首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Does aluminum inhibit pollen germination via extracellular calmodulin?   总被引:4,自引:0,他引:4  
The effect of aluminum (Al) on pollen germination and its mechanism of action were investigated. Pollen germination and pollen tube elongation were inhibited by Al at pH 4.5. This inhibitory effect was reversed by the addition of purified calmodulin (CaM), whereas neither the calcium binding-protein S-100 nor Al chelator citric acid at the same concentrations had any obvious effect on Al-inhibited pollen germination. The presence of either the membrane-impermeable CaM inhibitor anti-CaM antiserum or Ca2+ chelator EGTA completely suppressed the effect of exogenous CaM. These results indicate the involvement of extracellular calmodulin in the short-term effects of Al on pollen germination and pollen tube elongation.  相似文献   

2.
花柱和花粉胞外钙调素对花粉萌发和花粉管伸长的影响   总被引:6,自引:0,他引:6  
以烟草为材料,通过半体内实验,就花柱和花粉胞外钙调素对花粉萌发和花粉管伸长的影响进行了观察。发现用EGTA及钙调素抗血清处理柱头或花粉均可抑制花粉在柱头上的萌发;向花柱引导组织中显微注射纯化钙调素可促进花粉管束伸长,而注射钙调素抗血清可抑制花粉管束伸长;同时证实玉米花柱和花粉细胞壁中均存在钙调素及钙调素结合蛋白,而且花粉和花柱细胞壁中钙调素结合蛋白的种类有差异。结果表明存在于花粉和花柱细胞外的钙调素对花粉萌发和花粉管伸长均有促进作用。  相似文献   

3.
Ca2+-CaM signaling is involved in pollen tube development. However, the distribution and function of CaM and the downstream components of Ca2+-CaM signal in pollen tube development still need more exploration. Here we obtained the CaM–GFP fusion protein transgenic line of Nicotiana tobacum SRI, which allowed us to monitor CaM distribution pattern in vivo and provided a useful tool to observe CaM response to various exogenous stimulations and afforded solid evidences of the essential functions of CaM in pollen tube growth. CaM–GFP fusion gene was constructed under the control of Lat52-7 pollen-specific promoter and transformed into Nicotiana tobacum SRI. High level of CaM–GFP fluorescence was detected at the germinal pores and the tip-to-base gradient of fluorescence was observed in developing pollen tubes. The distribution of CaM at apical dome had close relationship with the pulsant growth mode of pollen tubes: when CaM aggregated at the apical dome, pollen tubes stepped into growth state; When CaM showed non-polarized distribution, pollen tubes stopped growing. In addition, after affording exogenous Ca2+, calmidazolium (antagonism of CaM) or Brefeldin A (an inhibitor of membrane trafficking), CaM turned to a uniform distribution at the apical dome and pollen tube growth was held back. Taken together, our results showed that CaM played a vital role in pollen tube elongation and growth rate, and the oscillation of tip-to-base gradient of CaM was required for the normal pulsant growth of pollen tube.  相似文献   

4.
The short-term effects of rare earth elements on pollen germination and tube growth were tested. Concentrations of 2.5 approximately 20 micro m lanthanum(La3+) or cerium (Ce3+)increased pollen germination and pollen tube growth, whereas concentrations higher than 40 micro m La3+ and Ce3+ inhibited this process. The most effective concentration of La3+ needed for promotion shifted from 10 to 40 micro m, depending on the Ca2+ concentration in the medium. Calmodulin (CaM) antagonist W7-agarose and anti-CaM antibody depressed La3+-promoted pollen germination and tube growth in a dose-dependent manner. La3+-CaM complexes (La3+-CaM) increased pollen germination and tube growth more than CaM or La3+ alone. Pertussis toxin (PTX) inhibited La3+-promoted pollen germination and tube growth. Cholera toxin (CTX) partially recovered the inhibition of the above La3+-promoted process by the anti-CaM antibody. Concentrations of 10-7 approximately 10-9 m La3+-CaM increased GTPase activity inside plasma membrane vesicles of the pollen tube, but apo-CaM or La3+ alone had no positive effects. The results suggest that apoplastic CaM may be involved in the promotion effects of lower concentrations of La3+ on pollen germination and tube growth, and the heterotrimeric G-protein on the plasma membrane may transduce La3+-activated CaM signalling. The present studies provide an apoplastic mechanism for short-term effects of rare earth elements at lower concentrations in the pollen system.  相似文献   

5.
钙调素对花粉萌发和花粉管生长的效应   总被引:1,自引:0,他引:1  
牛脑和玉米胚CaM能显著促进花粉萌发和花粉管生长(图1),而CaM抑制剂TFP、CPZ及另外两个专一性更强的抑制剂Compound48/80和W7均严重抑制甚至阻止花粉的萌发(图2,3)。用对CaM亲和性较低的W7同系物W5,在与W7同样浓度下,对花粉萌发和花粉管生长无明显影响。此外,W7对花粉萌发和花粉管生长的抑制效应可被外源CaM所消除(图4)。在花粉萌发过程中,其内源CaM含量显著上升,在花粉萌发率接近最大值时,花粉CaM含量达最高水平(图5)。上述结果表明CaM对花粉萌发和花粉管生长的调控起重要作用。  相似文献   

6.

Key message

This study indicated that Ca 2+ , ROS and actin filaments were involved with CaM in regulating pollen tube growth and providing a potential way for overcoming pear self-incompatibility.

Abstract

Calmodulin (CaM) has been associated with various physiological and developmental processes in plants, including pollen tube growth. In this study, we showed that CaM regulated the pear pollen tube growth in a concentration-dependent bi-phasic response. Using a whole-cell patch-clamp configuration, we showed that apoplastic CaM induced a hyperpolarization-activated calcium ion (Ca2+) current, and anti-CaM largely inhibited this type of Ca2+ current. Moreover, upon anti-CaM treatment, the reactive oxygen species (ROS) concentration decreased and actin filaments depolymerized in the pollen tube. Interestingly, CaM could partially rescue the inhibition of self-incompatible pear pollen tube growth. This phenotype could be mediated by CaM-enhanced pollen plasma membrane Ca2+ current, tip-localized ROS concentration and stabilized actin filaments. These data indicated that Ca2+, ROS and actin filaments were involved with CaM in regulating pollen tube growth and provide a potential way for overcoming pear self-incompatibility.  相似文献   

7.
The effects of anti-calmodulin (CaM) serum, CaM antagonist W7-agaroseand exogenous pure CaM on cell wall regeneration of protoplastsand cell division for Angelica dahurica and other plants werestudied. Anti-CaM serum inhibited cell wall regeneration ofprotoplasts and the first cell division in dose-dependent manner,while the same amount of preimmune serum had a much less inhibitoryeffect than anti-CaM serum. The first cell division was alsoinhibited by CaM antagonist W7-agarose. The addition of exogenouspure CaM enhanced cell wall regeneration of protoplasts andthe cell division for several species of plants, while the sameamount of bovine serum albumin had no obvious effect. CaM wasdetected in the normal culture medium by means of enzyme-linkedimmunosorbent assay. Its content increased with the culturetime. The results suggest that extracellular CaM plays an importantrole in promoting cell wall regeneration of protoplasts andcell division. The possible mechanisms by which extracellularCaM achieves its effects are discussed. (Received February 24, 1994; Accepted November 14, 1994)  相似文献   

8.
Summary The distribution of membrane calcium and calmodulin (CaM) has been fluorimetrically determined in the anther of Gasteria verrucosa with particular attention to sporogenous cells, meiocytes, microspores, pollen and stages of pollen germination and tube growth using chlortetracycline (CTC) and fluphenazine (FPZ). CTC and FPZ fluorescence in sporogenous cells is relatively higher than in the adjacent tapetal cells, indicating higher membrane calcium and CaM levels in the former cell type. However, during meiosis there is a significant increase in membrane calcium and CaM levels in the meiocytes compared to that found in the young microspores. CTC and FPZ fluorescence in the sporogenous cells, meiocytes and young microspores is punctate and slightly diffused throughout the cytoplasm. In the microspores of the tetrad and the young released microspores CTC fluorescence (CTCf) is polarized and mainly associated with the area opposite the future colporal region. FPZ fluorescence (FPZf) becomes polarized in the young microspore. Subsequently, there is a shift in the polarity, and most of the CTCf and FPZf in the old microspores and pollen is regionalized towards the colporal region, and the fluorescence is more diffused, indicating a change in the organellar-bound calcium and CaM. This final graded distribution of CTCf is maintained during pollen germination in that the growing pollen tubes invariably show a tip to base membrane-calcium gradient. In the tapetal cells a high level of Ca2+ is present during the microspore stage. During the preparation for anthesis the endothecium differentiation is marked by the presence of Ca2+. Post-treatment of labelled cells with a Ca2+ chelator such as EGTA resulted in a substantial decrease in diffuse and punctate CTCf. Alternatively, treatment of cells with non-ionic detergent Nonidet P-40 resulted in the total elimination of CTCf, suggesting that the observed CTC fluorescence was due to membrane-associated calcium. The cytological specification of CTC as a probe for calcium is discussed. From cytofluorometric measurements and atomic absorption, it became clear that the level of Ca2+ in the anther is high during the sporogenous and meiotic phases. An increase in CTCf and FPZf occurred after microspore mitosis. An interaction of Ca2+ transport from tapetum to the young pollen is postulated. These findings suggest that the level of Ca2+ in the anther during meiosis is generally relatively higher than at the sporogenous or young microspore stage. These findings are discussed in the light of available information on the role of Ca2+ and CaM-mediated processes such as cell division, callose synthesis and pollen-tube tip growth.  相似文献   

9.
 We examined the influence of pollen competitive environment on pollen performance in Mirabilis jalapa. We used the number of pollen grains and the number of pollen tubes per pistil as measures of pollen competition. Pollen germination, pollen tube penetration into the style, and pollen tube growth rates were used as measures of pollen performance. All three measures of pollen performance were affected by the competitive environment. Pollen germination was greatest at intermediate pollen load sizes. The percentage of germinated pollen grains that penetrated the stigma and grew into the style decreased with pollen load size. Pollen tube growth rate in the style was greater and more variable with larger numbers of pollen tubes in the style. Controlling for the degree of selection at the stigma indicated that pollen-pollen or pollen-style interactions were the likely causes of increased growth rates. Received: 28 October 1996 / Revision accepted: 24 January 1997  相似文献   

10.
Previous studies have shown that UV-B could affect pollen germination and tube growth. However, the mechanism of response of pollen to UV-B has not been clear. The purpose of this study was to investigate the role of hydrogen peroxide (H2O2) in the UV-B-induced reduction of in vitro pollen germination and tube growth of Paeonia suffruticosa Andr. and Paulownia tomentosa Steud. Exposure of pollen of the two species to 0.4 and 0.8 W m−2 UV-B radiation for 3 h resulted in not only the reduction of pollen germination and tube growth, but also the H2O2 production in pollen grain and tube. Also, exogenous H2O2 inhibited pollen germination and tube growth of the two species in a dose-dependence manner. Two scavengers of H2O2, ascorbic acid and catalase, largely prevented not only the H2O2 generation, but also the reduction of pollen germination and tube growth induced by UV-B radiation in the two species. These results indicate that H2O2 is involved in the UV-B-inhibited pollen germination and tube growth.  相似文献   

11.
CaM ubiquitously presents inside eukaryotic cells. CaM抯 gene expression and its subcellular localization are regulated by light, osmotic stress, pathogens, plant hormones, etc.[1]. Intracellular CaM of plant displays important functions in pathogenesis and wounding reaction[2] and hypersensitive response[3]. CaM has been found extracellular spaces in many plant species, such as soluble extracts of oat coleoptile cell walls[4], the wheat coleoptile cell walls[5], maize root tips cell walls[6…  相似文献   

12.
Jingmei Zhang  Jiaxi Liu  Zukeng Chen  Jinxing Lin   《Flora》2007,202(7):581-588
The calcium inhibitors A23187, EGTA and La3+ inhibit pollen grain germination and growth of pollen tubes of Lilium davidii var. unicolor at different concentrations. Treatment with 10−4 or 10−5 M ionophores A23187 reduced germination rate and resulted in distortion of pollen tube. Addition of 2 or 10 mM of the chelator EGTA disturbed the direction of pollen tube growth and extended the diameter of pollen tube as observed by light and confocal microscopy. The Ca2+-channel blocker lanthanum chloride (La3+) restrained germination or markedly caused transformation of pollen tube. Furthermore, all treatments led to disappearance of any calcium gradient. Calcium distribution in pollen grain and pollen tube was altered as shown by confocal microscopy for each treatment. This indicates that the inhibitors influence pollen development by affecting the calcium gradient which may play a critical role in germination and tube growth. Fourier transform infrared (FTIR) spectra indicated slight increases in contents of amide I and a substantial decrease in the content of aliphatic esters and saturated esters in treated pollen tubes compared with normal pollen tubes. The FTIR analysis confirmed that EGTA and La3+ weakened the accumulation of ester in pollen tubes, which may be associated with an increased content of amide I.  相似文献   

13.
Summary The involvement of exogenous calcium ions in the regulation of pollen tube formation has been investigated in Haemanthus albiflos L. and Oenothera biennis L. by following the changes that occur in pollen germination, tube growth, and 45+Ca2+ uptake and distribution upon application of Verapamil (an inhibitor of calcium channels), lanthanum (a Ca2+ substitute), and ruthenium red (believed to raise the intracellular calcium level). It was found that exogenous Ca2+ takes part in the formation of the calcium gradient present in germinating pollen grains and growing pollen tubes. Ca2+ ions enter the cells through calcium channels. Raising or reducing 45Ca2+ uptake causes disturbances in the germination of the pollen grains and in the growth of the pollen tubes.  相似文献   

14.
蚕豆下表皮细胞外钙调素的存在及其对气孔运动的调节   总被引:2,自引:0,他引:2  
细胞外钙调素可能作为多肽第一信使,调节细胞增殖,花粉萌发,特定基因表达等生理过程,气孔能灵敏地对外界刺激作出反应,快速开闭,本文用免疫电镜和免疫荧光显微镜技术证明保卫细胞及其它表皮细胞胞外都存在钙调素;外源纯化钙调素能促进气孔关闭,抑制气孔开放,最适浓度为10^-8mol/L;不能透过质膜的大分子钙调素拮抗剂W—-agarose和钙调素抗血清都能抑制气孔关闭,促进开放,说明保卫细胞的内源胞外钙调素确实能促进气孔关闭,抑制开放。而且只能在细胞外起作用,推测在自然情况下,保卫细胞内源胞外钙调素可能作为胞外第一信使和其它信号分子一起调节气孔的开关运动,而且可能在环境刺激与细胞响应之间起重要作用。  相似文献   

15.
W. Herth 《Protoplasma》1978,96(3-4):275-282
Summary The effects of the cationophore A 23187 on growing pollen tubes ofLilium longiflorum and on pollen germination were testedin vitro, and measured light microscopically. The ionophore is a very potent inhibitor of pollen tube growth: ionophore contentrations down to 10–7 M stop tip growth. Cytoplasmic streaming is less sensitive: Only with added external Ca2+ and higher concentrations of the ionophore the cytoplasmic streaming is stopped. Pollen germination is less sensitive to ionophore than pollen tube growth at later stages. The ionophore inhibition is partially reversible in a medium containing no added external Ca2+, but is not reversible in a Ca2+-enriched medium. EDTA addition to the medium prevents pollen germination and growth totally. It is hypothesized that the pollen ofLilium longiflorum needs Ca2+ to sustain oriented exocytosis at the pollen tube tip. The ionophore A 23187 seems to interfere with the electrical pulse/Ca2+-orientation mechanism of exocytosis by equilibration of the Ca2+-gradient.  相似文献   

16.
The purpose of the study was to determine inhibitory effect of calcium chelator; ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) on flowering of a short-day (SD) plant Pharbitis nil. It was found that 20 mM solution of EGTA applied on cotyledons of 5-d-old P. nil seedlings four hours before the start of 16-h-long induction night decreased the flowering response by 55% compared to the control plants not treated with this Ca2+ chelator. It also caused a very significant decrease of photosynthesis rate, transpiration rate and stomatal conductance both in light and darkness conditions. The results of this study confirm earlier hypothesis suggesting the effect of Ca2+ and its modulators on P. nil flowering is due to their influence on the stomata.  相似文献   

17.
Summary. An acid phosphatase (acPAse) activity was released during germination and tube growth of pollen of Lilium longiflorum Thunb. By inhibiting components of the secretory pathway, the export of the acPase activity was affected and tube growth stopped. Brefeldin A (1 μM) and cytochalasin D (1 μM), which block the production and transport of secretory vesicles, respectively, inhibited the acPase secretion. The Ca2+ channel blocker gadolinium (100 μM Gd3+) also inhibited acPase secretion and tube growth, whereas 3 mM caffeine, another Ca2+ uptake inhibitor, stimulated the acPase release, while tube growth was inhibited. The Yariv reagent (β-D-glucosyl)3 Yariv phenylglycoside stopped tube growth by binding to arabinogalactan proteins of the tube tip cell wall but did not affect acPase secretion. A strong correlation between tube growth and acPase release was detected. The secreted acPase activity had a pH optimum at pH 5.5, a K M of 0.4 mM for p-nitrophenyl phosphate, and was inhibited by zinc, molybdate, phosphate, and fluoride ions, but not by tartrate. In electrophoresis gels the main acPase activity was detected at 32 kDa. The conspicuous correlation between activity of the secretory pathway and acPase secretion during tube elongation strongly indicates an important role of the acPase during pollen tube growth and the secreted acPase activity may serve as a useful marker enzyme assay for secretory activity in pollen tubes Received July 25, 2001 Accepted January 15, 2002  相似文献   

18.
An interaction between aluminium (Al) and calcium (Ca) may bea cause of Al toxicity in plants. The pollen tube is a suitablesystem to test the interaction between Al and Ca since Ca ionsplay a pivotal role in pollen germination and tube growth. Weinvestigated how Al and other known blockers of Ca2+-permeablechannels (trivalent cations, ruthenium red, verapamil and nifedipine)influence pollen of an Australian native species Geraldton waxflower(Chamelaucium uncinatum). Pollen germination was inhibited bymicromolar concentrations of trivalent cations (La3+>Al3+>Gd3+)and ruthenium red, but it was relatively insensitive to a micromolarconcentration of verapamil. Exposure of the growing pollen tubesto micromolar concentrations of Al3+and La3+, and a millimolarconcentration of Ca2+chelator ethyleneglycol-bis(ß-aminoethylether)-N,N'-tetraacetic acid (EGTA) led to rapid tip bursting.In contrast, exposure to Gd3+, nifedipine, ruthenium red, verapamiland the organic trivalent cation tris (ethylenediamine)cobalt(TEC3+) caused only inhibition of pollen tube growth. The Al3+-relatedpollen tube bursting was reduced significantly by increasingeither solution pH from 4.5 to 6 or activity of Ca2+from 0.25to 5 m M. In contrast, La3+-related pollen tube bursting wasinsensitive to changes in Ca2+activity. The results are discussedin terms of Al interactions with cell wall Ca2+and the plasmamembrane Ca2+-permeable channels. Copyright 1999 Annals of BotanyCompany Aluminium toxicity, Ca2+-channel blockers, cell wall, Chamelaucium uncinatum, pollen germination, pollen tube growth.  相似文献   

19.
Under humid conditions, both bi- and trinucleate pollen species incorporate, on the average, very low amounts of leucine, e.g., 0.4 pmol min-1mg pollen-1. During germination in vitro, however, the two types of pollens greatly differ in their capacity for protein synthesis.Binucleate pollen species such as Typha, which are characterized by slow respiration in humid air and prolonged lag periods during germination in vitro, contain large amounts of monoribosomes at dehiscence. Polyribosomes are formed soon after the pollen is wetted in the germination medium, and a considerable incorporation of leucine is initiated after 10–15 min. More rapidly respiring, binucleate pollen showing a short lag period, such as Tradescantia, may already contain many polysomes at dehiscence and incorporate leucine within 2 min of germination. However, rapidly respiring, trinucleate Compositae pollen contains very limited amounts of ribosomal material and never attains any substantial level of incorporation. Cycloheximide completely inhibits both protein synthesis and tube emergence and growth in the slowly respiring, binucleate pollen species. The more rapidly respiring types are less dependent on protein synthesis, while germination of the phylogenetically advanced, trinucleate Compositae pollen proceeds completely independently. It is concluded that the level of phylogenetic advancement of the male gametophyte is characterized by its overall state of metabolic development at dehiscence rather than by the number of its generative cells.Abbreviations BSA bovine serum albumin - CHI cycloheximide - EGTA ethyleneglycol-bis(-aminoethyl ether) N,N-tetraacetic acid - RH relative humidity - TCA trichloroacetic acid  相似文献   

20.
Video images of the distributional pattern of membrane-associatedcalcium (Ca2+) and calmodulin (CaM) have been documented andanalysed during pollen hydration, germination and tip growthin Nicotiana tabacum. Digitization of fluorescence microscopeimages of chlorotetracycline (CTC) and fluphenazine (FPZ)-fluorescenceemissions reveal that there is a maximum concentration of membrane-associatedCa2+ and also CaM in the vicinity of germination apertures ofhydrated pollen. With the onset of germination relatively higheramounts of Ca2+ and CaM were found to regionalize towards theaperture through which the pollen tube would emerge Both shortand long growing pollen tubes manifest tip-to-base Ca2+ andCaM gradients which are disturbed in non-growing tubes. Tubegrowth and the Ca2+-gradient were significantly affected byvanadate and verapamil suggesting that both a vanadate-sensitiveCa2+-transport system and verapamil-sensitive Ca2+ channelsare involved in maintaining Ca2+ homeostasis during pollen germinationand tube growth. The possible interactions of Ca2+ and CaM withdifferent cytoskeletal proteins modulating organelle movementare also briefly discussed. Image analysis, calcium, calmodulin, Nicotiana tabacum L., pollen germination, pollen tube, tip growth, Ca2+-channels, Ca2+ transport ATPase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号