首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Barroso JF  Elholm M  Flatmark T 《Biochemistry》2003,42(51):15158-15169
Human thymidine kinase 2 (hTK2) phosphorylates pyrimidine deoxyribonucleosides to the corresponding nucleoside monophosphates, using a nucleotide triphosphate as a phosphate donor. In this study, hTK2 was cloned and expressed at high levels in Escherichia coli as a fusion protein with maltose-binding protein. Induction of a heat-shock response by ethanol and coexpression of plasmid-encoded GroEL/ES chaperonins at 28 degrees C minimized the nonspecific aggregation of the hybrid protein and improved the recovery of three homooligomeric forms of the properly folded enzyme, i.e., dimer > tetramer > hexamer. The dimer and the tetramer were isolated in stable and highly purified forms after proteolytic removal of the fusion partner. Both oligomers contained a substoichiometric amount of deoxyribonucleotide triphosphates (dTTP > dCTP > dATP), known to be strong feedback inhibitors of the enzyme. Steady-state kinetic studies were consistent with the presence of endogenous inhibitors, and both oligomeric forms revealed a lag phase of at least approximately 5 min, which was abolished on preincubation with substrate (dThd or dCyd). The rather similar kinetic properties of the two oligomeric forms indicate that the basic functional unit is a dimer. Molecular docking experiments with a modeled hTK2 three-dimensional structure accurately predicted the binding positions at the active site of the natural substrates (dThd, dCyd, and ATP) and inhibitors (dTTP and dCTP), with highly conserved orientations obtained for all ligands. The calculated relative nonbonded interaction energies are in agreement with the biochemical data and show that the inhibitor complexes have lower stabilization energies (higher affinity) than the substrates.  相似文献   

2.
Hydrogen exchange analysis of ligand-induced conformational changes in Fab   总被引:1,自引:0,他引:1  
P A Liberti  D M Bausch  M Chu 《Biochemistry》1981,20(4):1012-1019
  相似文献   

3.
The lymphoid surface antigen CD38 is basically a NAD+glycohydrolase, which is also involved in the metabolism of cyclic ADP-ribose. Besides, this ecto-enzyme has potential signalling roles in T- and B-cells. Such multiple functions prompted us to study the molecular dynamics of the CD38 protein and especially the relationship between its ecto-enzymatic active site and its epitope, i.e. the binding site of most known anti-CD38 monoclonal antibodies. Both epitopic and enzymatic sites were shown to be degraded by proteases, such as trypsin or chymotrypsin. This sensitivity was almost entirely suppressed in the presence of substrates or inhibitors. Both sites were also degraded in the presence of reducing agents, as dithiothreitol. Inhibitory ligands induced the same resistance of both sites against reducing attack. The binding of CD38 ligands to the active site triggers therefore conformational changes that shield some backbone bonds and disulfide bridges against, respectively, proteolytic cleavage or reduction. This transconformation was found moreover to irreversibly take place after incubation with substrates such as NAD+ in the presence of dithiothreitol. The epitope remained preserved, while the enzymatic activity was lost. This inactivation probably resulted from the covalent trapping of the catalytically reactive intermediate in the active site (i.e. paracatalytic inactivation). These data have major implications in the knowledge of the CD38 structure, especially with regard to the location of disulfide bridges and their accessibility. Potential consequences of the conformational plasticity of CD38 should also be considered in its physiological functions such as signalling.  相似文献   

4.
L Stewart  J P Klinman 《FEBS letters》1999,454(3):229-232
Bovine dopamine beta-monooxygenase has been assayed over a 10,000-fold range in protein concentration, to approximate conditions where the enzyme was shown to be a dimer or tetramer. Michaelis-Menten kinetics are observed with k(cat) and k(cat)/Km for dissociated enzyme reduced 30% and 200-300% relative to tetramer. Addition of chloride ions to very dilute enzyme or the use of intermediate enzyme concentrations causes non-Michaelis-Menten behavior, attributed to an equilibration between dimer and tetramer. This is not expected to contribute to activity within the chromaffin vesicle, where enzyme and chloride ions are at high levels.  相似文献   

5.
Arginine kinase from sea urchin eggs and sea cucumber muscle are dimeric enzymes, unlike the more widely distributed monomeric enzyme found in other invertebrates. Both purified enzymes exhibited features characteristic of the monomeric arginine kinases including pH optima, formation of a catalytic dead-end complex (enzyme-MgADP-arginine) and stabilization of this complex by monovalent anions. A complete analysis of initial velocity data, in both directions for each substrate, indicated that substrate binding cooperativity was either minimal or non-existent. Unlike many other multi-subunit enzymes, the significance of the dimeric state of the phosphagen kinases remains unclear. These present results would suggest that (a) cooperativity, or so-called synergism in substrate binding is not a characteristic of the dimeric state of the protein and (b) the functional significance of the dimeric state is not related to the ability of some of these enzymes to undergo cooperativity in substrate binding. The significance of the dimeric state for the creatine kinases and arginine kinases remains to be established.  相似文献   

6.
Baez M  Cabrera R  Guixé V  Babul J 《Biochemistry》2007,46(20):6141-6148
Escherichia coli phosphofructokinase-2 (Pfk-2) is an oligomeric enzyme characterized by two kinds of interfaces: a monomer-monomer interface, critical for enzymatic activity, and a dimer-dimer interface formed upon tetramerization due to allosteric binding of MgATP. In this work, Pfk-2 was denatured by guanidine hydrochloride (GdnHCl) and the impact of ligand binding on the unfolding pathway of the dimeric and the tertrameric forms of the enzyme was examined. The unligated dimeric form unfolds and dissociates from 0.15 to 0.8 M GdnHCl without the accumulation of native monomers, as indicated by circular dichroism and size exclusion chromatography measurements. However, a monomeric intermediate with an expanded volume and residual secondary structure accumulates above 0.8 M GdnHCl. The dimeric fructose-6-P-enzyme complex shows a shift in the simultaneous dissociation and unfolding process to elevated GdnHCl concentrations (from 0.8 to 1.4 M) together with the expulsion of the ligand detected by intrinsic fluorescence measurements. The unfolding pathway of the tetrameric MgATP-enzyme complex shows the accumulation of a tetrameric intermediate with altered fluorescence properties at about 0.4 M GdnHCl. Above this concentration a sharp transition from tetramers to monomers, without the accumulation of either compact dimers or monomers, was detected by light scattering measurements. Indeed, the most populated species was a partially unfolded monomer about 0.7 M GdnHCl. On the basis of these results, we suggest that the subunit contacts are critical for the maintenance of the overall structure of Pfk-2 and for the binding of ligands, explaining the reported importance of the dimeric state for enzymatic activity.  相似文献   

7.
The energetics of structural changes in the holo and apo forms of a-lactalbumin and the transition between their native and denatured states induced by binding Ca2+ and Na+ have been studied by differential scanning and isothermal titration microcalorimetry and circular dichroism spectroscopy under various solvent conditions. Removal of Ca2+ from the protein enhances its sensitivity to pH and ionic conditions due to noncompensated negative charge-charge interactions at the cation binding site, which significantly reduces its overall stability. At neutral pH and low ionic strength, the native structure of apo-alpha-lactalbumin is stable below 14 C and undergoes a conformational change to a native-like molten globule intermediate at temperatures above 25 degrees C. The denaturation of either holo- or apo-alpha-lactalbumin is a highly cooperative process that is characterized by an enthalpy of similar magnitude when calculated at the same temperature. Measured by direct calorimetric titration, the enthalpy of Ca2+-binding to apo-LA at pH 7.5 is -7.1 kJ mol(-1) at 5.0 degrees C. which is essentially invariant to protonation effects. This small enthalpy effect infers that stabilization of alpha-lactalbumin by Ca2+ is primarily an entropy driven process, presumably arising from electrostatic interactions and the hydration effect. In contrast to the binding of calcium, the interaction of sodium with apo-LA does not produce a noticeable heat effect and is characterized by its ionic nature rather than specific binding to the metal-binding site. Characterization of the conformational stability and ligand binding energetics of alpha-lactalbumin as a function of solvent conditions furnishes significant insight regarding the molecular flexibility and regulatory mechanism mediated by this protein.  相似文献   

8.
Yikilmaz E  Rouault TA  Schuck P 《Biochemistry》2005,44(23):8470-8478
Iron regulatory proteins (IRPs) regulate iron metabolism in mammalian cells. We used biophysical techniques to examine the solution properties of apo-IRP1 and apo-IRP2 and the interaction with their RNA ligand, the iron regulatory element (IRE). Sedimentation velocity and equilibrium experiments have shown that apo-IRP1 exists as an equilibrium mixture of monomers and dimers in solution, with an equilibrium dissociation constant in the low micromolar range and slow kinetic exchange between the two forms. However, only monomeric IRP1 is observed in complex with IRE. In contrast, IRP2 exists as monomer in both the apo-IRP2 form and in the IRP2/IRE complex. For both IRPs, sedimentation velocity and dynamic light-scattering experiments show a decrease of the Stokes radius upon binding of IRE. This conformational change was also observed by circular dichroism. Studies with an RNA molecule complementary to IRE indicate that, although specific base interactions can increase the stability of the protein/RNA complex, they are not essential for inducing this conformational change. The dynamic change of the IRP between different oligomeric and conformational states induced by interaction with IRE may play a role in the iron regulatory functions of IRPs.  相似文献   

9.

Background

The Hill coefficient characterizes the extent to which an enzyme exhibits positive or negative cooperativity, but it provides no information regarding the mechanism of cooperativity. In contrast, models based on the equilibrium concept of mass action can suggest mechanisms of cooperativity, but there are often many such models and often many with too many parameters.

Results

Mass action models of tetrameric human thymidine kinase 1 (TK1) activity data were formed as pairs of plausible hypotheses that per site activities and binary dissociation constants are equal within contiguous stretches of the number of substrates bound. Of these, six 3-parameter models were fitted to 5 different datasets. Akaike's Information Criterion was then used to form model probability weighted averages. The literature average of the 5 model averages was K = (0.85, 0.69, 0.65, 0.51) μM and k = (3.3, 3.9, 4.1, 4.1) sec-1 where K and k are per-site binary dissociation constants and activities indexed by the number of substrates bound to the tetrameric enzyme.

Conclusion

The TK1 model presented supports both K and k positive cooperativity. Three-parameter mass action models can and should replace the 3-parameter Hill model.

Reviewers

This article was reviewed by Philip Hahnfeldt, Fangping Mu (nominated by William Hlavacek) and Rainer Sachs.  相似文献   

10.
Mammalian thioredoxin reductase 1 (TrxR1) is a selenoprotein that contains a selenocysteine (Sec) residue at the penultimate C-terminal position. When rat TrxR1 is expressed recombinantly in Escherichia coli, partial truncation at the Sec-encoding UGA gives rise to additional protein species that lack Sec. Phenylarsine oxide (PAO) Sepharose can subsequently be used to enrich the Sec-containing protein and yield activity corresponding to that of native enzyme. Herein we extensively purified recombinant rat TrxR1 over PAO Sepharose, which gave an enzyme with about 53 U/mg specific activity. Surprisingly, only about 65% of the subunits of this TrxR1 preparation contained Sec, whereas about 35% were protein products derived from UGA truncation. Further analyses revealed a theoretical maximal specific activity of 70–80 U/mg for the homodimeric enzyme with full Sec content, i.e., significantly higher than that reported for native TrxR1. We also discovered the formation of highly stable noncovalently linked tetrameric forms of TrxR1, having full FAD content but about half the specific activity in relation to the selenium content compared to the dimeric protein. The characterization of these different forms of recombinant TrxR1 revealed that inherent turnover capacity of the enzyme must be revised, that multimeric states of the protein may be formed, and that the yield of bacterial selenoprotein production may be lower than earlier reported. The biological significance of the hitherto unsurpassed high specific activity of the enzyme involves the capacity to support a higher turnover in vivo than previously believed. The tetrameric forms of the protein could represent hitherto unknown regulatory states of the enzyme.  相似文献   

11.
The binding of UDP-N-acetylglucosamine (UDPNAG) to the enzyme UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) was studied in the absence and presence of the antibiotic fosfomycin by isothermal titration calorimetry. Fosfomycin binds covalently to MurA in the presence of UDPNAG and also in its absence as demonstrated by MALDI mass spectrometry. The covalent attachment of fosfomycin affects the thermodynamic parameters of UDPNAG binding significantly: In the absence of fosfomycin the binding of UDPNAG is enthalpically driven (DeltaH = -35.5 kJ mol(-1) at 15 degrees C) and opposed by an unfavorable entropy change (DeltaS = -25 J mol(-1) K(-1)). In the presence of covalently attached fosfomycin the binding of UDPNAG is entropically driven (DeltaS = 187 J mol(-1)K(-1) at 15 degrees C) and associated with unfavorable changes in enthalpy (DeltaH = 28.8 kJ mol(-1)). Heat capacities for UDPNAG binding in the absence or presence of fosfomycin were -1.87 and -2.74 kJ mol(-1) K(-1), respectively, indicating that most ( approximately 70%) of the conformational changes take place upon formation of the UDPNAG-MurA binary complex. The major contribution to the heat capacity of ligand binding is thought to be due to changes in the solvent-accessible surface area. However, associated conformational changes, if any, also contribute to the experimentally measured magnitude of the heat capacity. The changes in solvent-accessible surface area were calculated from available 3D structures, yielding a DeltaC(p) of -1.3 kJ mol(-1) K(-1); i.e., the experimentally determined heat capacity exceeds the calculated one. This implies that other thermodynamic factors exert a large influence on the heat capacity of protein-ligand interactions.  相似文献   

12.
The lymphoid surface antigen CD38 is a NAD+-glycohydrolase that also catalyzes the transformation of NAD+ into cyclic ADP-ribose, a calcium mobilizing second messenger. In addition, ligation of CD38 by antibodies triggers signaling in lymphoid cells. Since the cytoplasmic tail of CD38 is dispensable for this latter property, we have previously proposed that CD38-mediated receptor signal transduction might be regulated by its conformational state. We have now examined the molecular changes of this protein during its interaction with NAD+ by measuring the intrinsic fluorescence of CD38. We have shown that addition of the substrate produced a dramatic decrease in the fluorescence of the catalytically active recombinant soluble ectodomain of murine CD38. Analysis of this event revealed that the catalytic cycle involves a state of the enzyme that is characterized by a low fluorescence which, upon substrate turnover, reverts to the initial high intrinsic fluorescence level. In contrast, non-hydrolyzable substrates trap CD38 in its altered low fluorescence state. Studies with the hydrophilic quencher potassium iodide revealed that the tryptophan residues that are mainly involved in the observed changes in fluorescence, are remote from the active site. Similar data were also obtained with human CD38, indicating that studies of intrinsic fluorescence will be useful in monitoring the transconformation of CD38 from different species. Together, these data demonstrate that CD38 undergoes a reversible conformational change after substrate binding, and suggest a mechanism by which this change could alter interactions with different cell-surface partners.  相似文献   

13.
7,8-dihydro-8-oxoguanine (8-oxoG) is one of the major DNA lesions formed by reactive oxygen species that can result in transversion mutations following replication if left unrepaired. In human cells, the effects of 8-oxoG are counteracted by OGG1, a DNA glycosylase that catalyzes excision of 8-oxoguanine base followed by a much slower beta-elimination reaction at the 3'-side of the resulting abasic site. Many features of OGG1 mechanism, including its low beta-elimination activity and high specificity for a cytosine base opposite the lesion, remain poorly explained despite the availability of structural information. In this study, we analyzed the substrate specificity and the catalytic mechanism of OGG1 acting on various DNA substrates using stopped-flow kinetics with fluorescence detection. Combining data on intrinsic tryptophan fluorescence to detect conformational transitions in the enzyme molecule and 2-aminopurine reporter fluorescence to follow DNA dynamics, we defined three pre-excision steps and assigned them to the processes of (i) initial encounter with eversion of the damaged base, (ii) insertion of several enzyme residues into DNA, and (iii) enzyme isomerization to the catalytically competent form. The individual rate constants were derived for all reaction stages. Of all conformational changes, we identified the insertion step as mostly responsible for the opposite base specificity of OGG1 toward 8-oxoG:C as compared with 8-oxoG:T, 8-oxoG:G, and 8-oxoG:A. We also investigated the kinetic mechanism of OGG1 stimulation by 8-bromoguanine and showed that this compound affects the rate of beta-elimination rather than pre-excision dynamics of DNA and the enzyme.  相似文献   

14.
15.
Human UMP/CMP kinase plays a crucial role in supplying precursors for nucleic acid synthesis by catalyzing the conversion of UMP, CMP, and dCMP into their diphosphate form. In addition, this kinase is an essential component of the activation cascade of medicinally relevant nucleoside analog prodrugs such as AraC, gemcitabine, and ddC. During the catalytic cycle the enzyme undergoes large conformational changes from open in the absence of substrates to closed in the presence of both phosphoryl donor and phosphoryl acceptor. Here we report the crystal structure of the substrate-free, open form of human UMP/CMP kinase. Comparison of the open structure with the closed state previously reported for the similar Dictyostelium discoideum UMP/CMP kinase reveals the conformational changes that occur upon substrate binding. We observe a classic example of induced fit where substrate-induced conformational changes in hinge residues result in rigid body movements of functional domains to form the catalytically competent state. In addition, a homology model of the human enzyme in the closed state based on the structure of D. discoideum UMP/CMP kinase aids to rationalize the substrate specificity of the human enzyme.  相似文献   

16.
Interaction of flavin mononucleotide (FMN) with dimeric and tetrameric forms of rabbit muscle glycogen phosphorylase beta has been studied under the conditions when allosteric activator binding sites are saturated by AMP (1 mM AMP; pH 6.8; 17 degrees C). Simultaneous use of schlieren optical system and photoelectric scanning absorption optical system of analytical ultracentrifuge Spinco, model E, makes it possible to register the oligomeric state of the enzyme and calculate the degree of saturation of individual oligomeric enzyme forms by FMN. The apparent association constant for the equilibrium dimer in equilibrium with tetramer decreased with increasing FMN concentration. The microscopic dissociation constants for the complexes of dimeric and tetrameric forms of glycogen phosphorylase beta with FMN have been found to be equal to 10 and 79 microM, respectively.  相似文献   

17.
It has been found that at pH 7.4 and 2 mg/ml protein, bovine heart mitochondrial creatine kinase (CKm) contains less than 10% of the dimer. The constant for the CKm octamer dissociation into dimers, Kd, in the presence of substrates forming an analog of the complex of the transient state was found to be equal to 4.9 10(-17) M3. Using this value, the experimental conditions were chosen so as to achieve a practically complete dissociation of the octamer into dimers. Evidence has been obtained suggesting that the octamer does not dissociate into dimers during the time course of the kinetic experiments; the corresponding kinetic parameters of the CKm octamer and dimer are as follows: KMgATPm = 82 microM and 42 microM; KCrm = 8.1 mM and 3.4 mM; Vf = 61 and 60 micrograms-equiv. H+ min-1 mg-1; KMgADPm = 43 microM and 17 microM, KCPm = 0.68 mM and 0.23 mM; Vr = 162 and 111 micrograms-equiv. H+ min-1 mg-1. The experimental and calculated data shed additional light on the physiological role of CKm.  相似文献   

18.
Thymidine kinase 2 (TK2) is a mitochondrial (mt) pyrimidine deoxynucleoside salvage enzyme involved in mtDNA precursor synthesis. The full-length human TK2 cDNA was cloned and sequenced. A discrepancy at amino acid 37 within the mt leader sequence in the DNA compared with the determined peptide sequence was found. Two mutations in the human TK2 gene, His-121 to Asn and Ile-212 to Asn, were recently described in patients with severe mtDNA depletion myopathy (Saada, A., Shaag, A., Mandel, H., Nevo, Y., Eriksson, S., and Elpeleg, O. (2001) Nat. Genet. 29, 342-344). The same mutations in TK2 were introduced, and the mutant enzymes, prepared in recombinant form, were shown to have similar subunit structure to wild type TK2. The I212N mutant showed less than 1% activity as compared with wild type TK2 with all deoxynucleosides. The H121N mutant enzyme had normal K(m) values for thymidine (dThd) and deoxycytidine (dCyd), 6 and 11 microm, respectively, but 2- and 3-fold lower V(max) values as compared with wild type TK2 and markedly increased K(m) values for ATP, leading to decreased enzyme efficiency. Competition experiments revealed that dCyd and dThd interacted differently with the H121N mutant as compared with the wild type enzyme. The consequences of the two point mutations of TK2 and the role of TK2 in mt disorders are discussed.  相似文献   

19.
Serine hydroxymethyltransferase (SHMT), a pyridoxal-5′-phosphate (PLP) dependent enzyme catalyzes the interconversion of L-Ser and Gly using tetrahydrofolate as a substrate. The gene encoding for SHMT was amplified by PCR from genomic DNA ofBacillus stearothermophilus and the PCR product was cloned and overexpressed inEscherichia coli. The purified recombinant enzyme was isolated as a mixture of dimer (90%) and tetramer (10%). This is the first report demonstrating the existence of SHMT as a dimer and tetramer in the same organism. The specific activities at 37°C of the dimeric and tetrameric forms were 6.7 U/mg and 4.1 U/mg, respectively. The purified dimer was extremely thermostable with aT m of 85°C in the presence of PLP and L-Ser. The temperature optimum of the dimer was 80°C with a specific activity of 32.4 U/mg at this temperature. The enzyme catalyzed tetrahydrofolate-independent reactions at a slower rate compared to the tetrahydrofolate-dependent retro-aldol cleavage of L-Ser. The interaction with substrates and their analogues indicated that the orientation of PLP ring ofB. stearothermophilus SHMT was probably different from sheep liver cytosolic recombinant SHMT (scSHMT).  相似文献   

20.
Lipoprotein(a) is composed of low-density lipoprotein linked both covalently and noncovalently to apolipoprotein(a). The structure of lipoprotein(a) and the interactions between low-density lipoprotein and apolipoprotein(a) were investigated by electron microscopy and correlated with analytical ultracentrifugation. Electron microscopy of rotary-shadowed and unidirectionally shadowed lipoprotein(a) prepared without glycerol revealed that it is a nearly spherical particle with no large projections. After extraction of both lipoprotein(a) and low-density lipoprotein with glycerol prior to rotary shadowing, the protein components were observed to consist of a ring of density made up of nodules of different sizes, with apolipoprotein(a) and apolipoprotein B-100 closely associated with each other. However, when lipoprotein(a) was treated with a lysine analogue, 6-aminohexanoic acid, much of the apolipoprotein(a) separated from the apolipoprotein B-100. In 6-aminohexanoic acid-treated preparations without glycerol extraction, lipoprotein(a) particles had an irregular mass of density around the core. In contrast, lipoprotein(a) particles treated with 6-aminohexanoic acid in the presence of glycerol had a long tail, in which individual kringles could be distinguished, extending from the ring of apolipoprotein B-100. The length of the tail was dependent on the particular isoform of apolipoprotein(a). Dissociation of the noncovalent interactions between apolipoprotein(a) and low-density lipoprotein as a result of shear forces or changes in the microenvironment may contribute to selective retention of lipoprotein(a) in the vasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号