首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 558 毫秒
1.
In cardiac myocytes, sustained (3 min) intracellular acidosis activates the ERK1/2 (extracellular-signal-regulated kinase 1/2) pathway and, through this pathway, increases sarcolemmal NHE (Na+/H+ exchanger) activity [Haworth, McCann, Snabaitis, Roberts and Avkiran (2003) J. Biol. Chem. 278, 31676-31684]. In the present study, we aimed to determine the time-dependence, pH-dependence and upstream signalling mechanisms of acidosis-induced ERK1/2 activation in ARVM (adult rat ventricular myocytes). Cultured ARVM were subjected to intracellular acidosis for up to 20 min by exposure to NH4Cl, followed by washout with a bicarbonate-free Tyrode solution containing the NHE1 inhibitor cariporide. After the desired duration of intracellular acidosis, the phosphorylation status of ERK1/2 and its downstream effector p90(RSK) (90 kDa ribosomal S6 kinase) were determined by Western blotting. This revealed a time-dependent transient phosphorylation of both ERK1/2 and p90(RSK) by intracellular acidosis (intracellular pH approximately 6.6), with maximum activation occurring at 3 min and a return to basal levels by 20 min. When the degree of intracellular acidosis was varied from approximately 6.8 to approximately 6.5, maximum ERK1/2 phosphorylation was observed at an intracellular pH of 6.64. Inhibition of MEK1/2 [MAPK (mitogen-activated protein kinase)/ERK kinase 1/2) by pre-treatment of ARVM with U0126 or adenoviral expression of dominant-negative D208A-MEK1 protein prevented the phosphorylation of ERK1/2 by sustained intracellular acidosis, as did inhibition of Raf-1 with GW 5074 or ZM 336372. Interference with Ras signalling by the adenoviral expression of dominant-negative N17-Ras protein or with FPT III (farnesyl protein transferase inhibitor III) also prevented acidosis-induced ERK1/2 phosphorylation, whereas inhibiting G-protein signalling [by adenoviral expression of RGS4 or Lsc, the RGS domain of p115 RhoGEF (guanine nucleotide-exchange factor)] or protein kinase C (with bisindolylmaleimide I) had no effect. Our data show that, in ARVM, sustained intracellular acidosis activates ERK1/2 through proximal activation of the classical Ras/Raf/MEK pathway.  相似文献   

2.
G(q) protein-coupled receptor stimulation increases sarcolemmal Na(+)/H(+) exchanger (NHE1) activity in cardiac myocytes by an ERK/RSK-dependent mechanism, most likely via RSK-mediated phosphorylation of the NHE1 regulatory domain. Adenosine A(1) receptor stimulation inhibits this response through a G(i) protein-mediated pathway, but the distal inhibitory signaling mechanisms are unknown. In cultured adult rat ventricular myocytes (ARVM), the A(1) receptor agonist cyclopentyladenosine (CPA) inhibited the increase in NHE1 phosphorylation induced by the alpha(1)-adrenoreceptor agonist phenylephrine, without affecting activation of the ERK/RSK pathway. CPA also induced significant accumulation of the catalytic subunit of type 2A protein phosphatase (PP2A(c)) in the particulate fraction, which contained the cellular NHE1 complement; this effect was abolished by pretreatment with pertussis toxin to inactivate G(i) proteins. Confocal immunofluorescence microscopic imaging of CPA-treated ARVM revealed significant co-localization of PP2A(c) and NHE1, in intercalated disc regions. In an in vitro assay, purified PP2A(c) dephosphorylated a GST-NHE1 fusion protein containing aa 625-747 of the NHE1 regulatory domain, which had been pre-phosphorylated by recombinant RSK; such dephosphorylation was inhibited by the PP2A-selective phosphatase inhibitor endothall. In intact ARVM, the ability of CPA to attenuate the phenylephrine-induced increase in NHE1 phosphorylation and activity was lost in the presence of endothall. These studies reveal a novel role for the PP2A holoenzyme in adenosine A(1) receptor-mediated regulation of NHE1 activity in ARVM, the mechanism of which appears to involve G(i) protein-mediated translocation of PP2A(c) and NHE1 dephosphorylation.  相似文献   

3.
We address the question whether activation of the sodium-proton exchanger (NHE) does contribute to the stretch-induced accumulation of intracellular sodium and calcium in mouse ventricular myocytes. NHE-blocker cariporide (10 microM) were applied to the bath for 10 min. Axial stretch was applied for 2 min by increasing the distance between an adherent glass stylus and the patch pipette by 20%. Myocytes (stimulated at 3 Hz) were shock-frozen in diastole and the membrane currents monitored till cryofixation. Controls were treated identically, but not stretched. Total sodium and calcium concentrations ([Na], [Ca]=sum of free and bound Na and Ca) were measured by electron probe microanalysis (EPMA) in peripheral and central cytosol, mitochondria, nucleus and nuclear envelope. Cariporide did not reduce the stretch-activated negative current. The stretch-induced rise in [Na] was not different in the presence and in the absence of cariporide. Cariporide significantly reduced diastolic [Ca] in the cytosol of stretched myocytes. Since cariporide does not prevent the stretch-induced [Na] accumulation, we suggest that not NHE but the stretch-activated streptomycin-sensitive current I(SAC) causes the well documented stretch-induced [Na] accumulation. The discovery that cariporide prevents the stretch-induced rise in cytosolic [Ca] demonstrates an important additional effect of the drug on calcium handling.  相似文献   

4.
We investigated regulation of the type 1 isoform of the Na(+)/H(+) exchanger by phosphorylation. Four specific groups of serine and threonine residues in the regulatory carboxyl-terminal tail were mutated to alanine residues: group 1, S693A; group 2, T718A and S723A/S726A/S729A; group 3, S766A/S770A/S771A; and group 4, T779A and S785A. The proteins were expressed in Na(+)/H(+) exchanger-deficient cells, and the activity was characterized. All of the mutants had proper expression, localization, and normal basal activity relative to wild type NHE1. Sustained intracellular acidosis was used to activate NHE1 via an ERK-dependent pathway that could be blocked with the MEK inhibitor U0126. Immunoprecipitation of (32)P-labeled Na(+)/H(+) exchanger from intact cells showed that sustained intracellular acidosis increased Na(+)/H(+) exchanger phosphorylation in vivo. This was blocked by U0126. The Na(+)/H(+) exchanger activity of mutants 1 and 2 was stimulated similar to wild type Na(+)/H(+) exchanger. Mutant 4 showed a partially reduced level of activation. However, mutant 3 was not stimulated by sustained intracellular acidosis, and loss of stimulation of activity correlated to a loss of sustained acidosis-mediated phosphorylation in vivo. Mutation of the individual amino acids within mutant 3, Ser(766), Ser(770), and Ser(771), showed that Ser(770) and Ser(771) are responsible for mediating increases in NHE1 activity through sustained acidosis. Both intact Ser(770) and Ser(771) were required for sustained acidosis-mediated activation of NHE1. Our results suggest that amino acids Ser(770) and Ser(771) mediate ERK-dependent activation of the Na(+)/H(+) exchanger in vivo.  相似文献   

5.
The function and regulation of Na(+)/H(+) exchanger isoform 1 (NHE1) following cerebral ischemia are not well understood. In this study, we demonstrate that extracellular signal-related kinases (ERK1/2) play a role in stimulation of neuronal NHE1 following in vitro ischemia. NHE1 activity was significantly increased during 10-60 min reoxygenation (REOX) after 2-h oxygen and glucose deprivation (OGD). OGD/REOX not only increased the V(max) for NHE1 but also shifted the K(m) toward decreased [H(+)](i). These changes in NHE1 kinetics were absent when MAPK/ERK kinase (MEK) was inhibited by the MEK inhibitor U0126. There were no changes in the levels of phosphorylated ERK1/2 (p-ERK1/2) after 2 h OGD. The p-ERK1/2 level was significantly increased during 10-60 min REOX, which was accompanied by nuclear translocation. U0126 abolished REOX-induced elevation and translocation of p-ERK1/2. We further examined the ERK/90-kDa ribosomal S6 kinase (p90(RSK)) signaling pathways. At 10 min REOX, phosphorylated NHE1 was increased with a concurrent elevation of phosphorylation of p90(RSK), a known NHE1 kinase. Inhibition of MEK activity with U0126 abolished phosphorylation of both NHE1 and p90(RSK). Moreover, neuroprotection was observed with U0126 or genetic ablation or pharmacological inhibition of NHE1 following OGD/REOX. Taken together, these results suggest that activation of ERK1/2-p90(RSK) pathways following in vitro ischemia phosphorylates NHE1 and increases its activity, which subsequently contributes to neuronal damage.  相似文献   

6.
Although Na+/H+ exchange (NHE) has been implicated in myocardial reperfusion injury, participation of coronary microvascular endothelial cells (CMECs) in this pathogenesis has been poorly understood. NHE-induced intracellular Ca2+ concentration ([Ca2+]i) overload in CMECs may increase the synthesis of intercellular adhesion molecules (ICAM), which is potentially involved in myocardial reperfusion injury. The present study tested the hypothesis that NHE plays a crucial role in [Ca2+]i overload and ICAM-1 synthesis in CMECs. Primary cultures of CMECs isolated from adult rat hearts were subjected to acidic hypoxia for 30 min followed by reoxygenation. Two structurally distinct NHE inhibitors, cariporide and 5-(N-N-dimethyl)-amiloride (DMA), had no significant effect on the acidic hypoxia-induced decrease in intracellular pH (pH(i)) of CMECs but significantly retarded pH(i) recovery after reoxygenation. These NHE inhibitors abolished the hypoxia- and reoxygenation-induced increase in [Ca2+]i. Expression of ICAM-1 mRNA was markedly increased in the vehicle-treated CMECs 3 h after reoxygenation, and this was significantly inhibited by treatment with cariporide, DMA, or Ca2+-free buffer. In addition, enhanced ICAM-I protein expression on the cell surface of CMECs 8 h after reoxygenation was attenuated by treatment with cariporide, DMA, or Ca2+-free buffer. These results suggest that NHE plays a crucial role in the rise of [Ca2+]i and ICAM-1 expression during acidic hypoxia/reoxygenation in CMECs. We propose that inhibition of ICAM-1 expression in CMECs may represent a novel mechanism of action of NHE inhibitors against ischemia-reperfusion injury.  相似文献   

7.
8.
Extracellular zinc promotes cell proliferation and its deficiency leads to impairment of this process, which is particularly important in epithelial cells. We have recently characterized a zinc-sensing receptor (ZnR) linking extracellular zinc to intracellular release of calcium. In the present study, we addressed the role of extracellular zinc, acting via the ZnR, in regulating the MAP kinase pathway and Na+/H+ exchange in colonocytes. We demonstrate that Ca2+ release, mediated by the ZnR, induces phosphorylation of ERK1/2, which is highly metal-specific, mediated by physiological concentrations of extracellular Zn2+ but not by Cd2+, Fe2+, Ni2+, or Mn2+. Desensitization of the ZnR by Zn2+, is followed by approximately 90% inhibition of the Zn2+ -dependent ERK1/2 phosphorylation, indicating that the ZnR is a principal link between extracellular Zn2+ and ERK1/2 activation. Application of both the IP3 pathway and PI 3-kinase antagonists largely inhibited Zn2+ -dependent ERK1/2 phosphorylation. The physiological significance of the Zn2+ -dependent activation of ERK1/2 was addressed by monitoring Na+/H+ exchanger activity in HT29 cells and in native colon epithelium. Preincubation of the cells with zinc was followed by robust activation of Na+/H+ exchange, which was eliminated by cariporide (0.5 microm); indicating that zinc enhances the activity of NHE1. Activation of NHE1 by zinc was totally blocked by the ERK1/2 inhibitor, U0126. Prolonged acidification, in contrast, stimulates NHE1 by a distinct pathway that is not affected by extracellular Zn2+ or inhibitors of the MAP kinase pathway. Desensitization of ZnR activity eliminates the Zn2+ -dependent, but not the prolonged acidification-dependent activation of NHE1, indicating that Zn2+ -dependent activation of H+ extrusion is specifically mediated by the ZnR. Our results support a role for extracellular zinc, acting through the ZnR, in regulating multiple signaling pathways that affect pH homeostasis in colonocytes. Furthermore activation of both, ERK and NHE1, by extracellular zinc may provide the mechanism linking zinc to enhanced cell proliferation.  相似文献   

9.
AIMS: The present study attempts to shed light on the role and the relative position of the Na(+)/H(+) exchanger isoform 1 (NHE1) and the extracellular signal-regulated kinase (ERK) in HEp-2 cell signaling pathways concerning a diverse range of cellular functions such as regulation of intracellular pH (pHi), DNA synthesis, production of reactive oxygen species (ROS) and apoptosis. METHODS: Pharmacological inhibition with cariporide (highly specific inhibitor of NHE1) and PD98059 (specific inhibitor of the upstream activator of ERK) was implemented. Fluorescence spectrometry, atomic absorption spectrometry and ELISA methods were used in order to obtain the results. RESULTS: NHE1 and ERK take part in all of the aforementioned cellular functions, as their inhibition had an effect on all of them. Additionally, inhibition of NHE1 resulted in ERK inhibition as well. Moreover, continuous inhibition of NHE1 or ERK for up to 24h led HEp-2 cells to apoptosis, as assessed through caspase-3 activation, DNA fragmentation and annexin-V binding levels. CONCLUSION: Our data shows a time course of events in relation to NHE1 and ERK and suggests the existence of a positive feedback loop between NHE1 and ERK which could pose a barrier against apoptosis.  相似文献   

10.
PURPOSE:We previously showed that troglitazone (TRO) induces a profound cellular acidosis in MCF-7 cells as a result of inhibiting Na(+)/H(+) exchanger (NHE)1-mediated acid extrusion and this was associated with a marked reduction in cellular proliferation. The present study focuses on TRO-activated signaling pathways versus TRO-mediated NHE1-inhibition in reducing DNA synthesis. EXPERIMENTAL DESIGN: TRO activation of the signaling pathway involving epidermal growth factor receptor (EGFR)/MAPK/ERK kinase (MEK) 1/2/extracellular signal-regulated kinase (ERK) 1/2 was studied by Western blotting and phospho-specific antibodies. TRO induction of cellular acidosis and inhibition of NHE1 activity were measured using (2, 7)-biscarboxyethyl-5 (6)-carboxyfluorescein (BCECF) assay and NH4(+)/NH(3) pulsing. Cellular proliferation was assessed as DNA synthesis by (3)H-thymidine incorporation. RESULTS: TRO simultaneously reduces pH(i) and elevates phosphorylated-extracellular signal-regulated kinase (p-ERK). These responses reflected inhibition of acid extrusion and EGFR activation respectively and were sustained over 18h associated with a large decrease in DNA synthesis. Preventing TRO-induced ERK activation did not restore DNA synthesis or cellular pH. CONCLUSIONS: TRO activates two parallel pathways: I] EGFR/MEK1/2/ERK1/2 and II] NHE1 inhibition/cellular acidosis. Elimination of I] did not prevent the inhibition of DNA synthesis consistent with TRO-induced growth arrest dependent upon II] in tumorigenic non-metastatic breast cancer derived MCF-7 cells.  相似文献   

11.
The mammalian Na+/H+ exchanger isoform 1 (NHE1) is a ubiquitously expressed pH-regulatory membrane protein that functions in the myocardium and other tissues. It is an important mediator of the myocardial damage that occurs after ischemia-reperfusion injury and is implicated in heart hypertrophy. Regulation of NHE1 has been proposed as a therapeutic target for cardioprotection. We therefore examined mechanisms of control of NHE1 in the myocardium. Several different amino acids have been implicated as a being critical to NHE1 regulation in a number of tissues including Ser703, Ser770, and Ser771. In the myocardium, NHE1 is activated in response to a variety of stimuli including activation by an ERK-dependent sustained intracellular acidosis. In this study, we determined whether Ser703 and p90rsk activity are critical in activation of NHE1 by sustained intracellular acidosis. In vitro phosphorylation of NHE1 C-terminal fusion proteins determined that ERK-dependent phosphorylation of the cytoplasmic region was not dependent on Ser703; however, phosphorylation by p90rsk required Ser703. A Ser703Ala mutation decreased basal NHE1 activity in CHO cells but not in cardiomyocytes. NHE1 with a Ser703Ala mutation was activated in response to sustained intracellular acidosis in CHO cells. In addition, sustained intracellular acidosis also activated the Ser703Ala mutant protein in isolated cardiomyocytes and phosphorylation levels were also increased by acidosis. The presence of a dominant-negative p90rsk kinase also did not prevent activation and phosphorylation of NHE1 by sustained intracellular acidosis in isolated cardiomyocytes. We conclude that Ser703 and p90rsk are not required for activation by sustained intracellular acidosis and that p90rsk phosphorylation of Ser703 is independent of this type of activation.  相似文献   

12.
Sodium-hydrogen exchanger (NHE), the principal sarcolemmal acid extruder in ventricular myocytes, is stimulated by a variety of autocrine/paracrine factors and contributes to myocardial injury and arrhythmias during ischemia-reperfusion. Platelet-activating factor (PAF; 1-o-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is a potent proinflammatory phospholipid that is released in the heart in response to oxidative stress and promotes myocardial ischemia-reperfusion injury. PAF stimulates NHE in neutrophils and platelets, but its effect on cardiac NHE (NHE1) is unresolved. We utilized quiescent guinea pig ventricular myocytes bathed in bicarbonate-free solutions and epifluorescence to measure intracellular pH (pH(i)). Methylcarbamyl-PAF (C-PAF; 200 nM), a metabolically stable analog of PAF, significantly increased steady-state pH(i). The alkalosis was completely blocked by the NHE inhibitor, cariporide, and by sodium-free bathing solutions, indicating it was mediated by NHE activation. C-PAF also significantly increased the rate of acid extrusion induced by intracellular acidosis. The ability of C-PAF to increase steady-state pH(i) was completely blocked by the PAF receptor inhibitor WEB 2086 (10 μM), indicating the PAF receptor is required. A MEK inhibitor (PD98059; 25 μM) also completely blocked the rise in pH(i) induced by C-PAF, suggesting participation of the MAP kinase signaling cascade downstream of the PAF receptor. Inhibition of PKC with GF109203X (1 μM) and chelerythrine (2 μM) did not significantly affect the alkalosis induced by C-PAF. In summary, these results provide evidence that PAF stimulates cardiac NHE1, the effect occurs via the PAF receptor, and signal relay requires participation of the MAP kinase cascade.  相似文献   

13.
In the myocardium, the Na(+)/H(+) exchanger isoform-1 (NHE1) activity is detrimental during ischemia-reperfusion (I/R) injury, causing increased intracellular Na(+) (Na(i)(+)) accumulation that results in subsequent Ca(2+) overload. We tested the hypothesis that increased expression of NHE1 would accentuate myocardial I/R injury. Transgenic mice were created that increased the Na(+)/H(+) exchanger activity specifically in the myocardium. Intact hearts from transgenic mice at 10-15 wk of age showed no change in heart performance, resting intracellular pH (pH(i)) or phosphocreatine/ATP levels. Transgenic and wild-type (WT) hearts were subjected to 20 min of ischemia followed by 40 min of reperfusion. Surprisingly, the percent recovery of rate-pressure product (%RPP) after I/R improved in NHE1-overexpressing hearts (64 +/- 5% vs. 41 +/- 5% in WT; P < 0.05). In addition, NMR spectroscopy revealed that NHE1 overexpressor hearts contained higher ATP during early reperfusion (levels P < 0.05), and there was no difference in Na(+) accumulation during I/R between transgenic and WT hearts. HOE642 (cariporide), an NHE1 inhibitor, equivalently protected both WT and NHE1-overexpressing hearts. When hearts were perfused with bicarbonate-free HEPES buffer to eliminate the contribution of HCO(3)(-) transporters to pH(i) regulation, there was no difference in contractile recovery after reperfusion between controls and transgenics, but NHE1-overexpressing hearts showed a greater decrease in ATP during ischemia. These results indicate that the basal activity of NHE1 is not rate limiting in causing damage during I/R, therefore, increasing the level of NHE1 does not enhance injury and can have some small protective effects.  相似文献   

14.
The duration of intracellular signalling is associated with distinct biological responses, but how cells interpret differences in signal duration are unknown. We show that the immediate early gene product c-Fos functions as a sensor for ERK1 (extracellular-signal-regulated kinase 1) and ERK2 signal duration. When ERK activation is transient, its activity declines before the c-Fos protein accumulates, and under these conditions c-Fos is unstable. However, when ERK signalling is sustained, c-Fos is phosphorylated by still-active ERK and RSK (90K-ribosomal S6 kinase). Carboxy-terminal phosphorylation stabilizes c-Fos and primes additional phosphorylation by exposing a docking site for ERK, termed the FXFP (DEF) domain. Mutating the DEF domain disrupts the c-Fos sensor and c-Fos-mediated signalling. Other immediate early gene products that control cell cycle progression, neuronal differentiation and circadium rhythms also contain putative DEF domains, indicating that multiple sensors exist for sustained ERK signalling. Together, our data identify a general mechanism by which cells can interpret differences in ERK activation kinetics.  相似文献   

15.
BACKGROUND: The rsk1 gene encodes the 90 kDa ribosomal S6 kinase 1 (RSK1) protein, which contains two kinase domains. RSK1, which is involved in regulating cell survival and proliferation, lies at the end of the signaling cascade mediated by the extracellular signal-regulated kinase (ERK) subfamily of mitogen-activated protein (MAP) kinases. ERK activation and subsequent phosphorylation of the RSK1 carboxy-terminal catalytic loop stimulates phosphotransferase activity in the RSK1 amino-terminal kinase domain. When activated, RSK1 phosphorylates both nuclear and cytoplasmic substrates through this amino-terminal catalytic domain. It is thought that stimulation of the ERK/MAP kinase pathway is sufficient for RSK1 activation, but how ERK phosphorylation activates the RSK1 amino-terminal kinase domain is not known. RESULTS: The individual isolated RSK1 kinase domains were found to be under regulatory control. In vitro kinase assays established that ERK phosphorylates RSK1 within the carboxy-terminal kinase domain, and the phosphoinositide-dependent kinase 1 (PDK1) phosphorylates RSK1 within the amino-terminal kinase domain. In transiently transfected HEK 293E cells, PDK1 alone stimulated phosphotransferase activity of an isolated RSK1 amino-terminal kinase domain. Nevertheless, activation of full-length RSK1 in the absence of serum required activation by both PDK1 and ERK. CONCLUSIONS: RSK1 is phosphorylated by PDK1 in the amino-terminal kinase-activation loop, and by ERK in the carboxy-terminal kinase-activation loop. Activation of phosphotransferase activity of full-length RSK1 in vivo requires both PDK1 and ERK. RSK1 activation is therefore regulated by both the mitogen-stimulated ERK/MAP kinase pathway and a PDK1-dependent pathway.  相似文献   

16.
17.
The Na+/H+ exchanger isoforms NHE1, NHE2, and NHE3 were all found to be expressed in Ehrlich ascites tumor cells, as evaluated by Western blotting and confocal microscopy. Under unstimulated conditions, NHE1 was found predominantly in the plasma membrane, NHE3 intracellularly, and NHE2 in both compartments. Osmotic cell shrinkage elicited a rapid intracellular alkalinization, the sensitivity of which to EIPA (IC50 0.19 microM) and HOE 642 (IC50 0.85 microM) indicated that it predominantly reflected activation of NHE1. NHE activation by osmotic shrinkage was inhibited by the protein kinase C inhibitors chelerythrine (IC50 12.5 microM), G? 6850 (5 microM), and G? 6976 (1 microM), and by the p38 MAPK inhibitor SB 203580 (10 microM). Furthermore, hypertonic cell shrinkage elicited a biphasic increase in p38 MAPK phosphorylation, with the first significant increase detectable 2 minutes after the hypertonic challenge. Neither myosin light chain kinase-specific concentrations of ML-7 (IC50 40 microM) nor ERK1/2 inhibition by PD 98059 (50 microM) had any effect on NHE activation. Under isotonic conditions, the serine/threonine protein phosphatase inhibitor calyculin A elicited an EIPA- and HOE 642-inhibitable intracellular alkalinization, indicating NHE1 activation. Similarly, shrinkage-induced NHE activation was potentiated by calyculin A. The calyculin A-induced alkalinization was not associated with an increase in the free, intracellular calcium concentration, but was abolished by chelerythrine. It is concluded that shrinkage-induced NHE activation is dependent on PKC and p38 MAPK, but not on MLCK or ERK1/2. NHE activity under both iso- and hypertonic conditions is increased by inhibition of serine/threonine phosphatases, and this effect appears to be PKC-dependent.  相似文献   

18.
Na(+)/H(+) exchange (NHE) represents a major mechanism for intracellular pH regulation, particularly in the ischemic myocardium. NHE has also been shown to be important in the regulation of cell proliferation and growth. We examined whether inhibition of NHE results in an attenuation of early postinfarction myocyte remodeling responses in the rat. Male Sprague-Dawley rats were randomized to receive either a control diet or an identical diet supplemented with the NHE inhibitor cariporide. After 1 wk, animals were anesthetized, subjected to ligation of the left main coronary artery, and maintained for an additional week, after which time they were anesthetized and intraventricular pressures were obtained. Hearts were removed, and myocytes were isolated to obtain cell dimensions and determine the response to isoproterenol. Body, heart, and lung weights were obtained. Coronary artery ligation in control animals resulted in a significant elevation in left ventricular end-diastolic pressure, as well as increased heart weight- and lung weight-to-body weight ratios, both of which were abrogated by cariporide. Cell length and area significantly increased by 14 and 19.2%, respectively, whereas cell width increased by 4.1% (P > 0.05). These cells exhibited a significant hyporesponsiveness to the positive inotropic responses to isoproterenol at the lower drug concentrations (3 and 10 nM). A <1% dimensional change occurred in myocytes from cariporide-fed animals, and the hyporesponse to isoproterenol was reversed. Cariporide had no effect on infarct size or blood pressure. These studies suggest that the early adaptive hypertrophic response of surviving myocytes is dependent on NHE activity. As such, it is attractive to suggest that NHE inhibition could be an effective therapeutic strategy for prevention of postinfarction remodeling, independent of infarct size or afterload reduction.  相似文献   

19.
Bicarbonate is important for pHi control in cardiac cells. It is a major part of the intracellular buffer apparatus, it is a substrate for sarcolemmal acid-equivalent transporters that regulate intracellular pH, and it contributes to the pHo sensitivity of steady-state pHi, a phenomenon that may form part of a whole-body response to acid/base disturbances. Both bicarbonate and H+/OH- transporters participate in the sarcolemmal regulation of pHi, namely Na(+)-HCO3-cotransport (NBC), Cl(-)-HCO3- exchange (i.e., anion exchange, AE), Na(+)-H+ exchange (NHE), and Cl(-)-OH- exchange (CHE). These transporters are coupled functionally through changes of pHi, while pHi is linked to [Ca2+]i through secondary changes in [Na+] mediated by NBC and NHE. Via such coupling, decreases of pHo and pHi can ultimately lead to an elevation of [Ca2+]i, thereby influencing cardiac contractility and electrical rhythm. Bicarbonate is also an essential component of an intracellular carbonic buffer shuttle that diffusively couples cytoplasmic pH to the sarcolemma and minimises the formation of intracellular pH microdomains. The importance of bicarbonate is closely linked to the activity of the enzyme carbonic anhydrase (CA). Without CA activity, intracellular bicarbonate-dependent buffering, membrane bicarbonate transport, and the carbonic shuttle are severely compromised. There is a functional partnership between CA and HCO3- transport. Based on our observations on intracellular acid mobility, we propose that one physiological role for CA is to act as a pH-coupling protein, linking bulk pH to the allosteric H+ control sites on sarcolemmal acid/base transporters.  相似文献   

20.
Na(+)/H(+) exchanger isoform-1 (NHE1), the ubiquitous form of the Na(+)/H(+) exchanger, has increased activity in hypertensive patients and in animal models of hypertension. Furthermore, NHE1 is activated in cells stimulated with growth factors. We showed previously that activation of the exchanger is dependent on phosphorylation of serine 703 (Ser(P)(703)) by p90 ribosomal S6 kinase (RSK). Because the NHE1 sequence at Ser(P)(703) (RIGSDP) is similar to a consensus sequence (RSXSXP) specific for 14-3-3 ligands, we evaluated whether serum stimulated 14-3-3 binding to NHE1. Five different GST-NHE1 fusion proteins spanning amino acids 515-815 were phosphorylated by RSK and used as ligands in a far Western analysis; only those containing Ser(P)(703) exhibited high affinity 14-3-3 binding. In PS127A cells (NHE1-overexpressing Chinese hamster fibroblasts) stimulated with 20% serum, NHE1 co-precipitation with GST-14-3-3 fusion protein increased at 5 min (5.2 +/- 0.4-fold versus control; p < 0.01) and persisted at 40 min (3.9 +/- 0.3-fold; p < 0.01). We confirmed that binding occurs at the RIGSDP motif using PS120 (NHE1 null) cells transfected with S703A-NHE1 or P705A-NHE1 (based on data indicating that 14-3-3 binding requires phosphoserine and +2 proline). Serum failed to stimulate association of 14-3-3 with these mutants. A GST-NHE1 fusion protein was phosphorylated by RSK and used as a ligand to assess the effect of 14-3-3 on protein phosphatase 1-mediated dephosphorylation of Ser(P)(703). GST-14-3-3 limited dephosphorylation (66% of initial state at 60 min) compared with GST alone (27% of initial state; p < 0.01). The protective effect of GST-14-3-3 was lost in the GST-NHE1 P705A mutant. Finally, the base-line rate of pH recovery in acid-loaded cells was equal in unstimulated cells expressing wild-type or P705A-NHE1. However, activation of NHE1 by serum was dramatically inhibited in cells expressing P705A-NHE1 compared with wild-type (0.13 +/- 0.02 versus 0.48 +/- 0.06 mmol of H(+)/min/liter, p < 0.01). These data suggest that 14-3-3 binding to NHE1 participates in serum-stimulated exchanger activation, a new function for 14-3-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号