首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ras subfamily proteins are molecular switches in signal transduction pathways of many eukaryotes that regulate a variety of cellular processes. Here, the Ras subfamily, encoded by six genes, was identified in Aspergillus flavus: rasA, rasB, rasC, rab-33, rheb and rsr1. The rsr1 deletion mutant (∆rsr1), rheb deletion mutant (∆rheb) and double deletion mutant (∆rheb/rsr1) displayed significantly decreased growth and sporulation. Sclerotia formation was significantly decreased for ∆rheb or ∆rheb/rsr1 but increased for ∆rsr1. Aflatoxin production was significantly increased in ∆rheb but decreased in ∆rsr1 and ∆rheb/rsr1. We found that rsr1 and rheb are crucial for the pathogenicity of A. flavus. Quantitative proteomics identified 520 differentially expressed proteins (DEPs) for the ∆rsr1 mutant and 133 DEPs for the ∆rheb mutant. These DEPs were annotated in multiple biological processes and KEGG pathways in A. flavus. Importantly, we identified the cytokinesis protein SepA in the protein–protein interaction network of rsr1, and deletion mutants showed that SepA has pleiotropic effects on growth and AF biosynthesis, which may depend on Rsr1 for regulation in A. flavus. Our results indicated that these Ras subfamily proteins exhibited functional redundancy with each other but there were also differences in A. flavus.  相似文献   

2.
Fusarium graminearum, as the causal agent of Fusarium head blight (FHB), not only causes yield loss, but also contaminates the quality of wheat by producing mycotoxins, such as deoxynivalenol (DON). The plasma membrane H+-ATPases play important roles in many growth stages in plants and yeasts, but their functions and regulation in phytopathogenic fungi remain largely unknown. Here we characterized two plasma membrane H+-ATPases: FgPMA1 and FgPMA2 in Fgraminearum. The FgPMA1 deletion mutant (∆FgPMA1), but not FgPMA2 deletion mutant (∆FgPMA2), was impaired in vegetative growth, pathogenicity, and sexual and asexual development. FgPMA1 was localized to the plasma membrane, and ∆FgPMA1 displayed reduced integrity of plasma membrane. ∆FgPMA1 not only impaired the formation of the toxisome, which is a compartment where DON is produced, but also suppressed the expression level of DON biosynthetic enzymes, decreased DON production, and decreased the amount of mycelial invasion, leading to impaired pathogenicity by exclusively developing disease on inoculation sites of wheat ears and coleoptiles. ∆FgPMA1 exhibited decreased sensitivity to some osmotic stresses, a cell wall-damaging agent (Congo red), a cell membrane-damaging agent (sodium dodecyl sulphate), and heat shock stress. FgMyo-5 is the target of phenamacril used for controlling FHB. We found FgPMA1 interacted with FgMyo-5, and ∆FgPMA1 showed an increased expression level of FgMyo-5, resulting in increased sensitivity to phenamacril, but not to other fungicides. Furthermore, co-immunoprecipitation confirmed that FgPMA1, FgMyo-5, and FgBmh2 (a 14-3-3 protein) form a complex to regulate the sensitivity to phenamacril and biological functions. Collectively, this study identified a novel regulating mechanism of FgPMA1 in pathogenicity and phenamacril sensitivity of F. graminearum.  相似文献   

3.

Restriction modification systems (R-M systems), consisting of a restriction endonuclease and a cognate methyltransferase, constitute an effective means of a cell to protect itself from foreign DNA. Identification, characterization, and deletion of the restriction modification system BliMSI, a putative isoschizomer of ClaI from Caryophanon latum, were performed in the wild isolate Bacillus licheniformis MS1. BliMSI was produced as recombinant protein in Escherichia coli, purified, and in vitro analysis demonstrated identical restriction endonuclease activity as for ClaI. A recombinant E. coli strain, expressing the heterologous bliMSIM gene, was constructed and used as the host for in vivo methylation of plasmids prior to their introduction into B. licheniformis to improve transformation efficiencies. The establishment of suicide plasmids in the latter was rendered possible. The subsequent deletion of the restriction endonuclease encoding gene, bliMSIR, caused doubled transformation efficiencies in the respective mutant B. licheniformis MS2 (∆bliMSIR). Along with above in vivo methylation, the establishment of further gene deletions (∆upp, ∆yqfD) was performed. The constructed triple mutant (∆bliMSIR, ∆upp, ∆yqfD) enables rapid genome manipulation, a requirement for genetic engineering of industrially important strains.

  相似文献   

4.
Reduced ferredoxin is an intermediate in the methylotrophic and aceticlastic pathway of methanogenesis and donates electrons to membrane-integral proteins, which transfer electrons to the heterodisulfide reductase. A ferredoxin interaction has been observed previously for the Ech hydrogenase. Here we present a detailed analysis of a Methanosarcina mazei Δech mutant which shows decreased ferredoxin-dependent membrane-bound electron transport activity, a lower growth rate, and faster substrate consumption. Evidence is presented that a second protein whose identity is unknown oxidizes reduced ferredoxin, indicating an involvement in methanogenesis from methylated C1 compounds.The aceticlastic pathway of methanogenesis creates approximately 70% (10) of the biologically produced methane and is of great ecological importance, as methane is a potent greenhouse gas. Organisms using this pathway to convert acetate to methane belong exclusively to the genera Methanosarcina and Methanosaeta. The two carbon atoms of acetate have different fates in the pathway. The methyl moiety is converted to methane, whereas the carbonyl moiety is further oxidized to CO2 and the electrons derived from this oxidation step are used to reduce ferredoxin (Fd) (6). During methanogenesis from methylated C1 compounds (methanol and methylamines), one-quarter of the methyl groups are oxidized to obtain electrons for the reduction of heterodisulfide (27). A key enzyme in the oxidative part of methylotrophic methanogenesis is the formylmethanofuran dehydrogenase, which oxidizes the intermediate formylmethanofuran to CO2 (7). The electrons are transferred to Fd. It has been suggested that reduced ferredoxin (Fdred) donates electrons to the respiratory chain with the heterodisulfide (coenzyme M [CoM]-S-S-CoB) as the terminal electron acceptor and that the reaction is catalyzed by the Fdred:CoM-S-S-CoB oxidoreductase system (7, 24). The direct membrane-bound electron acceptor for Fdred is still a matter of debate; for the Ech hydrogenase, a reduced ferredoxin-accepting, H2-evolving activity has been observed for Methanosarcina barkeri (20), which implies that the H2:CoM-S-S-CoB oxidoreductase system is involved in electron transport (13). Direct electron flow from the Ech hydrogenase to the heterodisulfide reductase has not been shown to date (20, 21). In contrast to M. barkeri, Methanosarcina acetivorans lacks the Ech hydrogenase (11). It can nevertheless grow on acetate, which is why another complex present in this organism, the Rnf complex, is thought to be involved in the aceticlastic pathway of methanogenesis as an acceptor for Fdred (8, 10, 17). The Methanosarcina mazei genome, however, contains genes coding for the Ech hydrogenase, but this species lacks the Rnf complex (5).To investigate whether the Ech hydrogenase is the only means by which M. mazei channels electrons from Fdred into the respiratory chain, a mutant lacking the Ech hydrogenase (M. mazei Δech mutant) was constructed. Electron transport experiments using Fdred as the electron donor and CoM-S-S-CoB as the electron acceptor were conducted with wild-type and mutant membranes to gain deeper insight into the actual membrane-bound protein complexes that accept electrons from Fdred. Furthermore, an in-depth characterization of the growth and trimethylamine (TMA) consumption of the Δech mutant was performed, which provided insight into the in vivo role of Ech hydrogenase.  相似文献   

5.
Rnf complexes are redox-driven ion pumps identified in diverse species from the domains Bacteria and Archaea, biochemical characterizations of which are reported for two species from the domain Bacteria. Here, we present characterizations of the redox-active subunits RnfG and RnfB from the Rnf complex of Methanosarcina acetivorans, an acetate-utilizing methane-producing species from the domain Archaea. The purified RnfG subunit produced in Escherichia coli fluoresced in SDS-PAGE gels under UV illumination and showed a UV-visible spectrum typical of flavoproteins. The Thr166Gly variant of RnfG was colorless and failed to fluoresce under UV illumination confirming a role for Thr166 in binding FMN. Redox titration of holo-RnfG revealed a midpoint potential of −129 mV for FMN with n = 2. The overproduced RnfG was primarily localized to the membrane of E. coli and the sequence contained a transmembrane helix. A topological analysis combining reporter protein fusion and computer predictions indicated that the C-terminal domain containing FMN is located on the outer aspect of the cytoplasmic membrane. The purified RnfB subunit produced in E. coli showed a UV-visible spectrum typical of iron-sulfur proteins. The EPR spectra of reduced RnfB featured a broad spectral shape with g values (2.06, 1.94, 1.90, 1.88) characteristic of magnetically coupled 3Fe-4S and 4Fe-4S clusters in close agreement with the iron and acid-labile sulfur content. The ferredoxin specific to the aceticlastic pathway served as an electron donor to RnfB suggesting this subunit is the entry point of electrons to the Rnf complex. The results advance an understanding of the organization and biochemical properties of the Rnf complex and lay a foundation for further understanding the overall mechanism in the pathway of methane formation from acetate.  相似文献   

6.
Biochemical studies have revealed two distinct classes of Coenzyme B‐Coenzyme M heterodisulfide (CoB‐S‐S‐CoM) reductase (Hdr), a key enzyme required for anaerobic respiration in methane‐producing archaea. A cytoplasmic HdrABC enzyme complex is found in most methanogens, whereas a membrane‐bound HdrED complex is found exclusively in members of the order Methanosarcinales. Unexpectedly, genomic data indicate that multiple copies of both Hdr classes are found in all sequenced Methanosarcinales genomes. The Methanosarcina acetivorans hdrED1 operon is constitutively expressed and required for viability under all growth conditions examined, consistent with HdrED being the primary Hdr. HdrABC appears to be specifically involved in methylotrophic methanogenesis, based on reduced growth and methanogenesis rates of an hdrA1C1B1 mutant on methylotrophic substrates and downregulation of the genes during growth on acetate. This conclusion is further supported by phylogenetic analysis showing that the presence of hdrA1 in an organism is specifically correlated with the presence of genes for methylotrophic methanogenesis. Examination of mRNA abundance in methanol‐grown ΔhdrA1C1B1 strains relative to wild‐type revealed upregulation of genes required for synthesis of (di)methylsulfide and for transport and biosynthesis of CoB‐SH and CoM‐SH, suggesting that the mutant has a defect in electron transfer from ferredoxin to CoB‐S‐S‐CoM that causes cofactor limitation.  相似文献   

7.
Methane-forming archaea are strictly anaerobic microbes and are essential for global carbon fluxes since they perform the terminal step in breakdown of organic matter in the absence of oxygen. Major part of methane produced in nature derives from the methyl group of acetate. Only members of the genera Methanosarcina and Methanosaeta are able to use this substrate for methane formation and growth. Since the free energy change coupled to methanogenesis from acetate is only − 36 kJ/mol CH4, aceticlastic methanogens developed efficient energy-conserving systems to handle this thermodynamic limitation. The membrane bound electron transport system of aceticlastic methanogens is a complex branched respiratory chain that can accept electrons from hydrogen, reduced coenzyme F420 or reduced ferredoxin. The terminal electron acceptor of this anaerobic respiration is a mixed disulfide composed of coenzyme M and coenzyme B. Reduced ferredoxin has an important function under aceticlastic growth conditions and novel and well-established membrane complexes oxidizing ferredoxin will be discussed in depth. Membrane bound electron transport is connected to energy conservation by proton or sodium ion translocating enzymes (F420H2 dehydrogenase, Rnf complex, Ech hydrogenase, methanophenazine-reducing hydrogenase and heterodisulfide reductase). The resulting electrochemical ion gradient constitutes the driving force for adenosine triphosphate synthesis. Methanogenesis, electron transport, and the structure of key enzymes are discussed in this review leading to a concept of how aceticlastic methanogens make a living. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

8.
The Rnf complex is a membrane-bound ferredoxin(Fd):NAD(P)+ oxidoreductase (Fno) that couples Fd oxidation to vectorial H+/Na+ transport across the cytoplasmic membrane. Here, we produced two putative Rnf-complexes from Clostridioides difficile (Cd-Rnf) and Clostridium ljungdahlii (Cl-Rnf) for the first time in Escherichia coli. A redox-responsive low-expression system enabled Rnf assembly in the membranes of E. coli as confirmed by in vitro activity measurements. To study the physiological effects of Rnf on the metabolism of E. coli, we assembled additional Fd-dependent enzymes by plasmid-based multigene expression: (a) an Fd-linked butyrate pathway (But) from C. difficile, (b) an [FeFe]-hydrogenase (Hyd) to modulate the redox state of Fd, and (c) heterologous ferredoxins as electron carriers. The hydrogenase efficiently modulated butyrate formation by H2-mediated Fd reoxidation under nitrogen. In its functionally assembled state, Rnf severely impaired cell growth. Including Hyd in the But/Rnf background, in turn, restored normal growth. Our findings suggest that Rnf mediates reverse electron flow from NADH to Fd, which requires E. coli’s F-type ATPase to function in its reverse, ATP hydrolyzing direction. The reduced Fd is then reoxidized by endogenous Fd:NAD(P)H oxidoreductase (Fpr), which regenerates NADH and, thereby, initiates a futile cycle fueled by ATP hydrolysis. The introduction of hydrogenase interrupts this futile cycle under N2 by providing an efficient NAD(P)+-independent Fd reoxidation route, whereas under H2, Hyd outcompetes Rnf for Fd reduction. This is the first report of an Rnf complex being functionally produced and physiologically investigated in E. coli.  相似文献   

9.
The stress protectant trehalose is synthesized in Acinetobacter baumannii from UPD-glucose and glucose-6-phosphase via the OtsA/OtsB pathway. Previous studies proved that deletion of otsB led to a decreased virulence, the inability to grow at 45°C and a slight reduction of growth at high salinities indicating that trehalose is the cause of these phenotypes. We have questioned this conclusion by producing ∆otsA and ∆otsBA mutants and studying their phenotypes. Only deletion of otsB, but not deletion of otsA or otsBA, led to growth impairments at high salt and high temperature. The intracellular concentrations of trehalose and trehalose-6-phosphate were measured by NMR or enzymatic assay. Interestingly, none of the mutants accumulated trehalose any more but the ∆otsB mutant with its defect in trehalose-6-phosphate phosphatase activity accumulated trehalose-6-phosphate. Moreover, expression of otsA in a ∆otsB background under conditions where trehalose synthesis is not induced led to growth inhibition and the accumulation of trehalose-6-phosphate. Our results demonstrate that trehalose-6-phosphate affects multiple physiological activities in A. baumannii ATCC 19606.  相似文献   

10.
The Wood–Ljungdahl pathway is an ancient metabolic route used by acetogenic carboxydotrophs to convert CO into acetate, and some cases ethanol. When produced, ethanol is generally seen as an end product of acetogenic metabolism, but here we show that it acts as an important intermediate and co-substrate during carboxydotrophic growth of Clostridium autoethanogenum. Depending on CO availability, C. autoethanogenum is able to rapidly switch between ethanol production and utilization, hereby optimizing its carboxydotrophic growth. The importance of the aldehyde ferredoxin:oxidoreductase (AOR) route for ethanol production in carboxydotrophic acetogens is known; however, the role of the bifunctional alcohol dehydrogenase AdhE (Ald–Adh) route in ethanol metabolism remains largely unclear. We show that the mutant strain C. autoethanogenumadhE1a, lacking the Ald subunit of the main bifunctional aldehyde/alcohol dehydrogenase (AdhE, CAETHG_3747), has poor ethanol oxidation capabilities, with a negative impact on biomass yield. This indicates that the Adh–Ald route plays a major role in ethanol oxidation during carboxydotrophic growth, enabling subsequent energy conservation via substrate-level phosphorylation using acetate kinase. Subsequent chemostat experiments with C. autoethanogenum show that the wild type, in contrast to ∆adhE1a, is more resilient to sudden changes in CO supply and utilizes ethanol as a temporary storage for reduction equivalents and energy during CO-abundant conditions, reserving these ‘stored assets’ for more CO-limited conditions. This shows that the direction of the ethanol metabolism is very dynamic during carboxydotrophic acetogenesis and opens new insights in the central metabolism of C. autoethanogenum and similar acetogens.  相似文献   

11.
The hemibiotrophic pathogen Bipolaris sorokiniana causes root rot, leaf blotching, and black embryos in wheat and barley worldwide, resulting in significant yield and quality reductions. However, the mechanism underlying the host–pathogen interactions between B. sorokiniana and wheat or barley remains unknown. The B. sorokiniana genome encodes a large number of uncharacterized putative effector proteins. In this study, we identified a putative secreted protein, CsSp1, with a classic N-terminal signal peptide, that is induced during early infection. A split-marker approach was used to knock out CsSP1 in the Lankao 9-3 strain. Compared with the wild type, the deletion mutant ∆Cssp1 displayed less radial growth on potato dextrose agar plates and produced fewer spores, and complementary transformation completely restored the phenotype of the deletion mutant to that of the wild type. The pathogenicity of the deletion mutant in wheat was attenuated even though appressoria still penetrated the host. Additionally, the infectious hyphae in the deletion mutant became swollen and exhibited reduced growth in plant cells. The signal peptide of CsSp1 was functionally verified through a yeast YTK12 secretion system. Transient expression of CsSp1 in Nicotiana benthamiana inhibited lesion formation caused by Phytophthora capsici. Moreover, CsSp1 localized in the nucleus and cytoplasm of plant cells. In B. sorokiniana-infected wheat leaves, the salicylic acid-regulated genes TaPAL, TaPR1, and TaPR2 were down-regulated in the ∆Cssp1 strain compared with the wild-type strain under the same conditions. Therefore, CsSp1 is a virulence effector and is involved in triggering host immunity.  相似文献   

12.
The operon of the anabolic pyruvate oxidoreductase (POR) of Methanococcus maripaludis encodes two genes (porEF) whose functions are unknown. Because these genes possess sequence similarity to polyferredoxins, they may be electron carriers to the POR. To elucidate whether the methanococcal POR requires PorEF for activity, a deletion mutant, strain JJ150, lacking porEF was constructed. Compared to the wild-type strain JJ1, the mutant grew more slowly in minimal medium and minimal plus acetate medium, and pyruvate-dependent methanogenesis was inhibited. In contrast, the methyl-viologen-dependent pyruvate-oxidation activity of POR, carbon monoxide dehydrogenase, and hydrogenase activities of the mutant were similar to those of the wild-type. Upon genetic complementation of the mutant with porEF in the methanococcal shuttle vector pMEV2+porEF, growth in minimal medium and pyruvate-dependent methanogenesis were restored to wild-type levels. Complementation with porE alone restored methanogenesis from pyruvate but not growth in minimal medium. Complementation with porF alone partially restored growth but not methanogenesis from pyruvate. Although the specific roles of porE and porF have not been determined, these results suggest that PorEF play important roles in the anabolic POR in vivo even though they are not required for the dye-dependent activity.Abbreviations CODH/ACS Carbon monoxide dehydrogenase/acetyl-CoA synthase - POR Pyruvate oxidoreductase  相似文献   

13.
The rnf genes in Rhodobacter capsulatus are essential for nitrogen fixation in the light. Because R. capsulatus grows readily on N2 in the dark by anaerobic respiration with dimethylsulfoxide, the diazotrophic capacities of various strains in the dark were examined. No rnf mutants tested grew diazotrophically, and a nonpolar fdxN-null mutant showed decreased diazotrophic growth in the dark, suggesting that the Rnf and FdxN proteins form the primary electron donor pathway to nitrogenase in the dark as well as in the light. Nonphotosynthetic mutants lacking the component of cyclic electron transport grew diazotrophically and the levels of Rnf proteins were similar to those of the wild-type. These results indicate that rnf gene products play an essential role in nitrogen fixation without any functional link to the cyclic electron transport system. Received: 19 August 1997 / Accepted: 20 January 1998  相似文献   

14.
《BBA》2020,1861(11):148263
rnf genes are widespread in anaerobic bacteria and hypothesized to encode a respiratory enzyme that couples exergonic reduction of NAD with reduced ferredoxin as a reductant to vectorial ion (Na+, H+) translocation across the cytoplasmic membrane. However, despite its importance for the physiology of these bacteria, little is known about the subunit composition and the function of subunits. Here, we have purified the entire Rnf complex from the acetogen Acetobacterium woodii or after its production in Escherichia coli. These studies revealed covalently bound flavin in RnfB and RnfD. Unfortunately, the complex did not catalyze electron transfer from reduced ferredoxin to NAD. We, therefore, concentrated on the two cytosolic subunits RnfC and RnfB. RnfC was produced in E. coli, purified and shown to have 8.3 mol iron and 8.6 mol sulfur per mol of the subunit, consistent with the presence of two [4Fe-4S] centers, which were verified by EPR analysis. Flavins could not be detected, but RnfC catalyzed NADH-dependent FMN reduction. These data confirm RnfC as NADH-binding subunit and FMN as an intermediate in the electron transport chain. RnfB could only be produced as a fusion to the maltose-binding protein. It contained 25 mol iron and 26 mol sulfur, consistent with the predicted six [4Fe4S] centers. The FeS centers in RnfB were reduced with reduced ferredoxin as reductant. These data are consistent with RnfB as the ferredoxin-binding subunit of the complex.  相似文献   

15.
16.
Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron transport system by reducing the coenzyme M (2-mercaptoethane sulfonate) and coenzyme B (7-mercaptoheptanoylthreonine sulfonate) heterodisulfide, CoM-S-S-CoB, to regenerate the thiol-coenzymes for reuse. In Methanosarcina acetivorans, HdrABC expression caused an increased rate of methanogenesis and a decrease in metabolic efficiency on methylotrophic substrates. When acetate was the sole carbon and energy source, neither deletion nor overexpression of HdrABC had an effect on growth or methane production rates. These results suggest that in cells grown on methylated substrates, the cell compensates for energy losses due to expression of HdrABC with an increased rate of substrate turnover and that HdrABC lacks the appropriate electron donor in acetate-grown cells.  相似文献   

17.
Eubacterium limosum KIST612 is one of the few acetogens that can produce butyrate from carbon monoxide. We have used a genome-guided analysis to delineate the path of butyrate formation, the enzymes involved, and the potential coupling to ATP synthesis. Oxidation of CO is catalyzed by the acetyl-coenzyme A (CoA) synthase/CO dehydrogenase and coupled to the reduction of ferredoxin. Oxidation of reduced ferredoxin is catalyzed by the Rnf complex and Na+ dependent. Consistent with the finding of a Na+-dependent Rnf complex is the presence of a conserved Na+-binding motif in the c subunit of the ATP synthase. Butyrate formation is from acetyl-CoA via acetoacetyl-CoA, hydroxybutyryl-CoA, crotonyl-CoA, and butyryl-CoA and is consistent with the finding of a gene cluster that encodes the enzymes for this pathway. The activity of the butyryl-CoA dehydrogenase was demonstrated. Reduction of crotonyl-CoA to butyryl-CoA with NADH as the reductant was coupled to reduction of ferredoxin. We postulate that the butyryl-CoA dehydrogenase uses flavin-based electron bifurcation to reduce ferredoxin, which is consistent with the finding of etfA and etfB genes next to it. The overall ATP yield was calculated and is significantly higher than the one obtained with H2 + CO2. The energetic benefit may be one reason that butyrate is formed only from CO but not from H2 + CO2.  相似文献   

18.
When Methanosarcina acetivorans grows on carbon monoxide (CO), it synthesizes high levels of a protein, MA4079, homologous to aldehyde dehydrogenases. To investigate the role of MA4079 in M. acetivorans, mutants lacking the encoding gene were generated and phenotypically analyzed. Loss of MA4079 had no effect on methylotrophic growth but led to complete abrogation of methylotrophic growth in the presence of even small amounts of CO, which indicated the mutant’s inability to acclimate to the presence of this toxic gas. Prolonged incubation with CO allowed the isolation of a strain in which the effect of MA4079 deletion is suppressed. The strain, designated Mu3, tolerated the presence of high CO partial pressures even better than the wild type. Immunological analysis using antisera against MA4079 suggested that it is not abundant in M. acetivorans. Comparison of proteins differentially abundant in Mu3 and the wild type revealed an elevated level of methyl-coenzyme M reductase and a decreased level of one isoform of carbon monoxide dehydrogenase/acetyl-coenzyme A synthase, which suggests that pleiotropic mutation(s) compensating for the loss of MA4079 affected catabolism. The data presented point toward a role of MA4079 to enable M. acetivorans to properly acclimate to CO.  相似文献   

19.
Metal cofactors are required for many enzymes in anaerobic microbial respiration. This study examined iron, cobalt, nickel, copper, and zinc in cellular and abiotic phases at the single-cell scale for a sulfate-reducing bacterium (Desulfococcus multivorans) and a methanogenic archaeon (Methanosarcina acetivorans) using synchrotron X-ray fluorescence microscopy. Relative abundances of cellular metals were also measured by inductively coupled plasma mass spectrometry. For both species, zinc and iron were consistently the most abundant cellular metals. M. acetivorans contained higher nickel and cobalt content than D. multivorans, likely due to elevated metal requirements for methylotrophic methanogenesis. Cocultures contained spheroid zinc sulfides and cobalt/copper sulfides.  相似文献   

20.

Background  

Many electron transport chain (ETC) genes show accelerated rates of nonsynonymous nucleotide substitutions in anthropoid primate lineages, yet in non-anthropoid lineages the ETC proteins are typically highly conserved. Here, we test the hypothesis that COX5A, the ETC gene that encodes cytochrome c oxidase subunit 5A, shows a pattern of anthropoid-specific adaptive evolution, and investigate the distribution of this protein in catarrhine brains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号