首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Striated muscle contraction is regulated by Ca2+ binding to troponin, which has a globular domain and an elongated tail attributable to the NH2-terminal portion of the bovine cardiac troponin T (TnT) subunit. Truncation of the bovine cardiac troponin tail was investigated using recombinant TnT fragments and subunits TnI and TnC. Progressive truncation of the troponin tail caused progressively weaker binding of troponin-tropomyosin to actin and of troponin to actin-tropomyosin. A sharp drop-off in affinity occurred with NH2-terminal deletion of 119 rather than 94 residues. Deletion of 94 residues had no effect on Ca2+-activation of the myosin subfragment 1-thin filament MgATPase rate and did not eliminate cooperative effects of Ca2+ binding. Troponin tail peptide TnT1-153 strongly promoted tropomyosin binding to actin in the absence of TnI or TnC. The results show that the anchoring function of the troponin tail involves interactions with actin as well as with tropomyosin and has comparable importance in the presence or absence of Ca2+. Residues 95-153 are particularly important for anchoring, and residues 95-119 are crucial for function or local folding. Because striated muscle regulation involves switching among the conformational states of the thin filament, regulatory significance for the troponin tail may arise from its prominent contribution to the protein-protein interactions within these conformations.  相似文献   

2.
Troponin I (TnI) is the inhibitory component of the striated muscle Ca2+ regulatory protein troponin (Tn). The other two components of Tn are troponin C (TnC), the Ca2+-binding component, and troponin T (TnT), the tropomyosin-binding component. We have used limited chymotryptic digestion to probe the local conformation of TnI in the free state, the binary TnC*TnI complex, the ternary TnC*. TnI*TnT (Tn) complex, and in the reconstituted Tn*tropomyosin*F-actin filament. The digestion of TnI alone or in the TnC*TnI complex produced initially two major fragments via a cleavage of the peptide bond between Phe100 and Asp101 in the so-called inhibitory region. In the ternary Tn complex cleavage occurred at a new site between Leu140 and Lys141. In the absence of Ca2+ this was followed by digestion of the 1-140 fragment at Leu122 and Met116. In the reconstituted thin filament the same fragments as in the case of the ternary complex were produced, but the rate of digestion was slower in the absence than in the presence of Ca2+. These results indicate firstly that in both free TnI and TnI complexed with TnC there is an exposed and flexible site in the inhibitory region. Secondly, TnT affects the conformation of TnI in the inhibitory region and also in the region that contains the 140-141 bond. Thirdly, the 140-141 region of TnI is likely to interact with actin in the reconstituted thin filament when Ca2+ is absent. These findings are discussed in terms of the role of TnI in the mechanism of thin filament regulation, and in light of our previous results [Y. Luo, J.-L. Wu, J. Gergely, T. Tao, Biochemistry 36 (1997) 13449-13454] on the global conformation of TnI.  相似文献   

3.
Troponin is a Ca2+-sensitive switch that regulates the contraction of vertebrate striated muscle by participating in a series of conformational events within the actin-based thin filament. Troponin is a heterotrimeric complex consisting of a Ca2+-binding subunit (TnC), an inhibitory subunit (TnI), and a tropomyosin-binding subunit (TnT). Ternary troponin complexes have been produced by assembling recombinant chicken skeletal muscle TnC, TnI and the C-terminal portion of TnT known as TnT2. A full set of small-angle neutron scattering data has been collected from TnC-TnI-TnT2 ternary complexes, in which all possible combinations of the subunits have been deuterated, in both the +Ca2+ and -Ca2+ states. Small-angle X-ray scattering data were also collected from the same troponin TnC-TnI-TnT2 complex. Guinier analysis shows that the complex is monomeric in solution and that there is a large change in the radius of gyration of TnI when it goes from the +Ca2+ to the -Ca2+ state. Starting with a model based on the human cardiac troponin crystal structure, a rigid-body Monte Carlo optimization procedure was used to yield models of chicken skeletal muscle troponin, in solution, in the presence and in the absence of regulatory calcium. The optimization was carried out simultaneously against all of the scattering data sets. The optimized models show significant differences when compared to the cardiac troponin crystal structure in the +Ca2+ state and provide a structural model for the switch between +Ca2+ and -Ca2+ states. A key feature is that TnC adopts a dumbbell conformation in both the +Ca2+ and -Ca2+ states. More importantly, the data for the -Ca2+ state suggest a long extension of the troponin IT arm, consisting mainly of TnI. Thus, the troponin complex undergoes a large structural change triggered by Ca2+ binding.  相似文献   

4.
The muscle thin filament protein troponin (Tn) regulates contraction of vertebrate striated muscle by conferring Ca2+ sensitivity to the interaction of actin and myosin. Troponin C (TnC), the Ca2+ binding subunit of Tn contains two homologous domains and four divalent cation binding sites. Two structural sites in the C-terminal domain of TnC bind either Ca2+ or Mg2+, and two regulatory sites in the N-terminal domain are specific for Ca2+. Interactions between TnC and the inhibitory Tn subunit troponin I (TnI) are of central importance to the Ca2+ regulation of muscle contraction and have been intensively studied. Much remains to be learned, however, due mainly to the lack of a three-dimensional structure for TnI. In particular, the role of amino acid residues near the C-terminus of TnI is not well understood. In this report, we prepared a mutant TnC which contains a single Trp-26 residue in the N-terminal, regulatory domain. We used fluorescence lifetime and quenching measurements to monitor Ca2+- and Mg2+-dependent changes in the environment of Trp-26 in isolated TnC, as well as in binary complexes of TnC with a Trp-free mutant of TnI or a truncated form of this mutant, TnI(1-159), which lacked the C-terminal 22 amino acid residues of TnI. We found that full-length TnI and TnI(1-159) affected Trp-26 similarly when all four binding sites of TnC were occupied by Ca2+. When the regulatory Ca2+-binding sites in the N-terminal domain of TnC were vacant and the structural sites in the C-terminal domain of were occupied by Mg2+, we found significant differences between full-length TnI and TnI(1-159) in their effect on Trp-26. Our results provide the first indica- tion that the C-terminus of TnI may play an important role in the regulation of vertebrate striated muscle through Ca2+-dependent interactions with the regula- tory domain of TnC.  相似文献   

5.
Recently, our understanding of the structural basis of troponin-tropomyosin’s Ca2+-triggered regulation of striated muscle contraction has advanced greatly, particularly via cryo-electron microscopy data. Compelling atomic models of troponin-tropomyosin-actin were published for both apo- and Ca2+-saturated states of the cardiac thin filament. Subsequent electron microscopy and computational analyses have supported and further elaborated the findings. Per cryo-electron microscopy, each troponin is highly extended and contacts both tropomyosin strands, which lie on opposite sides of the actin filament. In the apo-state characteristic of relaxed muscle, troponin and tropomyosin hinder strong myosin-actin binding in several different ways, apparently barricading the actin more substantially than does tropomyosin alone. The troponin core domain, the C-terminal third of TnI, and tropomyosin under the influence of a 64-residue helix of TnT located at the overlap of adjacent tropomyosins are all in positions that would hinder strong myosin binding to actin. In the Ca2+-saturated state, the TnI C-terminus dissociates from actin and binds in part to TnC; the core domain pivots significantly; the N-lobe of TnC binds specifically to actin and tropomyosin; and tropomyosin rotates partially away from myosin’s binding site on actin. At the overlap domain, Ca2+ causes much less tropomyosin movement, so a more inhibitory orientation persists. In the myosin-saturated state of the thin filament, there is a large additional shift in tropomyosin, with molecular interactions now identified between tropomyosin and both actin and myosin. A new era has arrived for investigation of the thin filament and for functional understandings that increasingly accommodate the recent structural results.  相似文献   

6.
The interaction sites of rabbit skeletal troponin I (TnI) with troponin C (TnC), troponin T (TnT), tropomyosin (Tm) and actin were mapped systematically using nine single cysteine residue TnI mutants with mutation sites at positions 6, 48, 64, 89, 104, 121, 133, 155 or 179 (TnI6, TnI48 etc.). Each mutant was labeled with the heterobifunctional photocrosslinker 4-maleimidobenzophenone (BP-Mal), and incorporated into the TnI.TnC binary complex, the TnI.TnC.TnT ternary troponin (Tn) complex, and the Tn.Tm.F-actin synthetic thin filament. Photocrosslinking reactions carried out in the presence and absence of Ca(2+) yielded the following results: (1) BP-TnI6 photocrosslinked primarily to TnC with a small degree of Ca(2+)-dependence in all the complex forms. (2) BP-TnI48, TnI64 and TnI89 photocrosslinked to TnT with no Ca(2+)-dependence. Photocrosslinking to TnC was reduced in the ternary versus the binary complex. BP-TnI89 also photocrosslinked to actin with higher yields in the absence of Ca(2+) than in its presence. (3) BP-TnI104 and TnI133 photocrosslinked to actin with much higher yields in the absence than in the presence of Ca(2+). (4) BP-TnI121 photocrosslinked to TnC with a small degree of Ca(2+)-dependence, and did not photocrosslink to actin. (5) BP-TnI155 and TnI179 photocrosslinked to TnC, TnT and actin, but all with low yields. All the labeled mutants photocrosslinked to TnC with varying degrees of Ca(2+)-dependence, and none to Tm. These results, along with those published allowed us to construct a structural and functional model of TnI in the Tn complex: in the presence of Ca(2+), residues 1-33 of TnI interact with the C-terminal domain hydrophobic cleft of TnC, approximately 48-89 with TnT, approximately 90-113 with TnC's central helix, approximately 114-125 with TnC's N-terminal domain hydrophobic cleft, and approximately 130-150 with TnC's A-helix. In the absence of Ca(2+), residues approximately 114-125 move out of TnC's N-terminal domain hydrophobic cleft and trigger the movements of residues approximately 89-113 and approximately 130-150 away from TnC and towards actin.  相似文献   

7.
Contraction of striated muscles is regulated by tropomyosin strands that run continuously along actin-containing thin filaments. Tropomyosin blocks myosin-binding sites on actin in resting muscle and unblocks them during Ca2+-activation. This steric effect controls myosin-crossbridge cycling on actin that drives contraction. Troponin, bound to the thin filaments, couples Ca2+-concentration changes to the movement of tropomyosin. Ca2+-free troponin is thought to trap tropomyosin in the myosin-blocking position, while this constraint is released after Ca2+-binding. Although the location and movements of tropomyosin are well known, the structural organization of troponin on thin filaments is not. Its mechanism of action therefore remains uncertain. To determine the organization of troponin on the thin filament, we have constructed atomic models of low and high-Ca2+ states based on crystal structures of actin, tropomyosin and the "core domain" of troponin, and constrained by distances between filament components and by their location in electron microscopy (EM) reconstructions. Alternative models were also built where troponin was systematically repositioned or reoriented on actin. The accuracy of the different models was evaluated by determining how well they corresponded to EM images. While the initial low and high-Ca2+ models fitted the data precisely, the alternatives did not, suggesting that the starting models best represented the correct structures. Thin filament reconstructions were generated from the EM data using these starting models as references. In addition to showing the core domain of troponin, the reconstructions showed additional detail not present in the starting models. We attribute this to an extension of TnI linking the troponin core domain to actin at low (but not at high) Ca2+, thereby trapping tropomyosin in the OFF-state. The bulk of the core domain of troponin appears not to move significantly on actin, regardless of Ca2+ level. Our observations suggest a simple model for muscle regulation in which troponin affects the charge balance on actin and hence tropomyosin position.  相似文献   

8.
Troponin T (TnT) is an essential component of troponin (Tn) for the Ca(2+)-regulation of vertebrate striated muscle contraction. TnT consists of an extended NH(2)-terminal domain that interacts with tropomyosin (Tm) and a globular COOH-terminal domain that interacts with Tm, troponin I (TnI), and troponin C (TnC). We have generated two mutants of a rabbit skeletal beta-TnT 25-kDa fragment (59-266) that have a unique cysteine at position 60 (N-terminal region) or 250 (C-terminal region). To understand the spatial rearrangement of TnT on the thin filament in response to Ca(2+) binding to TnC, we measured distances from Cys-60 and Cys-250 of TnT to Gln-41 and Cys-374 of F-actin on the reconstituted thin filament by using fluorescence resonance energy transfer (FRET). The distances from Cys-60 and Cys-250 of TnT to Gln-41 of F-actin were 39.5 and 30.0 A, respectively in the absence of Ca(2+), and increased by 2.6 and 5.8 A, respectively upon binding of Ca(2+) to TnC. The rigor binding of myosin subfragment 1 (S1) further increased these distances by 4 and 5 A respectively, when the thin filaments were fully decorated with S1. This indicates that not only the C-terminal but also the N-terminal region of TnT showed the Ca(2+)- and S1-induced movement, and the C-terminal region moved more than N-terminal region. In the absence of Ca(2+), the rigor S1 binding also increased the distances to the same extent as the presence of Ca(2+) when the thin filaments were fully decorated with S1. The addition of ATP completely reversed the changes in FRET induced by rigor S1 binding both in the presence and absence of Ca(2+). However, plots of the extent of S1-induced conformational change vs. molar ratio of S1 to actin showed hyperbolic curve in the presence of Ca(2+) but sigmoidal curve in the absence of Ca(2+). FRET measurement of the distances from Cys-60 and Cys-250 of TnT to Cys-374 of actin showed almost the same results as the case of Gln-41 of actin. The present FRET measurements demonstrated that not only TnI but also TnT change their positions on the thin filament corresponding to three states of thin filaments (relaxed, Ca(2+)-induced or closed, and S1-induced or open states).  相似文献   

9.
In striated muscle the force generating acto-myosin interaction is sterically regulated by the thin filament proteins tropomyosin and troponin (Tn), with the position of tropomyosin modulated by calcium binding to troponin. Troponin itself consists of three subunits, TnI, TnC, and TnT, widely characterized as being responsible for separate aspects of the regulatory process. TnI, the inhibitory unit is released from actin upon calcium binding to TnC, while TnT performs a structural role forming a globular head region with the regulatory TnI- TnC complex with a tail anchoring it within the thin filament. We have examined the properties of TnT and the TnT(1) tail fragment (residues 1-158) upon reconstituted actin-tropomyosin filaments. Their regulatory effects have been characterized in both myosin S1 ATPase and S1 kinetic and equilibrium binding experiments. We show that both inhibit the actin-tropomyosin-activated S1 ATPase with TnT(1) producing a greater inhibitory effect. The S1 binding data show that this inhibition is not caused by the formation of the blocked B-state but by significant stabilization of the closed C-state with a 10-fold reduction in the C- to M-state equilibrium, K(T), for TnT(1). This suggests TnT has a modulatory as well as structural role, providing an explanation for its large number of alternative isoforms.  相似文献   

10.
Zhou X  Morris EP  Lehrer SS 《Biochemistry》2000,39(5):1128-1132
Troponin I (TnI) is the component of the troponin complex, TnI, TnC, TnT, that is responsible for inhibition of actomyosin ATPase activity. Using the fluorescence of pyrene-labeled tropomyosin (Tm), we probed the interaction of TnI and TnIC with Tm on the reconstituted muscle thin filament. The results indicate that TnI and TnIC(-Ca(2+)) bind specifically and strongly to actin-Tm with a stoichiometry of 1 TnI or 1 TnIC/1 Tm/7 actin, in agreement with previous results. The binding of myosin heads (S1) to actin-Tm at low levels of saturation caused TnI and TnIC to dissociate from actin-Tm. These results are interpreted in terms of the S1-binding state allosteric-cooperative model of the actin-Tm thin filament, closed/open. Thus, TnI and TnIC(-Ca(2+)) bind to the closed state of actin-Tm and their binding is greatly weakened in the S1-induced open state, indicating that they act as allosteric inhibitors. The fluorescence change and the stoichiometry indicate that the TnI-binding site is composed of regions from both actin and Tm probably in the vicinity of Cys 190.  相似文献   

11.
Y Luo  J Leszyk  Y Qian  J Gergely  T Tao 《Biochemistry》1999,38(20):6678-6688
It has been proposed [Herzberg et al. (1986) J. Biol. Chem. 261, 2638-2644], and confirmed by structural studies [Gagne et al. (1995) Nat. Struct. Biol. 2, 784-789], that the binding of Ca2+ to the triggering sites in troponin-C (TnC) causes the opening of the N-terminal hydrophobic pocket bound by the B, C, and D helices. This conformational change is believed to provide an additional binding site for troponin-I (TnI) and to lead to further events in the Ca2+ regulation process. To answer the question of which part of TnI interacts with this hydrophobic patch of TnC, we constructed two TnC mutants, each with a single cysteine, one at residue 48 between helices B and C and the other at residue 82 on the D helix. Each mutant was labeled with the photoactivatable cross-linker benzophenone-4-iodoacetamide, followed by reconstitution and UV irradiation. Studies were made in the binary complex composed of TnC and TnI, the ternary complex composed of TnC, TnI, and troponin-T (TnT), and the synthetic thin filament composed of troponin, tropomyosin, and F-actin. TnC-TnI photo-cross-linking was observed for both mutants and for all three types of complexes. Although no Ca2+ dependence in the photo-cross-linking was observed on the binary and ternary complexes, the extent of cross-linking was reduced in the absence vs the presence of Ca2+ in the thin filament. TnI Met121, five residues from the C-terminus of the inhibitory region, was identified as the cross-linking site for both TnC mutants using microsequencing and mass spectrometry following proteolysis. These results, obtained with intact TnC.TnI complexes, indicate that the TnI segment containing Met121 is in close contact with the N-terminal hydrophobic patch of TnC, and that in the thin filament the segment containing this residue moves away slightly from the hydrophobic patch in the absence of Ca2+, possibly triggering the translocation of the actin-binding region(s) of TnI toward actin.  相似文献   

12.
Troponin (Tn), in association with tropomyosin (Tm), plays a central role in the calcium regulation of striated muscle contraction. Fluorescence resonance energy transfer (FRET) between probes attached to the Tn subunits (TnC, TnI, TnT) and to Tm was measured to study the spatial relationship between Tn and Tm on the thin filament. We generated single-cysteine mutants of rabbit skeletal muscle α-Tm, TnI and the β-TnT 25-kDa fragment. The energy donor was attached to a single-cysteine residue at position 60, 73, 127, 159, 200 or 250 on TnT, at 98 on TnC and at 1, 9, 133 or 181 on TnI, while the energy acceptor was located at 13, 146, 160, 174, 190, 209, 230, 271 or 279 on Tm. FRET analysis showed a distinct Ca2+-induced conformational change of the Tm-Tn complex and revealed that TnT60 and TnT73 were closer to Tm13 than Tm279, indicating that the elongated N-terminal region of TnT extends beyond the beginning of the next Tm molecule on the actin filament. Using the atomic coordinates of the crystal structures of Tm and the Tn core domain, we searched for the disposition and orientation of these structures by minimizing the deviations of the calculated FRET efficiencies from the observed FRET efficiencies in order to construct atomic models of the Tn-Tm complex with and without bound Ca2+. In the best-fit models, the Tn core domain is located on residues 160-200 of Tm, with the arrowhead-shaped I-T arm tilting toward the C-terminus of Tm. The angle between the Tm axis and the long axis of TnC is ∼ 75° and ∼ 85° with and without bound Ca2+, respectively. The models indicate that the long axis of TnC is perpendicular to the thin filament without bound Ca2+, and that TnC and the I-T arm tilt toward the filament axis and rotate around the Tm axis by ∼ 20° upon Ca2+ binding.  相似文献   

13.
Striated muscles are regulated by Ca(2+) via the thin filament proteins troponin (Tn) and tropomyosin (Tm). In the absence of Ca(2+), contraction is inhibited, whereas myosin-actin interaction and contraction can take place in its presence. Although it is well established that the interaction of troponin-I (TnI), the inhibitory subunit of Tn, with actin is required for the inhibition process and that there are two separate actin-binding regions in TnI that interact with actin, the molecular mechanism of this inhibition process is still not clear. Using TnI mutants with photocrosslinking probes attached to genetically engineered cysteine residues in each of the two actin-binding regions, we show that both regions are close to Met47 of actin in its outer domain. It has been proposed that the Ca(2+)-induced activation of contraction involves the movement of Tm from the outer to the inner domain of the actin filament. On the basis of our results presented here, we propose that the position of Tm at the outer domain of actin in the Ca(2+)-free state is stabilized by the presence of TnI over actin's outer domain via mutual interactions of all three components. In the presence of Ca(2+), TnI's actin-binding regions dissociate from actin allowing Tm to move toward actin's inner domain.  相似文献   

14.
Troponin is a pivotal regulatory protein that binds Ca(2+) reversibly to act as the muscle contraction on-off switch. To understand troponin function, the dynamic behavior of the Ca(2+)-saturated cardiac troponin core domain was mapped in detail at 10 °C, using H/D exchange-mass spectrometry. The low temperature conditions of the present study greatly enhanced the dynamic map compared with previous work. Approximately 70% of assessable peptide bond hydrogens were protected from exchange sufficiently for dynamic measurement. This allowed the first characterization by this method of many regions of regulatory importance. Most of the TnI COOH terminus was protected from H/D exchange, implying an intrinsically folded structure. This region is critical to the troponin inhibitory function and has been implicated in thin filament activation. Other new findings include unprotected behavior, suggesting high mobility, for the residues linking the two domains of TnC, as well as for the inhibitory peptide residues preceding the TnI switch helix. These data indicate that, in solution, the regulatory subdomain of cardiac troponin is mobile relative to the remainder of troponin. Relatively dynamic properties were observed for the interacting TnI switch helix and TnC NH(2)-domain, contrasting with stable, highly protected properties for the interacting TnI helix 1 and TnC COOH-domain. Overall, exchange protection via protein folding was relatively weak or for a majority of peptide bond hydrogens. Several regions of TnT and TnI were unfolded even at low temperature, suggesting intrinsic disorder. Finally, change in temperature prominently altered local folding stability, suggesting that troponin is an unusually mobile protein under physiological conditions.  相似文献   

15.
Ca2+ regulation of vertebrate striated muscle contraction is initiated by conformational changes in the N-terminal, regulatory domain of the Ca2+-binding protein troponin C (TnC), altering the interaction of TnC with the other subunits of troponin complex, TnI and TnT. We have investigated the role of acidic amino acid residues in the N-terminal, regulatory domain of TnC in binding to the inhibitory region (residues 96-116) of TnI. We constructed three double mutants of TnC (E53A/E54A, E60A/E61A and E85A/D86A), in which pairs of acidic amino acid residues were replaced by neutral alanines, and measured their affinities for synthetic inhibitory peptides. These peptides had the same amino acid sequence as TnI segments 95-116, 95-119 or 95-124, except that the natural Phe-100 of TnI was replaced by a tryptophan residue. Significant Ca2+-dependent increases in the affinities of the two longer peptides, but not the shortest one, to TnC could be detected by changes in Trp fluorescence. In the presence of Ca2+, all the mutant TnCs showed about the same affinity as wild-type TnC for the inhibitory peptides. In the presence of Mg2+ and EGTA, the N-terminal, regulatory Ca2+-binding sites of TnC are unoccupied. Under these conditions, the affinity of TnC(E85A/D86A) for inhibitory peptides was about half that of wild-type TnC, while the other two mutants had about the same affinity. These results imply a Ca2+-dependent change in the interaction of TnC Glu-85 and/or Asp-86 with residues (117-124) on the C-terminal side of the inhibitory region of TnI. Since Glu-85 and/or Asp-86 of TnC have also been demonstrated to be involved in Ca2+-dependent regulation through interaction with TnT, this region of TnC must be critical for troponin function.  相似文献   

16.
In order to help understand the spatial rearrangements of thin filament proteins during the regulation of muscle contraction, we used fluorescence resonance energy transfer (FRET) to measure Ca(2+)-dependent, myosin-induced changes in distances and fluorescence energy transfer efficiencies between actin and the inhibitory region of troponin I (TnI). We labeled the single Cys-117 of a mutant TnI with N-(iodoacetyl)-N'-(1-sulfo-5-naphthyl)ethylenediamine (IAEDANS) and Cys-374 of actin with 4-dimethylaminophenylazophenyl-4'-maleimide (DABmal). These fluorescent probes were used as donor and acceptor, respectively, for the FRET measurements. We reconstituted a troponin-tropomyosin (Tn-Tm) complex which contained the AEDANS-labeled mutant TnI, together with natural troponin T (TnT), troponin C (TnC) and tropomyosin (Tm) from rabbit fast skeletal muscle. Fluorescence titration of the AEDANS-labeled Tn-Tm complex with DABmal-labeled actin, in the presence and absence of Ca(2+), resulted in proportional, linear increases in energy transfer efficiency up to a 7:1 molar excess of actin over Tn-Tm. The distance between AEDANS on TnI Cys-117 and DABmal on actin Cys-374 increased from 37.9 A to 44.1 A when Ca(2+) bound to the regulatory sites of TnC. Titration of reconstituted thin filaments, containing AEDANS-labeled Tn-Tm and DABmal-labeled actin, with myosin subfragment 1 (S1) decreased the energy transfer efficiency, in both the presence and absence of Ca(2+). The maximum decrease occurred at well below stoichiometric levels of S1 binding to actin, showing a cooperative effect of S1 on the state of the thin filaments. S1:actin molar ratios of approximately 0.1 in the presence of Ca(2+), and approximately 0.3 in the absence of Ca(2+), were sufficient to cause a 50% reduction in normalized transfer efficiency. The distance between AEDANS on TnI Cys-117 and DABmal on actin Cys-374 increased by approximately 7 A in the presence of Ca(2+) and by approximately 2 A in the absence of Ca(2+) when S1 bound to actin. Our results suggest that TnI's interaction with actin inhibits actomyosin ATPase activity by modulating the equilibria among active and inactive states of the thin filament. Structural rearrangements caused by myosin S1 binding to the thin filament, as detected by FRET measurements, are consistent with the cooperative behavior of the thin filament proteins.  相似文献   

17.
Cardiac thin filaments contain many troponin C (TnC) molecules, each with one regulatory Ca2+ binding site. A statistical mechanical model for the effects of these sites is presented and investigated. The ternary troponin complex was reconstituted with either TnC or the TnC mutant CBMII, in which the regulatory site in cardiac TnC (site II) is inactivated. Regardless of whether Ca2+ was present, CBMII-troponin was inhibitory in a thin filament-myosin subfragment 1 MgATPase assay. The competitive binding of [3H]troponin and [14C]CBMII-troponin to actin.tropomyosin was measured. In the presence of Mg2+ and low free Ca2+ they had equal affinities for the thin filament. When Ca274+ was added, however, troponin's affinity for the thin filament was 2.2-fold larger for the mutant than for the wild type troponin. This quantitatively describes the effect of regulatory site Ca2+ on troponin's affinity for actin.tropomyosin; the decrease in troponin-thin filament binding energy is small. Application of the theoretical model to the competitive binding data indicated that troponin molecules bind to interdependent rather than independent sites on the thin filament. Ca2+ binding to the regulatory site of TnC has a long-range rather than a merely local effect. However, these indirect TnC-TnC interactions are weak, indicating that the cooperativity of muscle activation by Ca2+ requires other sources of cooperativity.  相似文献   

18.
Regulation of skeletal and cardiac muscle contraction is associated with structural changes of the thin filament-based proteins, troponin consisting of three subunits (TnC, TnI, and TnT), tropomyosin, and actin, triggered by Ca2+-binding to TnC. Knowledge of in situ structures of these proteins is indispensable for elucidating the molecular mechanism of this Ca2+-sensitive regulation. Here, the in situ structure of TnC within the thin filaments was investigated with neutron scattering, combined with selective deuteration and the contrast matching technique. Deuterated TnC (dTnC) was first prepared, this dTnC was then reconstituted into the native thin filaments, and finally neutron scattering patterns of these reconstituted thin filaments containing dTnC were measured under the condition where non-deuterated components were rendered "invisible" to neutrons. The obtained scattering curves arising only from dTnC showed distinct difference in the absence and presence of Ca2+. These curves were analyzed by model calculations using the Monte Carlo method, in which inter-dTnC interference was explicitly taken into consideration. The model calculation showed that in situ radius of gyration of TnC was 23 A (99% confidence limits between 22 A and 23 A) and 24 A (99% confidence limits between 23 A and 25 A) in the absence and presence of Ca2+, respectively, indicating that TnC within the thin filaments assumes a conformation consistent with the extended dumbbell structure, which is different from the structures found in the crystals of various Tn complexes. Elongation of TnC by binding of Ca2+ was also suggested. Furthermore, the radial position of TnC within the thin filament was estimated to be 53 A (99% confidence limits between 49 A and 57 A) and 49 A (99% confidence limits between 44 A and 53 A) in the absence and presence of Ca2+, respectively, suggesting that this radial movement of TnC by 4A is associated with large conformational changes of the entire Tn molecule by binding of Ca2+.  相似文献   

19.
Recent structural studies of the troponin (Tn) core complex have shown that the regulatory head containing the N-lobe of TnC is connected to the IT arm by a flexible linker of TnC. The IT arm is a long coiled-coil formed by alpha-helices of TnI and TnT, plus the C-lobe of TnC. The TnT is thought to play a pivotal role in the linking of Ca(2+) -triggered conformational changes in thin filament regulatory proteins to the activation of cross-bridge cycling. However, a functional domain at the C-terminus of TnT is missing from the Tn core complex. In this study, we intended to determine the proximity relationship between the central helix of TnC and the TnT C-terminus in the binary and the ternary complex with and without Ca2+ by using pyrene excimer fluorescence spectroscopy and fluorescence resonance energy transfer. Chicken fast skeletal TnC contains a Cys102 at the E helix, while TnT has a Cys264 at its C-terminus. These two cysteines were specifically labeled with sulfhydryl-reactive fluorescence probes. The measured distance in the binary complex was about 19 Angstroms and slightly increased when they formed the ternary complex with TnI (20 Angstroms). Upon Ca2+ binding the distance was not affected in the binary complex but increased by approximately 4 Angstroms in the ternary complex. These results suggest that TnI plays an essential role in the Ca(2+) -mediated change in the spatial relationship between the C-lobe of TnC and the C-terminus of TnT.  相似文献   

20.
The molecular switching mechanism governing skeletal and cardiac muscle contraction couples the binding of Ca2+ on troponin to the movement of tropomyosin on actin filaments. Despite years of investigation, this mechanism remains unclear because it has not yet been possible to directly assess the structural influence of troponin on tropomyosin that causes actin filaments, and hence myosin-crossbridge cycling and contraction, to switch on and off. A C-terminal domain of troponin I is thought to be intimately involved in inducing tropomyosin movement to an inhibitory position that blocks myosin-crossbridge interaction. Release of this regulatory, latching domain from actin after Ca2+ binding to TnC (the Ca2+ sensor of troponin that relieves inhibition) presumably allows tropomyosin movement away from the inhibitory position on actin, thus initiating contraction. However, the structural interactions of the regulatory domain of TnI (the “inhibitory” subunit of troponin) with tropomyosin and actin that cause tropomyosin movement are unknown, and thus, the regulatory process is not well defined. Here, thin filaments were labeled with an engineered construct representing C-terminal TnI, and then, 3D electron microscopy was used to resolve where troponin is anchored on actin-tropomyosin. Electron microscopy reconstruction showed how TnI binding to both actin and tropomyosin at low Ca2+ competes with tropomyosin for a common site on actin and drives tropomyosin movement to a constrained, relaxing position to inhibit myosin-crossbridge association. Thus, the observations reported reveal the structural mechanism responsible for troponin-tropomyosin-mediated steric interference of actin-myosin interaction that regulates muscle contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号