首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In the renal collecting duct (CD) the major physiological role of aldosterone is to promote Na+ reabsorption. In addition, aldosterone may also influence CD water permeability elicited by vasopressin (AVP). We have previously shown that endogenous expression of the aquaporin-2 (AQP2) water channel in immortalized mouse cortical CD principal cells (mpkCCDC14) grown on filters is dramatically increased by administration of physiological concentrations of AVP. In the present study, we investigated the influence of aldosterone on AQP2 expression in mpkCCDC14 cells by RNase protection assay and Western blot analysis. Aldosterone reduced AQP2 mRNA and protein expression when administered together with AVP for short periods of time (< or =24 h). For longer periods of time, however, aldosterone increased AQP2 protein expression despite sustained low expression levels of AQP2 mRNA. Both events were dependent on mineralocorticoid receptor occupancy because they were both induced by a low concentration of aldosterone (10-9 m) and were abolished by the mineralocorticoid receptor antagonist canrenoate. Inhibition of lysosomal AQP2 protein degradation increased AQP2 protein expression in AVP-treated cells, an effect that was potentiated by aldosterone. Finally, both aldosterone and actinomycin D delayed AQP2 protein decay following AVP washout, but in a non-cumulative manner. Taken together, our data suggest that aldosterone tightly modulates AQP2 protein expression in cultured mpkCCDC14 cells by increasing AQP2 protein turnover while maintaining low levels of AQP2 mRNA expression.  相似文献   

4.
Mineralocorticoid receptor (MR) antagonists decrease the incidence of sudden cardiac death in patients with heart failure, as has been reported in two clinical trials (Randomized Aldactone Evaluation Study and Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study). Aldosterone has been shown to increase the propensity to arrhythmias by changing the expression or function of various ion channels. In this study, we investigate the effect of aldosterone on the expression of hyperpolarization-activated current (I(f)) channels in cultured neonatal rat ventricular myocytes, using the whole cell patch-clamp technique, real-time PCR, and Western blotting. Incubation with 10 nM aldosterone for 17-24 h significantly accelerates the rate of spontaneous beating by increasing diastolic depolarization. I(f) current elicited by hyperpolarization from -50 to -130 mV significantly increases aldosterone by 10 nM (by 1.9-fold). Exposure to aldosterone for 1.5 h increases hyperpolarization-activated cyclic nucleotide-gated (HCN) 2 mRNA by 26.3% and HCN4 mRNA by 47.2%, whereas HCN1 mRNA expression remains unaffected. Aldosterone (24-h incubation) increases the expression of HCN2 protein (by 60.0%) and HCN4 protein (by 84.8%), but not HCN1 protein. MR antagonists (1 microM eplerenone or 0.1 microM spironolactone) abolish the increase of I(f) channel expression (currents, mRNA, and protein levels) by 10 nM aldosterone. In contrast, 1 microM aldosterone downregulated I(f) channel gene expression. Glucocorticoid receptor antagonist (100 nM RU-38486) did not affect the increase of I(f) current by 10 nM aldosterone. These findings suggest that aldosterone in physiological concentrations upregulates I(f) channel gene expression by MR activation in cardiac myocytes and may increase excitability, which may have a potential proarrhythmic bearing under pathophysiological conditions.  相似文献   

5.
Lai L  Pen A  Hu Y  Ma J  Chen J  Hao CM  Gu Y  Lin S 《Life sciences》2007,81(7):570-576
Accumulating evidence shows that aldosterone plays an important role in the pathogenesis of renal fibrosis but its mechanism has not been completely defined. Recently, exogenous administration of aldosterone significantly alleviated ischemic states in a model of femoral artery ligated rats, accompanied by an obvious enhancement of VEGF upregulation. We hypothesized that aldosterone may also regulate the expression of VEGF in the kidney. To confirm this, cultured cortical collecting duct epithelial cells (M-1 cell line) were incubated with aldosterone and control media, respectively. The pathway by which aldosterone regulates VEGF expression was tested by the administration of spironolactone, a specific mineralocorticoid receptor (MR) antagonist. VEGF expression was detected by immunofluorescence staining, ELISA, Western blot and RT-PCR. Aldosterone induced an elevation of VEGF excretion in a time- and dose-dependent manner. Western blotting showed a 1.4-fold elevation in cytosolic VEGF expression following aldosterone (10(-8) M) incubation for 48 h (p<0.01). After aldosterone (10(-7) M) incubation for 48 h, the mRNA level of VEGF164 and VEGF120 showed 1.8- and 1.7-fold increases, respectively (p<0.01). This upregulation was almost completely blocked by spironolactone as shown both by mRNA levels and cytosolic protein levels. In addition, the mRNA of aldosterone receptor was detected in M-1 cells. We demonstrated for the first time that aldosterone induced VEGF expression in M-1 cells, an effect mediated by classic mineralocorticoid receptor. This finding provides experimental evidence for the local non-hemodynamic action of aldosterone.  相似文献   

6.
7.
Accumulating evidence demonstrates that aldosterone can cause extra-cellular matrix (ECM) accumulation, in addition to regulating sodium and potassium homeostasis. Increased extra-cellular matrix production by renal glomerular mesangial cells has been suggested to be involved in pathogenesis of glomerular sclerosis. The present studies examine whether aldosterone is also produced in renal mesangial cells, and the effect of aldosterone on ECM accumulation in these cells. In cultured renal mesangial cells, aldosterone synthase (CYP11B2), mineralocorticoid receptor (MR), and 11beta-HSD2 mRNA expressions were detected by RT-PCR. The ability of renal mesangial cells to produce aldosterone was confirmed by directly detecting aldosterone in culture medium via radioimmunoassay. Real-time RT-PCR showed that the expression of CYP11B2 mRNA in mesangial cells was significantly enhanced by AngII (P<0.001) and by potassium (P<0.05). Exposure of the cultured mesangial cells to aldosterone significantly increased fibronectin production from 12.4+/-1.9 to 74.6+/-16.8ng/ml (P<0.05). The aldosterone induced fibronectin production was abolished by aldosterone receptor antagonist spironolactone. Aldosterone also increased the TGF-beta1 reporter luciferase activity from 0.8+/-0.1 to 1.7+/-0.1 (P<0.05). Immunoblot showed TGF-beta1 protein expression was increased following aldosterone treatment. Blocking TGF-beta1 signaling pathway by knocking down Smad2 significantly blunted the aldosterone induced fibronectin production. The present studies indicate that renal mesangial cell is a target of local aldosterone action, which promotes ECM protein fibronectin production via TGF-beta1/Smad2 signaling pathway.  相似文献   

8.
Several lines of evidence suggest that aldosterone excess may have detrimental effects in the cardiovascular system, independent of its interaction with the renal epithelial cells. Here we examined the possibility that aldosterone modulates 12‐ and/or 15‐lipoxygenase (LO) expression/activity in human vascular smooth muscle cells (VSMC), in vitro, thereby potentially contributing to both vascular reactivity and atherogenesis. Following 24 h treatment of VSMC with aldosterone (1 nmol/L), there was a ~2‐fold increase in the generation rate of 12 hydroxyeicosatetraenoic acid (12‐HETE), 70% increase in platelet type 12‐LO mRNA expression (P < 0.001) along with a ~3‐fold increase in 12‐LO protein expression, which were blocked by the mineralocorticoid receptor (MR) antagonists spironolactone (100 nmol/L) and eplerelone (100 nmol/ml). Additionally, aldosterone (1 nmol/L; 24 h) increased the production of 15‐HETE (50%; P < 0.001) and the expression of 15‐LO type 2 mRNA (50%; P < 0.05) (in VSMC). Aldosterone also increased the 12‐ and 15‐LO type 2 mRNA expression in a line of human aortic smooth muscle cells (T/G HA‐VSMC) (60% and 50%, respectively). Aldosterone‐induced 12‐ and 15‐LO type 2 mRNA expressions were blocked by the EGF‐receptor antagonist AG 1478 and by the MAPK‐kinase inhibitor UO126. Aldosterone‐treated VSMC also showed increased LDL oxidation, (~2‐fold; P < 0.001), which was blocked by spironolactone. In conclusion, aldosterone increased 12‐ and 15‐LO expression in human VSMC, in association with increased 12‐ and 15‐HETE generation and enhanced LDL oxidation and may directly augment VSMC contractility, hypertrophy, and migration through 12‐HETE and promote LDL oxidation via the pro‐oxidative properties of these enzymes. J. Cell. Biochem. 108: 1203–1210, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Aldosterone is considered as a new cardiovascular risk factor that plays an important role in metabolic syndrome; however, the underlying mechanism of these effects is not clear. Hypoadiponectinemia and elevated circulating concentration of plasminogen activator inhibitor-1 (PAI-1) are causally associated with obesity-related insulin resistance and cardiovascular disease. The aim of the present study is to investigate the effect of aldosterone on the production of adiponectin and PAI-1 in 3T3-L1 adipocytes. Northern and Western blot analyses revealed that aldosterone treatment inhibited adiponectin mRNA expression and secretion and simultaneously enhanced PAI-1 mRNA expression and secretion in a time- and dose-dependent manner. Rosiglitazone did not prevent aldosterone's effect on adiponectin or PAI-1 expression. In contrast, tumor necrosis factor (TNF)-α produced dramatic synergistic effects on adiponectin and PAI-1 expression when added together with aldosterone. Furthermore, the effects of aldosterone on adiponectin and PAI-1 expression appear to be mediated through glucocorticoid receptor (GR) but not mineralocorticoid receptor (MR). These results suggest that the effects of aldosterone on adiponectin and PAI-1 production are one of the underlying mechanisms linking it to insulin resistance, metabolic syndrome and cardiovascular disease.  相似文献   

10.
11.
We have investigated the effect of mineralocorticoids on beta-adrenergic receptors in cultured arterial smooth muscle cells. Mineralocorticoid (aldosterone) treatment resulted in a significant increase in beta-adrenergic receptors measured by [3H]dihydroalprenolol (DHA) binding. This effect required at least 20 hours of incubation with aldosterone and was completely blocked by cycloheximide (10 micrograms/ml), indicating protein synthesis was required for this response. Aldosterone at the concentration range of 10(-8)-10(-6) M increased [3H]DHA binding, but was ineffective at 10(-9) M. Scatchard analysis of [3H]DHA binding revealed that the observed significant increase in binding was due to an increased number of binding sites (P less than 0.05), and that the affinity was unchanged. The aldosterone (1 x 10(-8) M) effect was completely blocked by the combination of RU 38486 (10(-6) M) and spironolactone (10(-7) M), but not by the glucocorticoid antagonist RU 38486 alone. While basal c-AMP levels were not changed by aldosterone (10(-6) M) treatment, the isoproterenol (10(-6) M) stimulated level of c-AMP was significantly higher in cells treated with aldosterone (P less than 0.05). We conclude that aldosterone, acting through the mineralocorticoid receptor, has a direct effect on arterial smooth muscle cells mediated through modulation of beta-adrenergic receptors of these cells.  相似文献   

12.
Zhang YG  Kuang ZJ  Mao YY  Wei RH  Bao SL  Wu LB  Li YG  Tang CS 《Peptides》2011,32(12):2452-2458
Recent studies suggest that both osteopontin and urotensin II (UII) play critical roles in vascular remodeling. We previously showed that UII could stimulate the migration of aortic adventitial fibroblasts. In this study, we examined whether osteopontin is involved in UII-induced migration of rat aortic adventitial fibroblasts and examined the effects and mechanisms of UII on osteopontin expression in adventitial fibroblasts. Migration of adventitial fibroblasts induced by UII could be inhibited significantly by osteopontin antisense oligonucleotide (P < 0.01) but not sense or mismatch oligonucleotides (P > 0.05). Moreover, UII dose- and time-dependently promoted osteopontin mRNA expression and protein secretion in the cells, with maximal effect at 10−8 mol/l at 3 h for mRNA expression or at 12 h for protein secretion (both P < 0.01). Furthermore, the UII effects were significantly inhibited by its receptor antagonist SB710411 (10−6 mol/l), and Ca2+ channel blocker nicardipine (10−5 mol/l), protein kinase C (PKC) inhibitor H7 (10−5 mol/l), calcineurin inhibitor cyclosporine A (10−5 mol/l), mitogen-activated protein kinase (MAPK) inhibitor PD98059 (10−5 mol/l) and Rho kinase inhibitor Y-27632 (10−5 mol/l). Thus, osteopontin is involved in the UII-induced migration of adventitial fibroblasts, and UII could upregulate osteopontin gene expression and protein synthesis in rat aortic adventitial fibroblasts by activating its receptor and the Ca2+ channel, PKC, calcineurin, MAPK and Rho kinase signal transduction pathways.  相似文献   

13.
Aldosterone (Aldo) is recognized as an important risk factor for cardiovascular diseases. IL-18 induces myocardial hypertrophy, loss of contractility of cardiomyocytes, and apoptosis leading myocardial dysfunction. However, so far, there have been few reports concerning the interaction between Aldo and IL-18. The present study examined the effects and mechanisms of Aldo on IL-18 expression and the roles of peroxisome proliferator-activated receptor (PPAR) agonists in rat cardiomyocytes. We used cultured rat neonatal cardiomyocytes stimulated with Aldo to measure IL-18 mRNA and protein expression, Rho-kinase, and NF-kappaB activity. We also investigated the effects of PPAR agonists on these actions. Aldo, endothelin-1 (ET-1), and angiotensin II (ANG II) increased IL-18 mRNA and protein expression. Mineralocorticoid receptor antagonists, endothelin A receptor antagonist, and ANG II receptor antagonist inhibited Aldo-induced IL-18 expression. Aldo induced ET-1 and ANG II production in cultured media. Moreover, Rho/Rho-kinase inhibitor and statin inhibited Aldo-induced IL-18 expression. On the other hand, Aldo upregulated the activities of Rho-kinase and NF-kappaB. PPAR agonists attenuated the Aldo-induced IL-18 expression and NF-kappaB activity but not the Rho-kinase activity. Our findings indicate that Aldo induces IL-18 expression through a mechanism that involves, at a minimum, ET-1 and ANG II acting via the Rho/Rho-kinase and PPAR/NF-kappaB pathway. The induction of IL-18 in cardiomyocytes by Aldo, ET-1, and ANG II might, therefore, cause a deterioration of the cardiac function in an autocrine and paracrine fashion. The inhibition of the IL-18 expression by PPAR agonists might be one of the mechanisms whereby the beneficial cardiovascular effects are exerted.  相似文献   

14.
There is accumulating evidence indicating the role of aldosterone in the pathogenesis of hypertension and renal injury. In this study, we investigated the role of the Rho-kinase dependent signaling pathway in aldosterone-induced myofibroblastic transdifferentiation and collagen gene expression in rat mesangial cells (RMCs). Stimulation with aldosterone (1 nmol/L) significantly increased phosphorylation of myosin phosphatase target subunit-1 (MYPT-1), a marker of Rho-kinase activity, with a peak at 20 min in RMCs. Pre-incubation with a selective mineralocorticoid receptor antagonist, eplerenone (10 µmol/L), or a specific Rho-kinase inhibitor, Y27632 (10 µmol/L), attenuated the aldosterone-induced increase in MYPT-1 phosphorylation. Aldosterone also induced hypertrophy in RMCs, accompanied by an increase in actin polymerization and expression of α-smooth muscle actin (α-SMA), a myofibroblastic transdifferentiation marker. Collagen type I, III and IV mRNA levels were also increased with aldosterone stimulation. Pre-treatment with eplerenone or Y27632 prevented the aldosterone-induced cell hypertrophy, actin polymerization, the increase in α-SMA expression and the increases of collagen type I, III, IV mRNA levels in RMCs. These results suggest that aldosterone-induced mesangial cell hypertrophy is associated with cell transformation, leading to an increase in collagen gene expression via the Rho-kinase dependent signaling pathway.  相似文献   

15.
16.
17.
18.
Aldosterone and excessive salt intake are obviously implicated in human arteriosclerosis. Aldosterone activates NADPH oxidase that induces superoxide production and cardiovascular cell hypertrophy. The activity of NADPH oxidase is influenced by the expression of its subunit, through which, vasoactive agents activate in the enzyme. Here, we show that aldosterone elicited overexpression of the NOX1 catalytic subunit of NADPH oxidase in the presence of high salt in A7r5 vascular smooth muscle cells. We also showed that NOX1 is a key subunit involved in physiological aldosterone-induced NADPH oxidase activation. Aldosterone dose-dependently increased NOX1 expression and NADPH activity, which subsequently caused superoxide over-production and A7r5 cell hypertrophy. However, aldosterone had little effect on any of NOX1, superoxide over-production and cell hypertrophy in NOX1 knock-down A7r5 cells. These results suggest that the aldosterone-induced effects are mainly generated through NOX1. Aldosterone-induced NOX1 over-expression was augmented by 145 mM sodium chloride, as compared with control medium containing 135 mM NaCl. However, NOX1 over-expression was not induced in the absence of aldosterone, even in the presence of 185 mM NaCl. The mineralocorticoid receptor antagonist, eplerenone, completely abolished NOX1 over-expression, indicating that aldosterone is essential for this process.  相似文献   

19.
The effect of prostaglandin E (PGE) on aldosterone release and the mechanism of action of PGE in mediating the release of aldosterone were studied using isolated rat glomerulosa cells. PGE1 stimulated aldosterone release in a dose-dependent fashion at concentrations between 10(-8) and 10(-6) M and caused approximately a two-fold increase over the basal aldosterone level at 10(-6) M. A significant and dose-dependent increase in cAMP production was also produced by PGE1 at concentrations greater than 10(-8) M. Aldosterone release induced by 10(-7) M or 10(-6) M PGE2 was significantly reduced by a competitive receptor blocking PG-antagonist, SC 19220 (10(-7) M), but not affected by (Sar1, Ileu8)-angiotensin-II (A-II), a competitive inhibitor of A-II. PGE-stimulated aldosterone release was almost completely abolished by depleting the extracellular Ca2+ by EGTA, or by verapamil, a Ca2+-channel blocker or W-7, a calmodulin inhibitor. These findings suggest that PGE stimulates aldosterone release through the membrane receptor binding and activation of adenylate cyclase and that Ca2+-calmodulin system plays an essential role in mediating the steroidogenic action of PGE in the adrenal glomerulosa cells. However, the physiological significance of PGE in the regulation of aldosterone secretion remains to be elucidated.  相似文献   

20.
Advanced glycation end products (AGE) are involved in tissue damage and remodeling. This study investigated whether AGE could elicit inflammatory and fibrogenic reactions in fibroblast cell line MRC-5 cells via autocrine production of aldosterone and if nifedipine could block the AGE actions through mineralocorticoid receptor (MR) antagonistic activity. AGE significantly up-regulated monocyte chemoattractant protein-1 (MCP-1), transforming growth factor-β (TGF-β), type III collagen and receptor for AGE (RAGE) mRNA levels in MRC-5 cells, all of which were completely blocked by nifedipine or an MR antagonist spironolactone. Aldosterone also dose-dependently increased MCP-1, TGF-β and type III collagen mRNA levels in MRC-5 cells, which were suppressed by nifedipine, but not amlodipine, a control calcium channel blocker. Further, AGE significantly stimulated aldosterone generation in MRC-5 cells, which was partially blocked by nifedipine or spironolactone. In this study, we demonstrated for the first time that AGE could evoke inflammatory and fibrogenic reactions in MRC-5 cells via aldosterone production, which were blocked by the MR antagonistic activity of nifedipine. Our present study provides a unique beneficial aspect of nifedipine on tissue damage and remodeling; it could work as an anti-inflammatory and anti-fibrogenic agent against AGE via MR antagonistic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号