首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
2.
Severe injury remains a leading cause of death and morbidity in patients under 40, with the number of annual trauma-related deaths approaching 160,000 in the United States. Patients who survive the initial trauma and post-traumatic resuscitation are at risk for immune dysregulation, which contributes to late mortality and accounts for approximately 20% of deaths after traumatic injury. This post-traumatic immunosuppressed state has been attributed to over-expression of anti-inflammatory mediators in an effort to restore host homeostasis. We measured a panel of monocyte markers and cytokines in 50 severely injured trauma patients for 3 days following admission. We made the novel observation that the subpopulation of monocytes expressing high levels of CD14 and CD16 was expanded in the majority of patients. These cells also expressed CD163 consistent with differentiation into alternatively activated macrophages with potential regulatory or wound-healing activity. We examined factors in trauma plasma that may contribute to the generation and activation of these cells. The percentage of CD14highCD16+ monocytes after trauma correlated strongly with plasma C-reactive protein (CRP) transforming growth factor-β (TGF-β), and macrophage colony-stimulating factor (M-CSF) levels. We demonstrate a role for TGF-β and M-CSF, but not CRP in generating these cells using monocytes from healthy volunteers incubated with plasma from trauma patients. CD16 is a receptor for CRP and IgG, and we showed that monocytes differentiated to the CD14highCD16+ phenotype produced anti-inflammatory cytokines in response to acute phase concentrations of CRP. The role of these cells in immunosuppression following trauma is an area of ongoing investigation.  相似文献   

3.
Growth factors, such as platelet-derived growth factor BB (PDGF-BB) and transforming growth factor β (TGFβ), are key regulators of cellular functions, including proliferation, migration, and differentiation. Growth factor signaling is modulated by context-dependent cross-talk between different signaling pathways. We demonstrate in this study that PDGF-BB induces phosphorylation of Smad2, a downstream mediator of the canonical TGFβ pathway, in primary dermal fibroblasts. The PDGF-BB-mediated Smad2 phosphorylation was dependent on the kinase activities of both TGFβ type I receptor (TβRI) and PDGF β-receptor (PDGFRβ), and it was prevented by inhibitory antibodies against TGFβ. Inhibition of the activity of the TβRI kinase greatly reduced the PDGF-BB-dependent migration in dermal fibroblasts. Moreover, we demonstrate that the receptors for PDGF-BB and TGFβ interact physically in primary dermal fibroblasts and that stimulation with PDGF-BB induces internalization not only of PDGFRβ but also of TβRI. In addition, silencing of PDGFRβ by siRNA decreased the stability of TβRI and delayed TGFβ-induced signaling. We further show that the hyaluronan receptor CD44 interacts with both PDGFRβ and TβRI. Depletion of CD44 by siRNA increased signaling via PDGFRβ and TβRI by stabilizing the receptor proteins. Our data suggest that cross-talk between PDGFRβ and TβRI occurs in dermal fibroblasts and that CD44 negatively modulates signaling via these receptors.  相似文献   

4.

Background and Aim

Autophagy is a cellular process to regulate the turnover of misfolded/aggregated proteins or dysfunctional organelles such as damaged mitochondria. Microtubule-associated protein MAP1S (originally named C19ORF5) is a widely-distributed homologue of neuronal-specific MAP1A and MAP1B with which autophagy marker light chain 3 (LC3) was originally co-purified. MAP1S bridges autophagic components with microtubules and mitochondria through LC3 and positively regulates autophagy flux from autophagosomal biogenesis to degradation. The MAP1S-mediated autophagy suppresses tumorigenesis as suggested in a mouse liver cancer model and in prostate cancer patients. The TGFβ signaling pathway plays a central role in pancreatic tumorigenesis, and high levels of TGFβ suggest a tumor suppressive function and predict a better survival for some patients with resectable pancreatic ductal adenocarcinoma. In this study, we try to understand the relationship between TGFβ and MAP1S-mediated autophagy in pancreatic ductal adenocarcinoma.

Methods

We collected the tumor and its adjacent normal tissues from 33 randomly selected patients of pancreatic ductal adenocarcinomas to test the association between TGFβ and autophagy markers MAP1S and LC3. Then we tested the cause and effect relation between TGFβ and autophagy markers in cultured pancreatic cancer cell lines.

Results

Here we show that levels of TGFβ and autophagy markers MAP1S and LC3 are dramatically elevated in tumor tissues from patients with pancreatic ductal adenocarcinomas. TGFβ increases levels of MAP1S protein and enhances autophagy flux.

Conclusion

TGFβ may suppress the development of pancreatic ductal adenocarcinomas by enhancing MAP1S-mediated autophagy.  相似文献   

5.
Transforming growth factor-beta (TGF-β), a key mediator of cardiac fibroblast activation, has a major influence on collagen type I production. However, the epigenetic mechanisms by which TGF-β induces collagen type I alpha 1 (COL1A1) expression are not fully understood. This study was designed to examine whether or not DNA methylation is involved in TGF-β-induced COL1A1 expression in cardiac fibroblasts. Cells isolated from neonatal Sprague-Dawley rats were cultured and stimulated with TGF-β1. The mRNA levels of COL1A1 and DNA methyltransferases (DNMTs) were determined via quantitative polymerase chain reaction and the protein levels of collagen type I were determined via Western blot as well as enzyme-linked immunosorbent assay. The quantitative methylation of the COL1A1 promoter region was analyzed using the MassARRAY platform of Sequenom. Results showed that TGF-β1 upregulated the mRNA expression of COL1A1 and induced the synthesis of cell-associated and secreted collagen type I in cardiac fibroblasts. DNMT1 and DNMT3a expressions were significantly downregulated and the global DNMT activity was inhibited when treated with 10 ng/mL of TGF-β1 for 48 h. TGF-β1 treatment resulted in a significant reduction of the DNA methylation percentage across multiple CpG sites in the rat COL1A1 promoter. Thus, TGF-β1 can induce collagen type I expression through the inhibition of DNMT1 and DNMT3a expressions as well as global DNMT activity, thereby resulting in DNA demethylation of the COL1A1 promoter. These findings suggested that the DNMT-mediated DNA methylation is an important mechanism in regulating the TGF-β1-induced COL1A1 gene expression.  相似文献   

6.
Transforming growth factor β-activated kinase 1 (TAK1) kinase is an indispensable signaling intermediate in tumor necrosis factor (TNF), interleukin 1, and Toll-like receptor signaling pathways. TAK1-binding protein 2 (TAB2) and its closely related protein, TAB3, are binding partners of TAK1 and have previously been identified as adaptors of TAK1 that recruit TAK1 to a TNF receptor signaling complex. TAB2 and TAB3 redundantly mediate activation of TAK1. In this study, we investigated the role of TAB2 by analyzing fibroblasts having targeted deletion of the tab2 gene. In TAB2-deficient fibroblasts, TAK1 was associated with TAB3 and was activated following TNF stimulation. However, TAB2-deficient fibroblasts displayed a significantly prolonged activation of TAK1 compared with wild type control cells. This suggests that TAB2 mediates deactivation of TAK1. We found that a TAK1-negative regulator, protein phosphatase 6 (PP6), was recruited to the TAK1 complex in wild type but not in TAB2-deficient fibroblasts. Furthermore, we demonstrated that both PP6 and TAB2 interacted with the polyubiquitin chains and this interaction mediated the assembly with TAK1. Our results indicate that TAB2 not only activates TAK1 but also plays an essential role in the deactivation of TAK1 by recruiting PP6 through a polyubiquitin chain-dependent mechanism.  相似文献   

7.
8.

Introduction

Encapsulating peritoneal sclerosis (EPS) is a devastating complication of peritoneal dialysis (PD). The pathogenesis is not exactly known and no preventive strategy or targeted medical therapy is available. CCN2 has both pro-fibrotic and pro-angiogenic actions and appears an attractive target. Therefore, we studied peritoneal expression of CCN2, as well as TGFβ1 and VEGF, in different stages of peritoneal fibrosis.

Materials and methods

Sixteen PD patients were investigated and compared to 12 hemodialysis patients and four pre-emptively transplanted patients. Furthermore, expression was investigated in 12 EPS patients in comparison with 13 PD and 12 non-PD patients without EPS. Peritoneal tissue was taken during kidney transplantation procedure or during EPS surgery. In a subset of patients, CCN2 protein levels in peritoneal effluent and plasma were determined. Samples were examined by qPCR, histology, immunohistochemistry, and ELISA.

Results

Peritoneal CCN2 expression was 5-fold higher in PD patients compared to pre-emptively transplanted patients (P<0.05), but did not differ from hemodialysis patients. Peritoneal expression of TGFβ1 and VEGF were not different between the three groups; neither was peritoneal thickness. Peritoneum of EPS patients exhibited increased expression of CCN2 (35-fold, P<0.001), TGFβ1 (24-fold, P<0.05), and VEGF (77-fold, P<0.001) compared to PD patients without EPS. In EPS patients, CCN2 protein was mainly localized in peritoneal endothelial cells and fibroblasts. CCN2 protein levels were significantly higher in peritoneal effluent of EPS patients compared to levels in dialysate of PD patients (12.0±4.5 vs. 0.91±0.92 ng/ml, P<0.01), while plasma CCN2 levels were not increased.

Conclusions

Peritoneal expression of CCN2, TGFβ1, and VEGF are significantly increased in EPS patients. In early stages of peritoneal fibrosis, only CCN2 expression is slightly increased. Peritoneal CCN2 overexpression in EPS patients is a locally driven response. The potential of CCN2 as biomarker and target for CCN2-inhibiting agents to prevent or treat EPS warrants further study.  相似文献   

9.
This study investigated the role of ?1607 (1G/2G) (rs1799750) polymorphism of the MMP-1 gene in chronic pancreatitis. We genotyped 100 patients with chronic pancreatitis and 100 control subjects using tetra-primer ARMS-PCR followed by agarose gel electrophoresis. Serum levels of MMP-1 were determined by Elisa. Statistical analysis was applied to test the significance of the results. The genotypic and allelic distribution varied significantly between the disease group and the control subjects [OD = 1.981 (1.236–3.181), p = 0.004]. MMP-1 levels were higher in subjects homozygous for the 2G allele than in subjects with the 1G allele. The present study revealed a significant association of the MMP-1 ?1607 1G/2G (rs1799750) gene promoter polymorphism with chronic pancreatitis, and it can be considered a biological marker in the etiology of chronic pancreatitis.  相似文献   

10.
11.
P311, a conserved 8-kDa intracellular protein expressed in brain, smooth muscle, regenerating tissues, and malignant glioblastomas, represents the first documented stimulator of TGF-β1-3 translation in vitro and in vivo. Here we initiated efforts to define the mechanism underlying P311 function. PONDR® (Predictor Of Naturally Disordered Regions) analysis suggested and CD confirmed that P311 is an intrinsically disordered protein, therefore requiring an interacting partner to acquire tertiary structure and function. Immunoprecipitation coupled with mass spectroscopy identified eIF3 subunit b (eIF3b) as a novel P311 binding partner. Immunohistochemical colocalization, GST pulldown, and surface plasmon resonance studies revealed that P311-eIF3b interaction is direct and has a Kd of 1.26 μm. Binding sites were mapped to the non-canonical RNA recognition motif of eIF3b and a central 11-amino acid-long region of P311, here referred to as eIF3b binding motif. Disruption of P311-eIF3b binding inhibited translation of TGF-β1, 2, and 3, as indicated by luciferase reporter assays, polysome fractionation studies, and Western blot analysis. RNA precipitation assays after UV cross-linking and RNA-protein EMSA demonstrated that P311 binds directly to TGF-β 5′UTRs mRNAs through a previously unidentified RNA recognition motif-like motif. Our results demonstrate that P311 is a novel RNA-binding protein that, by interacting with TGF-βs 5′UTRs and eIF3b, stimulates the translation of TGF-β1, 2, and 3.  相似文献   

12.
As significant differences between sexes were found in the susceptibility to alcoholic liver disease in human and animal models, it was the aim of the present study to investigate whether female mice also are more susceptible to the development of non-alcoholic fatty liver disease (NAFLD). Male and female C57BL/6J mice were fed either water or 30% fructose solution ad libitum for 16 wks. Liver damage was evaluated by histological scoring. Portal endotoxin levels and markers of Kupffer cell activation and insulin resistance, plasminogen activator inhibitor 1 (PAI-1) and phosphorylated adenosine monophosphate–activated protein kinase (pAMPK ) were measured in the liver. Adiponectin mRNA expression was determined in adipose tissue. Hepatic steatosis was almost similar between male and female mice; however, inflammation was markedly more pronounced in livers of female mice. Portal endotoxin levels, hepatic levels of myeloid differentiation primary response gene (88) (MyD88) protein and of 4-hydroxynonenal protein adducts were elevated in animals with NAFLD regardless of sex. Expression of insulin receptor substrate 1 and 2 was decreased to a similar extent in livers of male and female mice with NAFLD. The less pronounced susceptibility to liver damage in male mice was associated with a superinduction of hepatic pAMPK in these mice whereas, in livers of female mice with NAFLD, PAI-1 was markedly induced. Expression of adiponectin in visceral fat was significantly lower in female mice with NAFLD but unchanged in male mice compared with respective controls. In conclusion, our data suggest that the sex-specific differences in the susceptibility to NAFLD are associated with differences in the regulation of the adiponectin–AMPK–PAI-1 signaling cascade.  相似文献   

13.
14.
15.
16.
Transforming growth factor-beta3 (TGF-β3) and 1α,25-dihydroxyvitamin D3 (1α,25 (OH) 2D3) are essential factors in chondrogenesis and osteogenesis respectively. These factors also play a fundamental role in the developmental processes and the maintenance of skeletal integrity, but their respective direct effects on these processes are not fully understood. Using an organotypic bone rudiment culture system the current study has examined the direct roles the osteotropic factors 1α,25 (OH)2D3 and TGF-β3 exert on the development and modulation of the three dimensional structure of the embryonic femur. Isolated embryonic chick femurs (E11) were organotypically cultured for 10 days in basal media, or basal media supplemented with either 1α,25 (OH) 2D3 (25 nM) or TGF-β3 (5 ng/mL & 15 ng/mL). Analyses of the femurs were undertaken using micro-computed tomography (μCT), histology and immunohistochemistry. 1α,25 (OH)2D3 supplemented cultures enhanced osteogenesis directly in the developing femurs with elevated levels of osteogenic markers such as type 1 collagen. In marked contrast organotypic femur cultures supplemented with TGF-β3 (5 ng/mL & 15 ng/mL) demonstrated enhanced chondrogenesis with a reduction in osteogenesis. These studies demonstrate the efficacy of the ex vivo organotypic embryonic femur culture employed to elucidate the direct roles of these molecules, 1α,25 (OH) 2D3 and TGF-β3 on the structural development of embryonic bone within a three dimensional framework. We conclude that 1α,25(OH)2D and TGF-β3 modify directly the various cell populations in bone rudiment organotypic cultures effecting tissue metabolism resulting in significant changes in embryonic bone growth and modulation. Understanding the roles of osteotropic agents in the process of skeletal development is integral to developing new strategies for the recapitulation of bone tissue in later life.  相似文献   

17.
The β1-adrenergic receptor (β1-AR) is a target for treatment of major cardiovascular diseases, such as heart failure and hypertension. Recycling of agonist-internalized β1-AR is dependent on type I PSD-95/DLG/ZO1 (PDZ) in the C-tail of the β1-AR and on protein kinase A (PKA) activity (Gardner, L. A., Naren, A. P., and Bahouth, S. W. (2007) J. Biol. Chem. 282, 5085–5099). We explored the effects of point mutations in the PDZ and in the activity of PKA on recycling of the β1-AR and its binding to the PDZ-binding protein SAP97. These studies indicated that β1-AR recycling was inhibited by PKA inhibitors and by mutations in the PDZ that interfered with SAP97 binding. The trafficking effects of short sequences differing in PDZ and SAP97 binding were examined using chimeric mutant β1-AR. β1-AR chimera containing the type I PDZ of the β2-adrenergic receptor that does not bind to SAP97 failed to recycle except when serine 312 was mutated to aspartic acid. β1-AR chimera with type I PDZ sequences from the C-tails of aquaporin-2 or GluR1 recycled in a SAP97- and PKA-dependent manner. Non-PDZ β1-AR chimera derived from μ-opioid, dopamine 1, or GluR2 receptors promoted rapid recycling of chimeric β1-AR in a SAP97- and PKA-independent manner. Moreover, the nature of the residue at position −3 in the PDZ regulated whether the β1-AR was internalized alone or in complex with SAP97. These results indicate that divergent pathways were involved in trafficking the β1-AR and provide a roadmap for its trafficking via type I PDZs versus non-PDZs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号