detected after 3 days at pH less than or equal to 4.2. At 5 degrees C, the rate of death at pH less than or equal to 4.8 was slower than at 30 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Spores of Bacillus anthracis are known to be extremely resistant to heat treatment, irradiation, desiccation, and disinfectants. To determine inactivation kinetics of spores by high pressure, B. anthracis spores of a Sterne strain-derived mutant deficient in the production of the toxin components (strain RP42) were exposed to pressures ranging from 280 to 500 MPa for 10 min to 6 h, combined with temperatures ranging from 20 to 75 degrees C. The combination of heat and pressure resulted in complete destruction of B. anthracis spores, with a D value (exposure time for 90% inactivation of the spore population) of approximately 4 min after pressurization at 500 MPa and 75 degrees C, compared to 160 min at 500 MPa and 20 degrees C and 348 min at atmospheric pressure (0.1 MPa) and 75 degrees C. The use of high pressure for spore inactivation represents a considerable improvement over other available methods of spore inactivation and could be of interest for antigenic spore preparation.  相似文献   

18.
The effects of nisin and ALTA 2341 on the growth of Listeria monocytogenes were assessed on smoked salmon packaged under vacuum or 100% CO2. Smoked salmon slices (pH 6.3) were inoculated with a cocktail of seven L. monocytogenes isolates at a level of approximately 2.5 log10 colony forming units (cfu) g-1. After inoculation, the surface of the smoked salmon slices was treated with either nisin (400 or 1250 IU g-1) or ALTA 2341 (0.1 or 1%). The smoked salmon was packaged and stored at 4 degrees C (28 d) or 10 degrees C (9 d). On untreated vacuum-packaged smoked salmon, L. monocytogenes grew by 3.8 log10 cfu g-1 at 4 degrees C and 5.1 log10 cfu g-1 at 10 degrees C. Growth was reduced on nisin- and ALTA 2341-treated vacuum-packaged smoked salmon. On the nisin-treated samples, L. monocytogenes increased by 2.5 (400 IU g-1) and 1.5 (1250 IU g-1) log10 cfu g-1 at 4 degrees C, and by 4.3 (400 IU g-1) and 2.7 (1250 IU g-1) log10 cfu g-1 at 10 degrees C. With the ALTA 2341-treated samples, L. monocytogenes increased by 2.8 (0.1%) or 1.6 (1.0%) log10 cfu g-1 at 4 degrees C, and 3.3 (0.1%) or 3.6 (1.0%) log10 cfu g-1 at 10 degrees C. The growth of L. monocytogenes was retarded by packaging the smoked salmon in 100% CO2. On untreated smoked salmon, only a 0.8 log10 cycle increase was observed at 10 degrees C. Under all the other conditions tested with 100% CO2, L. monocytogenes was detected but growth was prevented.  相似文献   

19.
Patulin production by Byssochlamys spp. in fruit juices.   总被引:3,自引:1,他引:2       下载免费PDF全文
Ten strains of Byssochlamys fulva and three strains of B. nivea were cultured in a laboratory medium and tested for their ability to produce patulin. Two strains of B. fulva and all three strains of B. nivea produced the mycotoxin. One strain of B. fulva produced patulin in 11 of 13 processed fruit juices, with greatest amounts being produced in blueberry, red raspberry, and boysenberry juices, whereas no patulin was detected in prune or tomato juices. Grown in Concord grape juice at 18, 25, 30, and 38 degrees C, this strain produced the highest patulin concentration at 18 degrees C after 25 days, whereas biomass production was greatest at 25 and 30 degrees C after 20 and 25 days.  相似文献   

20.
Patulin production by Byssochlamys spp. in fruit juices   总被引:1,自引:0,他引:1  
Ten strains of Byssochlamys fulva and three strains of B. nivea were cultured in a laboratory medium and tested for their ability to produce patulin. Two strains of B. fulva and all three strains of B. nivea produced the mycotoxin. One strain of B. fulva produced patulin in 11 of 13 processed fruit juices, with greatest amounts being produced in blueberry, red raspberry, and boysenberry juices, whereas no patulin was detected in prune or tomato juices. Grown in Concord grape juice at 18, 25, 30, and 38 degrees C, this strain produced the highest patulin concentration at 18 degrees C after 25 days, whereas biomass production was greatest at 25 and 30 degrees C after 20 and 25 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号