共查询到20条相似文献,搜索用时 15 毫秒
1.
A 22 m long. 20 liter tubular loop fermentor (TLF) has been tested for oxygen transfer characteristics and as a reactor for mycelial growth. Model calculations show that the flow pressure drop has an important influence on the axial oxygen profiles. A design model that accounts for this influence is presented. Using the model, KL a values are calculated from the results of sulfite oxidation experiments. These are correlated with power consumption and aeration rates. The KL a dependence on aeration rate was found to be less than found with tank reactors. The growth kinetics of three metabolite-producing mycelial organisms in the TLF are presented: a Streptomyces, a Fusarium, and a Acrophialophora. In order to determine the influence of reactor type on the growth and product formation, these cultures have been grown in tanks and shake flasks. The antibiotic, product spectrum of Streptomyces is compared on the basis of inhibition tests and it is shown that the distribution of products is reactor dependent. The Fusarium culture produced a previously unknown metabolite, whose concentration in the loop fermentor was four times higher than in a shake flask. The Acrophialophora culture grew twice as fast in the loop fermentor, but produced essentially none of the specific product. Power Consumptions of up to 8 kW/m3 in the tubular fermentor did not appear to harm the mycelia. 相似文献
2.
H. Ziegler D. Meister I. J. Dunn H. W. Blanch T. W. F. Russell 《Biotechnology and bioengineering》1977,19(4):507-525
Oxygen transfer measurements using a dynamic method and evaluated with an appropriate mathematical model have been made on a tubular loop bioreactor. Correlations of the type used in tank systems are used to describe the influence of power and aeration rate on the mass transfer coefficient. Yeast cultures grown on hydrocarbon and glucose substrates show growth characteristics similar to conventional tank results. Model considerations for large-scale tubular fermentors allow for the prediction of the steady-state oxygen profiles and maximum reactor length. Combination with two-phase flow and oxygen transfer correlations yields a design procedure for commercial scale tubular loop fermentors. 相似文献
3.
C. H. Lin B. S. Fang C. S. Wu H. Y. Fang T. F. Kuo C. Y. Hu 《Biotechnology and bioengineering》1976,18(11):1557-1572
Tower cycling fermentors for the production of single-cell protein from volatile substrates were studied. The mass transfer, mixing and circulation patterns, and residence time distribution (RTD) curves were investigated in these vessels. This study suggests that the tower cycling fermentors for volatile substrates fermentation may improve product yields and at the same time reduce the power consumption, thereby resulting in a significant increase in operating cost savings and capital profits. The results of this research further indicate a future potential for commercial scale tower cycling fermentors. 相似文献
4.
Summary The hydrodynamics and mass transfer behaviour of an airlift fermentor with an external loop (height 10m) has been investigated by measuring gas and liquid velocities, gas hold-up, liquid mixing and oxygen transfer coefficients. Liquid phase properties, i.e., ionic strength, viscosity and surface tension have been varied by altering the fermentation media. Results are compared with those from bubble column experiments performed in the same unit. It is shown, that more uniform two-phase flow in the airlift leads to advantages in scale-up and operation.Nomenclature a
Specific interfacial area per volume of dispersion (m2/m3)
- c
Local concentration of tracer (kmol/m3)
- c
Concentration of tracer at infinite time (kmol/m3)
- CL
Concentration of oxygen in the liquid bulk (kmol/m3)
- CL
*
Concentration of oxygen in the interface (kmol/m3)
- Dax
Axial dispersion coefficient (cm2/s)
- I
Ionic strength (kmol/m3)
- i
Inhomogeneity [defined in Eq. (2)]
-
Rate of oxygen transfer (kmol/s)
- tc
Circulation time (s)
- tM
Mixing time (s)
- VR
Volume of gas-liquid dispersion (m3)
- VSG
Superficial gas velocity in up-flow column (m/s)
Greek letter symbols L
Oxygen transfer coefficient (m/s)
-
Dynamic viscosity (m Pa s)
-
Surface tension (m N/m)
Presented at the First European Congress on Biotechnology, Interlaken, September 25–29, 1978 相似文献
5.
W. A. M. Bakker M. den Hertog J. Tramper C. D. de Gooijer 《Bioprocess and biosystems engineering》1995,12(4):167-172
The Multiple Air-lift Loop reactor (MAL) is a new type of bioreactor, in which a series of airlifts with internal loops is incorporated into one vessel. As such, the MAL is an approximation of an aerated plug-flow fermenter. Gas/liquid oxygen transfer was studied as a function of the gas flow rate in a MAL. The second MAL-compartment in the series was investigated in particular, and a Rectangular Air-lift Loop reactor (RAL) was used as a reference. Both a dynamic and a steady-state method were used for the determination of the overall volumetric oxygen-transfer coefficient. Both methods gave the same results. The oxygen transfer coefficient in the second MAL-compartment was low compared to that of conventional internal-loop reactors. Wall effects probably caused bubble coalescence and a reduction in the oxygen transfer. For the RAL it was found that oxygen transfer was comparable to that in a bubble column. 相似文献
6.
Moo-Young M Halard B Allen DG Burrell R Kawase Y 《Biotechnology and bioengineering》1987,30(6):746-753
Oxygen transfer rates and gas holdups were measured in mycelial fermentation broths of Chaetomium cellulolyticum and Neurospora sitophila, each cultured in a 1300-L pilot-plant-scale airlift fermentor. These cultures exhibited highly non-Newtonian flow behavior coupled with a substantial decrease in oxygen transfer rates. The volumetric mass transfer coefficients in these cultures were found to be 65-70% lower than those in water. The data were compared with the available correlations obtained for simulated fermentation broths. In general, the data for C. cellulolyticum are in satisfactory agreement with the correlations for the model media but the data for N. sitophila are higher than that predicted by the correlations. Model media based correlations are found to be applicable to the fermentation processes if the culture medium does not possess a high yield stress. 相似文献
7.
Bioreactor headspace pressurization represents an excellent means of enhancing oxygen mass transfer to a culture. This method is particularly effective in situations where stirring or vigorous aeration is difficult. Because it in itself introduces no undesirable hydrodynamic force, the proposed method is also attractive for cells susceptible to agitation and sparging. Experiments were first conducted in an ideal fermentor by sparging air into a sulfite solution free from extraneous microbial effects. An increased oxygen mass transfer rate resulting from pressurization led to a superior cell growth rate and a higher maximum cell density in both of the microbial systems studied: a bacterial (Escherichia coli) culture up to 2.72 bar and a fragile algal (Ochromonas malhamensis) culture with pressure programming. Applying pressurization increased the maximum dry cell weight from 1.47 g/L to 1.77 g/L in the E. coli culture and increased the maximum viable cell density from 4 x 10(7) cells/mL to 10(8) cells/mL in the algal culture. An additional advantage is that formation of undesirable products under oxygen limitation, e.g., acetic acid in the E. coli culture, can be suppressed. A significant (over 250%) improvement in the oxygen transfer rate can be achieved with existing fermentors with little modification as they are already designed to withstand reasonable pressure from autoclaving. This method is simple, clean, inexpensive, and easily implemented, and it can be applied alongside other existing methods of oxygen mass transfer enhancement. 相似文献
8.
This article deals with the modeling of the oxygen transfer in an industrial airlift fermentor used for lactic yeast production on whey substrates. The purpose of this study was to improve the understanding of the interactions among the various parameters that govern the oxygen transfer phenomena in this type of fermentor. The reliability of the proposed model is demonstrated. The results of the investigations have been put into practice on the industrial scale and have contributed to monitor better the fermentation process. The model was also used to develop new ways of industrial fermentor design. 相似文献
9.
Optimization of L-malic acid production by Aspergillus flavus in a stirred fermentor 总被引:1,自引:0,他引:1
Battat E Peleg Y Bercovitz A Rokem JS Goldberg I 《Biotechnology and bioengineering》1991,37(11):1108-1116
Effects of various nutritional and environmental factors on the accumulation of organic acids (mainly L-malic acid) by the filamentous fungus Aspergillus flavus were studied in a 16-L stirred fermentor. Improvement of the molar yield (moles acid produced per moles glucose consumed) of L-malic acid was obtained mainly by increasing the agitation rate (to 350 rpm) and the Fe(z+) ion concentration (to 12 mg/L) and by lowering the nitrogen (to 271 mg/L) and phosphate concentrations (to 1.5 mM) in the medium. These changes resulted in molar yields for L-malic acid and total C(4) acids (L-malic, succinic, and fumaric acids) of 128 and 155%, respectively. The high molar yields obtained (above 100%) are additional evidence for the operation of part of the reductive branch of the tricarboxylic acid cycle in L-malic acid accumulation by A. flavus. The fermentation conditions developed using the above mentioned factors and 9% CaCO(3) in the medium resulted in a high concentration (113 g/L L-malic acid from 120 g/L glucose utilized) and a high overall productivity (0.59 g/L h) of L-malic acid. These changes in acid accumulation coincide with increases in the activities of NAD(+)-malate dehydrogenase, fumarase, and citrate synthase. 相似文献
10.
Najat El Alami Clair-Yves Boquien Georges Corrieu 《Applied microbiology and biotechnology》1992,37(3):358-363
The effect of plasmid introduction into Lactococcus lactis subsp. lactis IL2661 on the growth of this strain and on plasmid stability was studied in pure batch cultures. The plasmids used (coding for erythromycin or chloramphenicol resistance) were the following: pIL205 (42 kb), pIL252 (4.6 kb, 6-9 copies), pIL253 (4.8 kb, 45-85 copies) and pE194 (inserted in the chromosome). Growth and acidification of L. lactis subsp. lactis IL2661 were similar to those of the derived recombinant lactococci. The maximal population at the end of the fermentation (9 h) was about 1.1 +/- 0.3 x 10(10) cfu/ml, and maximal growth rate 0.92 +/- 0.07 h-1. Growth yield and lactic acid concentrations were 3.9 +/- 0.8 x 10(11) cfu/g lactose consumed and 25.6 +/- 2.3 g/l, respectively. Different levels of plasmid stability were detected. Plasmid pE194, and plasmids pIL252 and pIL253 in the absence of pIL205, were stable after 10 h of culture. A slight loss (1-2%) of pIL205 was observed in all strains. In the presence of pIL205, plasmids pIL252 and pIL253 were maintained in only 56-95% of the cells. This result suggested an incompatibility between pIL205 and pIL252 or pIL253. 相似文献
11.
Najat El Alami Clair-Yves Boquien Georges Corrieu 《Applied microbiology and biotechnology》1992,37(3):364-368
Summary The transfer of plasmids was studied in a stirred fermentor in the course of mixed batch cultures combining recombinant strains of Lactococcus lactis subsp. lactis (donor strains) with L. lactis subsp. lactis CNRZ 268M3 (recipient strain). Donor strains contained one or two of the following plasmids (coding for erythromycin or chloramphenicol resistance): pIL205 (self-transmissible), pIL252, pIL253 (non-transmissible but mobilizable by pIL205, respectively small and large copy number) and pE194 (inserted in the chromosome). Only self-transmissible plasmid pIL205 was transferred, with frequencies ranging from 10–7 to 10–8 after 12 h of fermentation. These frequencies were 60–400 times lower than in unstirred M17 broth and 100 000 times lower than on agar medium. In the latter case, non-transmissible plasmids pIL252 and pIL253 were mobilized by pIL205 with a frequency of about 10–5–10–6.
Correspondence to: C.-Y. Boquien 相似文献
12.
Oxygen transfer in the liquid-impelled loop reactor is described for a setup in which the perfluorochemical FC40 is aerated externally. Two sizes of reactors are investigated. The mass-transfer coefficient k appears to be lower with a factor of about 0.6 compared to gas liquid systems. the specific exchange area in the present experimental setup is found to be favorable when compared with gas liquid bioreactors at the same superficial dispersed-phase velocities. However, slow coalescence of the dispersed-phase drops in the phase separation section limits the dispersed-phase flow rate seriously. In Case this become crucial from the point of view of oxygen supply, special measures need to be found or alternatives such as combined sparging of air and solvent. (c) 1992 John Wiley & Sons, Inc. 相似文献
13.
Guillermo Quijano Sergio Revah Mariano Gutiérrez-Rojas Luis B. Flores-Cotera Frédéric Thalasso 《Process Biochemistry》2009,44(6):619-624
The use of organic liquids as vectors to enhance mass transfer has been applied since the 1970s. However, mass transfer in three-phase reactors is only partially understood. This paper aimed to characterize oxygen transfer in three-phase reactors containing air as gas, silicone oil as vector and water as aqueous phase. A mass transfer model that considers separately air/vector, vector/water and air/water oxygen transfers was developed. The model was used to describe oxygen transfer in airlift and stirred tank reactors containing from 0 to 50% of silicone oil. Under the experimental conditions, silicone oil had a positive effect on the overall oxygen transfer. In both reactor designs, the maximum overall oxygen transfer was observed with 10% silicone oil which was increased by 65 and 84% in the airlift and stirred reactor, respectively, compared to reactors operated without silicone oil. The overall transfer increase was mainly due to an enhanced air/water transfer. With 10% silicone oil, the air/water contribution to the overall oxygen transfer was 94.7 and 93.0% for the airlift and stirred reactor, respectively. 相似文献
14.
Differing findings on the volumetric mass transfer coefficients k(L)a in CMC solutions in bubble column bioreactors have been reported in the literature. Therefore, oxygen mass transfer was studied again in CMC solutions in a 14-cm-i.d. x 270-cm-height bubble column using different spargers. The k(L)a values were determined along with the dispersion coefficients by fitting the prediction of the axial dispersed plug model with the experimental oxygen concentration profiles in the liquid phase. Surprisingly, the obtained liquid phase dispersion coefficients for CMC solution are higher than one would expect from correlations. The k(L)a data depend largely on the flow regime. In general, they are lower than those reported in the literature. The data for developing slug and established slug flow are dependent on the gas velocity and the effective viscosity of the solution and can br correlated by a simple correlation. This correlation describes k(L)a values measured on fermentation broth of Penicillium chrysogenum with striking agreement. 相似文献
15.
Protein-protein association in polymer solutions: from dilute to semidilute to concentrated 下载免费PDF全文
In a typical cell, proteins function in the crowded cytoplasmic environment where 30% of the space is occupied by macromolecules of varying size and nature. This environment may be simulated in vitro using synthetic polymers. Here, we followed the association and diffusion rates of TEM1-beta-lactamase (TEM) and the beta-lactamase inhibitor protein (BLIP) in the presence of crowding agents of varying molecular mass, from monomers (ethylene glycol, glycerol, or sucrose) to polymeric agents such as different polyethylene glycols (PEGs, 0.2-8 kDa) and Ficoll. An inverse linear relation was found between translational diffusion of the proteins and viscosity in all solutions tested, in accordance with the Stokes-Einstein (SE) relation. Conversely, no simple relation was found between either rotational diffusion rates or association rates (k(on)) and viscosity. To assess the translational diffusion-independent steps along the association pathway, we introduced a new factor, alpha, which corrects the relative change in k(on) by the relative change in solution viscosity, thus measuring the deviations of the association rates from SE behavior. We found that these deviations were related to the three regimes of polymer solutions: dilute, semidilute, and concentrated. In the dilute regime PEGs interfere with TEM-BLIP association by introducing a repulsive force due to solvophobic preferential hydration, which results in slower association than predicted by the SE relation. Crossing over from the dilute to the semidilute regime results in positive deviations from SE behavior, i.e., relatively faster association rates. These can be attributed to the depletion interaction, which results in an effective attraction between the two proteins, winning over the repulsive force. In the concentrated regime, PEGs again dramatically slow down the association between TEM and BLIP, an effect that does not depend on the physical dimensions of PEGs, but rather on their mass concentration. This is probably a manifestation of the monomer-like repulsive depletion effect known to occur in concentrated polymer solutions. As a transition from moderate to high crowding agent concentration can occur in the cellular milieu, this behavior may modulate protein association in vivo, thereby modulating biological function. 相似文献
16.
A Mathematical model for ethanol production by extractive fermentation in a continuous stirred tank fermentor 总被引:1,自引:0,他引:1
Extractive fermentation is a technique that can be used to reduce the effect of end product inhibition through the use of a water-immiscible phase that removes fermentation products in situ. This has the beneficial effect of not only removing inhibitory products as they are formed (thus keeping reaction rates high) but also has the potential for reducing product recovery costs. We have chosen to examine the ethanol fermentation as a model system for end product inhibition and extractive fermentation and have developed a computer model predicting the productivity enhancement possible with this technique together with other key parameters such as extraction efficiency and residual glucose concentration. The model accommodates variable liquid flowrates entering and leaving the system, since it was found that the aqueous outlet flowrate could be up to 35% lower than the inlet flowrate during extractive fermentation of concentrated glucose feeds due to the continuous removal of ethanol from the fermentation broth by solvent extraction. The model predicts a total ethanol productivity of 82.6 g/L h if a glucose feed of 750 g/L is fermented with a solvent having a distribution coefficient of 0.5 at a solvent dilution rate of 5.0 h(-1). This is more than 10 times higher than for a conventional chemostat fermentation of a 250 g/L glucose feed. The model has furthermore illustrated the possible trade-offs that exist between obtaining a high extraction efficiency and a low residual glucose concentration. 相似文献
17.
Fermentations of Xanthomonas campestris, NRRL B-1459, were carried out in a bubble column fermentor (BCF) and in a stirred tank fermentor (STF) to allow comparison of representative variables measured during the microbial growth and the gum production. The microbial growth phase was described by a logistic rate equation where maximum cell concentration was provided by nitrogenous compounds balance. The average value of the maximum specific growth rate was higher in the bubble column (μ M =0.5 h?1) than in the stirred reactor (μ M =0.4 h?1). The upper values of xanthan yield (Y g-x =0.65 kg xanthan/kg glucose; Y O 2?x xanthan/kg oxygen) and specific production rate (q x =0.26 kg xanthan/kg biomass · h) were measured when the oxygen transfer coefficient was kept up above 80 h?1 in the STF fermentor. In the bubble column the fermentation achieved in the same culture medium lasts two times longer than in the stirred aerated tank; this was attributed to the low value of the oxygen transfer coefficient (K L a =20 h?1) at the beginning of the gum synthesis phase. The results obtained in the stirred tank were the basis to estimate the optimal biomass concentration which enables to achieve a culture in non-limiting oxygen transfer conditions. Nevertheless, the transfer characteristics were more homogeneous in the bubble column than in the stirred tank where dead stagnant zones were observed. This is of primary importance when establishing fermentation kinetics models. 相似文献
18.
Influence of surface active agents on oxygen absorption to the free interface in a stirred fermentor
Liquid phase coefficients were measured for the absorption of oxygen from air to the free interface in stirred vessels. Coefficients for absorption into soft water were independent of the instantaneous dissolved oxygen concentration. Coefficients for absorption into soft water containing a surface active agent were strongly dependent on the instantaneous dissolved oxygen level. The degree of nonlinearity of the coefficients was a function of the rate of agitation of the liquid. The coefficients were independent of the amount of surface active agent added above a very low level. Absorption coefficients for bubble aeration in the same vessels were independent of dissolved oxygen concentration even when the surface active agent was present. 相似文献
19.
The growth and citric acid production kinetics of Saccharomycopsis lipolytica on glucose are investigated in an aerated stirred fermentor. Cellular growth first proceeds exponentially until exhaustion of ammonia in the fermentation medium. Cells then continue to grow at a reduced rate with a concomitant decrease in intracellular nitrogen content. Citric and isocitric acid production starts at the end of the growth phase. During about 80 hr excretion proceeds at a constant rate of 0.7 g/liter/hr for citric acid and 0.1 g/liter/hr for isocitric acid. The final citric and isocitric acid concentrations are 95 and 10g/liter, respectively. During acid excretion cellular respiration accounts for 60 and 35% of consumed oxygen and glucose. Both acid and CO2 production rates follow a Michaelis–Menten-type dependence on oxygen concentration with Michaelis–Menten constants of 0.9 and 0.15 mg/liter for acid and CO2 productions, respectively. 相似文献
20.
Experiments were performed in a pilot scale 0.30 m3 conventional stirred-tank fermentor using water, air/water, and air/K2SO4 solutions. Both single- and two-stage impeller systems were investigated. Overall and tank-side coefficients for heat transfer from a 0.012 m diameter coil were measured for a range of impeller speeds and superficial gas velocities. Power input, bubble size, and gas hold-up were also determined. An analysis of the experimental results indicates that previously published correlations for single-phase heat transfer in stirred tanks (of the type: Nu = C(Re)α(Pr)β) are not applicable for single- or multiimpeller gas/liquid systems. The introduction of air alters the mixing pattern significantly, affecting both average and local tank-side heat transfer coefficients. Power input and gas hold-up are suggested as the major correlating parameters for the determination of tank-side heat transfer coefficients. 相似文献