首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine whether Saccharomyces cerevisiae can serve as a host for efficient carotenoid and especially β-carotene production, carotenogenic genes from the carotenoid-producing yeast Xanthophyllomyces dendrorhous were introduced and overexpressed in S. cerevisiae. Because overexpression of these genes from an episomal expression vector resulted in unstable strains, the genes were integrated into genomic DNA to yield stable, carotenoid-producing S. cerevisiae cells. Furthermore, carotenoid production levels were higher in strains containing integrated carotenogenic genes. Overexpression of crtYB (which encodes a bifunctional phytoene synthase and lycopene cyclase) and crtI (phytoene desaturase) from X. dendrorhous was sufficient to enable carotenoid production. Carotenoid production levels were increased by additional overexpression of a homologous geranylgeranyl diphosphate (GGPP) synthase from S. cerevisiae that is encoded by BTS1. Combined overexpression of crtE (heterologous GGPP synthase) from X. dendrorhous with crtYB and crtI and introduction of an additional copy of a truncated 3-hydroxy-3-methylglutaryl-coenzyme A reductase gene (tHMG1) into carotenoid-producing cells resulted in a successive increase in carotenoid production levels. The strains mentioned produced high levels of intermediates of the carotenogenic pathway and comparable low levels of the preferred end product β-carotene, as determined by high-performance liquid chromatography. We finally succeeded in constructing an S. cerevisiae strain capable of producing high levels of β-carotene, up to 5.9 mg/g (dry weight), which was accomplished by the introduction of an additional copy of crtI and tHMG1 into carotenoid-producing yeast cells. This transformant is promising for further development toward the biotechnological production of β-carotene by S. cerevisiae.  相似文献   

2.

Main conclusion

Storage promotes carotenoid accumulation and converts amylochromoplasts into chromoplasts in winter squash. Such carotenoid enhancement is likely due to continuous biosynthesis along with reduced turnover and/or enhanced sequestration. Postharvest storage of fruits and vegetables is often required and frequently results in nutritional quality change. In this study, we investigated carotenoid storage plastids, carotenoid content, and its regulation during 3-month storage of winter squash butternut fruits. We showed that storage improved visual appearance of fruit flesh color from light to dark orange, and promoted continuous accumulation of carotenoids during the first 2-month storage. Such an increased carotenoid accumulation was found to be concomitant with starch breakdown, resulting in the conversion of amylochromoplasts into chromoplasts. The butternut fruits contained predominantly β-carotene, lutein, and violaxanthin. Increased ratios of β-carotene and violaxanthin to total carotenoids were noticed during the storage. Analysis of carotenoid metabolic gene expression and PSY protein level revealed a decreased expression of carotenogenic genes and PSY protein following the storage, indicating that the increased carotenoid level might not be due to increased biosynthesis. Instead, the increase likely resulted from a continuous biosynthesis with a possibly reduced turnover and/or enhanced sequestration, suggesting a complex regulation of carotenoid accumulation during fruit storage. This study provides important information to our understanding of carotenogenesis and its regulation during postharvest storage of fruits.  相似文献   

3.
The food-grade yeast Candida utilis has been engineered to confer a novel biosynthetic pathway for the production of carotenoids such as lycopene, β-carotene, and astaxanthin. The exogenous carotenoid biosynthesis genes were derived from the epiphytic bacterium Erwinia uredovora and the marine bacterium Agrobacterium aurantiacum. The carotenoid biosynthesis genes were individually modified based on the codon usage of the C. utilis glyceraldehyde 3-phosphate dehydrogenase gene and expressed in C. utilis under the control of the constitutive promoters and terminators derived from C. utilis. The resultant yeast strains accumulated lycopene, β-carotene, and astaxanthin in the cells at 1.1, 0.4, and 0.4 mg per g (dry weight) of cells, respectively. This was considered to be a result of the carbon flow into ergosterol biosynthesis being partially redirected to the nonendogenous pathway for carotenoid production.  相似文献   

4.
5.
6.
There is a particularly high interest to derive carotenoids such as β-carotene and lutein from higher plants and algae for the global market. It is well known that β-carotene can be overproduced in the green microalga Dunaliella salina in response to stressful light conditions. However, little is known about the effects of light quality on carotenoid metabolism, e.g., narrow spectrum red light. In this study, we present UPLC-UV-MS data from D. salina consistent with the pathway proposed for carotenoid metabolism in the green microalga Chlamydomonas reinhardtii. We have studied the effect of red light-emitting diode (LED) lighting on growth rate and biomass yield and identified the optimal photon flux for D. salina growth. We found that the major carotenoids changed in parallel to the chlorophyll b content and that red light photon stress alone at high level was not capable of upregulating carotenoid accumulation presumably due to serious photodamage. We have found that combining red LED (75 %) with blue LED (25 %) allowed growth at a higher total photon flux. Additional blue light instead of red light led to increased β-carotene and lutein accumulation, and the application of long-term iterative stress (adaptive laboratory evolution) yielded strains of D. salina with increased accumulation of carotenoids under combined blue and red light.  相似文献   

7.
8.
9.
10.
Zhu L  Wu X  Li O  Qian C  Gao H 《PloS one》2012,7(4):e35099
Most Sphingomonas species synthesize the yellow carotenoid nostoxanthin. However, the carotenoid biosynthetic pathway of these species remains unclear. In this study, we cloned and characterized a carotenoid biosynthesis gene cluster containing four carotenogenic genes (crtG, crtY, crtI and crtB) and a β-carotene hydroxylase gene (crtZ) located outside the cluster, from the gellan-gum producing bacterium Sphingomonas elodea ATCC 31461. Each of these genes was inactivated, and the biochemical function of each gene was confirmed based on chromatographic and spectroscopic analysis of the intermediates accumulated in the knockout mutants. Moreover, the crtG gene encoding the 2,2'-β-hydroxylase and the crtZ gene encoding the β-carotene hydroxylase, both responsible for hydroxylation of β-carotene, were confirmed by complementation studies using Escherichia coli producing different carotenoids. Expression of crtG in zeaxanthin and β-carotene accumulating E. coli cells resulted in the formation of nostoxanthin and 2,2'-dihydroxy-β-carotene, respectively. Based on these results, a biochemical pathway for synthesis of nostoxanthin in S. elodea ATCC 31461 is proposed.  相似文献   

11.
The food-grade yeast Candida utilis has been engineered to confer a novel biosynthetic pathway for the production of carotenoids such as lycopene, β-carotene, and astaxanthin. The exogenous carotenoid biosynthesis genes were derived from the epiphytic bacterium Erwinia uredovora and the marine bacterium Agrobacterium aurantiacum. The carotenoid biosynthesis genes were individually modified based on the codon usage of the C. utilis glyceraldehyde 3-phosphate dehydrogenase gene and expressed in C. utilis under the control of the constitutive promoters and terminators derived from C. utilis. The resultant yeast strains accumulated lycopene, β-carotene, and astaxanthin in the cells at 1.1, 0.4, and 0.4 mg per g (dry weight) of cells, respectively. This was considered to be a result of the carbon flow into ergosterol biosynthesis being partially redirected to the nonendogenous pathway for carotenoid production.Carotenoids are yellow, orange, and red pigments which are widely distributed in nature (3). Industrially, carotenoid pigments such as β-carotene are utilized as food or feed supplements. β-Carotene is also a precursor of vitamin A in mammals (11). Recently, carotenoids have attracted greater attention, due to their beneficial effect on human health: e.g., the functions of lycopene and astaxanthin include strong quenching of singlet oxygen (12), involvement in cancer prevention (2), and enhancement of immune responses (6). Astaxanthin has also been exploited for industrial use, principally as an agent for pigmenting cultured fish and shellfish.The genes responsible for the synthesis of carotenoids such as lycopene, β-carotene, and astaxanthin have been isolated from the epiphytic Erwinia species or the marine bacteria Agrobacterium aurantiacum and Alcaligenes sp. strain PC-1, and their functions have been elucidated (13, 14). The first substrate of the encoded enzymes for carotenoid synthesis is farnesyl pyrophosphate (diphosphate) (FPP), which is the common precursor for the biosynthesis of numerous isoprenoid compounds such as sterols, hopanols, dolicols, and quinones. The ubiquitous nature of FPP among yeasts has been utilized in the microbial production of lycopene and β-carotene by the yeast Saccharomyces cerevisiae carrying the Erwinia uredovora carotenogenic genes (19). However, the amount of carotenoids produced in these hosts was only 0.1 mg of lycopene and 0.1 mg of β-carotene per g (dry weight) of cells, respectively.The edible yeast Candida utilis is generally recognized as a safe substance by the Food and Drug Administration. Large-scale production of the yeast cells has been developed with cheap biomass-derived sugars as the carbon source for the production of single-cell protein and several chemicals such as glutathione and RNA (1, 4). This yeast was also found to accumulate a large amount of ergosterol in the cell during stationary phase (6 to 13 mg/g [dry weight] of cells) (17). Thus, C. utilis has the potential to produce a large amount of carotenoids by redirecting the carbon flux for the ergosterol biosynthesis into the nonendogenous pathway for carotenoid synthesis via FPP. Previously, a C. utilis strain was made to produce lycopene (0.8 mg/g [dry weight]) by expressing the three nonmodified genes crtE, crtB, and crtI derived from E. uredovora (15).In this paper, the de novo biosynthesis of lycopene, β-carotene, and astaxanthin has been performed in C. utilis by using six carotenogenic genes, which were synthesized according to the codon usage of the C. utilis glyceraldehyde-3-phosphate dehydrogenase (GAP) gene, which is expressed at high levels. By this approach, increased carotenoid production in C. utilis was achieved.  相似文献   

12.
The biosynthesis of the aryl carotenoid, chlorobactene, was examined in the green sulfur bacterium, Chlorobium limicola f. thiosulfatophilum. Nicotine, which was used to inhibit carotenoid cyclization, caused the accumulation of the acyclic carotenoid, lycopene. Cells reincubated in fresh medium, after removal of nicotine, synthesized chlorobactene more readily from newly synthesized lycopene rather than from the pool of lycopene accumulated during nicotine inhibition. When the cells were reincubated in the presence of diphenylamine, which inhibited de novo carotenogenesis, a portion of the lycopene which had accumulated during nicotine inhibition was converted into chlorobactene. There was no evidence that neurosporene, rather than lycopene, was the precyclization intermediate. The involvement of -carotene as the cyclic precursor of chlorobactene also was shown. The pathway for chlorobactene biosynthesis is discussed in terms of a possible arrangement of the enzymes involved in carotenoid biosynthesis.Abbreviations DPA Diphenylamine - TLC Thin layer chromatography  相似文献   

13.
A limited number of carotenoid pathway genes from microbial sources have been studied for analyzing the pathway complementation in the heterologous host Escherichia coli. In order to systematically investigate the functionality of carotenoid pathway enzymes in E. coli, the pathway genes of carotenogenic microorganisms (Brevibacterium linens, Corynebacterium glutamicum, Rhodobacter sphaeroides, Rhodobacter capsulatus, Rhodopirellula baltica, and Pantoea ananatis) were modified to form synthetic expression modules and then were complemented with Pantoea agglomerans pathway enzymes (CrtE, CrtB, CrtI, CrtY, and CrtZ). The carotenogenic pathway enzymes in the synthetic modules showed unusual activities when complemented with E. coli. For example, the expression of heterologous CrtEs of B. linens, C. glutamicum, and R. baltica influenced P. agglomerans CrtI to convert its substrate phytoene into a rare product—3,4,3′,4′-tetradehydrolycopene—along with lycopene, which was an expected product, indicating that CrtE, the first enzyme in the carotenoid biosynthesis pathway, can influence carotenoid profiles. In addition, CrtIs of R. sphaeroides and R. capsulatus converted phytoene into an unusual lycopene as well as into neurosporene. Thus, this study shows that the functional complementation of pathway enzymes from different sources is a useful methodology for diversifying biosynthesis as nature does.  相似文献   

14.
15.
It has been reported that phosphorus deprivation can induce β-carotene and triacylglycerol accumulation in Dunaliella salina cells. In this study, we aimed to elucidate the metabolic responses of D. salina to phosphorus deprivation, using gas chromatography-mass spectrometry as analytical tool. A total of 79 metabolites were identified in cells cultured in either phosphorus-deprived or replete media, including 18 amino acids, 28 other acids, 16 sugars, 12 alcohols, and 5 amino compounds. Hierarchical clustering was used to sort these metabolites into three groups with different change trends. Most amino acids and sugars, including the abiotic stress-related metabolites lysine, proline, trehalose, talose, and tagatose, increased, whereas N,N-dimethylglycine, L-serine, D-erythro-pentose, and D-ribose remained constant upon phosphorus deprivation. Multivariate statistical partial least squares and principal component analyses indicated that metabolite profiles were significantly changed upon phosphorus deprivation, and 18 biomarkers which can be used to distinguish the two culture conditions were identified. Stress-related polyamines such as cadaverine, antioxidants such as L-ascorbic acid, and L-methionine, as well as the osmolytes proline, mannitol, and arabitol, also increased. Furthermore, phosphorus deprivation resulted in increases of both saturated and unsaturated fatty acids in D. salina cells. These results suggest that phosphorus deprivation triggers comprehensive metabolic responses in D. salina which may be useful for future bioprocesses.  相似文献   

16.
17.
研究了短小芽孢杆菌(Bacillus pumilus)对盐藻空间诱变株系SZ-05(Dunaliella salina SZ-05)的生物量及β-胡萝卜素积累的影响。结果表明,短小芽孢杆菌显著提高了盐藻SZ-05的生物量和β-胡萝卜素的产量,明显降低了培养体系中的溶解氧和胞外多糖的含量。溶解氧的减少,使得藻细胞的光呼吸作用下降,光合作用速率提高,使藻细胞生物量增加。胞外多糖具有抗氧化作用,胞外多糖的减少可能进一步增加了β-胡萝卜素的合成,从而使β-胡萝卜素在胁迫条件下大幅度增加。  相似文献   

18.
The cyanobacterium Synechococcus PCC7942 was transformed with various carotenogenic genes, and the resulting transformants either accumulated higher amounts of β-carotene and zeaxanthin or showed a shift in the carotenoid pattern toward the formation of zeaxanthin. These transformants were exposed to ultraviolet-B (UV-B) radiation, and the degradation of phycobilins, the inactivation of photosynthetic oxygen evolution, and the activity of photosystem II were determined. In the genetically modified cells, the influence on destruction of phycobilins was negligible. However, protection of photosynthetic reactions against UV-B damage was observed and was dependent on the carotenoid concentrations in the different transformants. Furthermore, it was shown that endogenous zeaxanthin is more effective than β-carotene. Our results suggest that carotenoids exert their protective function as antioxidants to inactivate UV-B-induced radicals in the photosynthetic membrane.  相似文献   

19.
A phytoene desaturase (PDS) gene was cloned and characterized from the unicellular green microalga Chlamydomonas reinhardtii. Functional complementation analysis revealed C. reinhardtii PDS (CrPDS) catalyzes the conversion of phytoene to the colored carotenoid ζ-carotene. A single amino acid substitution, L505F, enhanced its desaturation activity by 29%, as indicated by an in vitro enzymatic assay. In addition, CrPDS-L505F exhibited 27.7-fold higher resistance to the herbicide norflurazon. Glass bead-mediated delivery displayed a high transformation efficiency of C. reinhardtii with CrPDS-L505F, demonstrating clearly that the engineered endogenous CrPDS is a dominant selectable marker for C. reinhardtii and possibly for other green algae. Furthermore, the expression of PDS could enhance the intracellular carotenoid accumulation of transformants, opening up the possibility of engineering the carotenogenic pathway for improved carotenoid production in microalgae.  相似文献   

20.
Carotenoids represent a group of widely distributed pigments derived from the general isoprenoid biosynthetic pathway that possess diverse functions in plant primary and secondary metabolism. Modification of α- and β-carotene backbones depends in part on ring hydroxylation. Two ferredoxin-dependent non-heme di-iron monooxygenases (AtB1 and AtB2) that mainly catalyze in vivo β-carotene hydroxylations of β,β-carotenoids, and two heme-containing cytochrome P450 (CYP) monooxygenases (CYP97A3 and CYP97C1) that preferentially hydroxylate the ε-ring of α-carotene or the β-ring of β,ε-carotenoids, have been characterized in Arabidopsis by analysis of loss-of-function mutant phenotypes. We further investigated functional roles of both hydroxylase classes in modification of the β- and ε-rings of α-carotene and β-carotene through over-expression of AtB1, CYP97A3, CYP97C1, and the hydroxylase candidate CYP97B3. Since carotenoid hydroxylation is required for generation of ketocarotenoids by the bkt1(CrtO) β-carotene ketolase, all hydroxylase constructs were also introduced into an Arabidopsis line expressing the Haematococcus pluvalis bkt1 β-carotene ketolase. Analysis of foliar carotenoid profiles in lines overexpressing the individual hydroxylases indicate a role for CYP97B3 in carotenoid biosynthesis, confirm and extend previous findings of hydroxylase activities based on knock-out mutants, and suggest functions of the multifunctional enzymes in carotenoid biosynthesis. Hydroxylase over-expression in combination with bkt1 did not result in ketocarotenoid accumulation, but instead unexpected patterns of α-carotene derivatives, accompanied by a reduction of α-carotene, were observed. These data suggest possible interactions between the β-carotene ketolase bkt1 and the hydroxylases that impact partitioning of carbon flux into different carotenoid branch pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号