首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tubulointerstitial fibrosis is a common pathway of chronic kidney disease (CKD) and is closely related to the progression of CKD. LMCD1, acting as an intermediary, has been reported to play a role in cardiac fibrosis. However, its role in renal fibrosis is yet to be deciphered. Based on the GEO database, we found the expression of LMCD1 is increased in kidney tissues of CKD patients and in human proximal tubular epithelial (HK-2) cells treated with transforming growth factor-β1 (TGF-β1), suggesting that LMCD1 may be involved in tubulointerstitial fibrosis. Herein, we investigated the role of LMCD1 in mice with unilateral ureteral obstruction (UUO) and in TGF-β1-stimulated HK-2 cells. In the UUO model, the expression of LMCD1 was upregulated. UUO-induced renal histopathological changes were mitigated by knockdown of LMCD1. LMCD1 silence alleviated renal interstitial fibrosis in UUO mice by decreasing the expression of TGF-β1, fibronectin, collagen I, and collagen III. LMCD1 deficiency suppressed cell apoptosis in kidney to prevent UUO-triggered renal injury. Furthermore, LMCD1 deficiency blocked the activation of ERK signaling in UUO mice. In vitro, LMCD1 was upregulated in HK-2 cells after TGF-β1 stimulation. LMCD1 silence abrogated TGF-β1-mediated upregulation of fibrotic genes. Treatment of HK-2 cells with ERK-specific inhibitor SCH772984 and agonist TPA validated LMCD1 exerted its function via activating ERK signaling. Together, our findings suggest that inhibition of LMCD1 protects against renal interstitial fibrosis by impeding ERK activation.  相似文献   

2.
The epithelial to mesenchymal transition (EMT) is a crucial event for renal fibrosis that can be elicited by TGF-β1/Smads signaling and its downstream mediator connective tissue growth factor (CTGF). As a distinct member of the TGF-β superfamily, Lefty A has been shown to be significantly downregulated in the kidneys of patients with severe ureteral obstruction, suggesting its role in renal fibrosis induced by obstructive nephropathy. In order to determine whether Lefty A prevents TGF-β1-induced EMT, human proximal tubule epithelial cells (HK-2) were stably transfected with Lefty A or control vectors and stimulated with 10 ng/ml TGF-β1 for 48 h. The results show that stimulation with TGF-β1 led to EMT including cell morphology changes, Smad2/3 signaling pathway activation, increased α-SMA, collagen type I, and CTGF expression, and decreased E-cadherin expression in mock-transfected HK-2 cells. Overexpression of Lefty A efficiently blocked p-Smad2/3 activation and attenuated all these EMT changes induced by TGF-β1. This finding suggests that Lefty A may serve as a potential new therapeutic target to inhibit or even reverse EMT during the process of renal fibrosis.  相似文献   

3.
BackgroundThe epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells is the main pathological alteration in diabetic nephropathy (DN). Traditional Chinese medicine (TCM) has been used for the treatment of DN in clinical practice and has been proven to be effective.PurposeThis aim of this study was to shed light on the efficacy of Shenxiao decoction (SXD) on the EMT of renal tubular epithelial cells and the molecular mechanisms of SXD in mice with DN, as well as on the high glucose (HG)- and TGF-β1-induced EMT of NRK-52E and HK-2 cells.Study design and methodsA bioinformatics and network pharmacology method were utilized to construct the active ingredient-target networks of SXD that were responsible for the beneficial effects against DN. The effects of RUNX3 were validated in HG- and TGF-β1-induced EMT processes in NRK-52E and HK-2 cells.ResultsBioinformatics analysis revealed that 122 matching targets were closely associated with the regulation of cell migration and the AGE-RAGE signaling pathway in diabetic complications. The results also revealed that, relative to the mice with DN, the mice in the treatment group had an improved general state and reduced blood glucose levels. The degradation of renal function was ameliorated by SXD. Moreover, the protective effects of SXD were also observed on renal structural changes. Furthermore, SXD suppressed the activation of the transforming growth factor (TGF)-β1/Smad pathway and upregulated the RUNX3 and E-cadherin levels and downregulated the extracellular matrix (ECM) protein levels in mice with DN. SXD was further found to prevent the HG- and TGF-β1-induced EMT processes in NRK-52E and HK-2 cells. Additionally, the overexpression of RUNX3 markedly inhibited the EMT and TGF-β1/Smad pathway induced by HG and TGF-β1 in NRK-52E and HK-2 cells.ConclusionTaken together, these results suggest that SXD maybe alleviate EMT in DN via the inhibition of the TGF-β1/Smad/RUNX3 signaling pathway under hyperglycemic conditions.  相似文献   

4.
5.
Kidney fibrosis is a common feature of chronic kidney disease (CKD). A recent study suggests that abnormal Notch signaling activation contributes to the development of renal fibrosis. However, the molecular mechanism that regulates this process remains unexplored. Unilateral ureteral obstruction (UUO) or sham-operated C57BL6 mice (aged 10 weeks) were randomly assigned to receive dibenzazepine (DBZ, 250 μg/100 g/d) or vehicle for 7 days. Histologic examinations were performed on the kidneys using Masson's trichrome staining and immunohistochemistry. Real-time PCR and western blot analysis were used for detection of mRNA expression and protein phosphorylation. The expression of Notch 1, 3, and 4, Notch intracellular domain (NICD), and its target genes Hes1 and HeyL were upregulated in UUO mice, while the increase in NICD protein was significantly attenuated by DBZ. After 7 days, the severity of renal fibrosis and expression of fibrotic markers, including collagen 1α1/3α1, fibronectin, and α-smooth muscle actin, were markedly increased in UUO compared with sham mice. In contrast, administration of DBZ markedly attenuated these effects. Furthermore, DBZ significantly inhibited UUO-induced expression of transforming growth factor (TGF)-β, phosphorylated Smad 2, and Smad 3. Mechanistically, Notch signaling activation in tubular epithelial cells enhanced fibroblast proliferation and activation in a coculture experiment. Our study provides evidence that Notch signaling is implicated in renal fibrogenesis. The Notch inhibitor DBZ can ameliorate this process via inhibition of the TGF-β/Smad2/3 signaling pathway, and might be a novel drug for preventing chronic kidney disease.  相似文献   

6.
Renal fibrosis, the ultimate common pathway of progressive nephropathy, is characterized by excess accumulation and deposition of extracellular matrix (ECM) within the renal interstitium and glomeruli, finally resulting in end-stage kidney failure. TGFβ1 is not only abnormally increased during fibrosis but also involved in ECM induction and accumulation. Based on the bioinformative analyses, phosphatase and tensin homolog deleted on chromosome ten (PTEN) and focal adhesion kinase (FAK) signaling pathway might be involved in TGFβ1 functions on renal fibrosis development. In the present study, fibrosis was induced in HK-2 cells using TGFβ1 and PTEN expression was significantly suppressed by 24 or 48 hours TGFβ1 treatment. PTEN overexpression in HK-2 cells improved TGFβ1-induced fibrosis within α-SMA and E-cadherin. According to the KEGG signaling pathway annotation analyses on microarray profiles (GSE23338 and GSE20247) and immunoblotting validation, FAK signaling might be involved in PTEN functions in TGFβ1-induced fibrosis. PTEN overexpression significantly inhibited TGFβ1- or unilateral ureteral obstruction (UUO)-induced FAK signaling pathway activation both in vitro and in vivo; more importantly, PTEN silence enhanced TGFβ1- or UUO-induced fibrosis, while FAK inhibitor PF567721 significantly reversed the effects of PTEN silence, indicating that PTEN exerted its effects on TGFβ1- and UUO-induced fibrotic development in vitro and in vivo via inhibiting FAK signaling pathway. In summary, these findings indicate that PTEN could improve cellular fibrotic changes and renal fibrosis via inhibiting FAK/AKT signaling pathway. Restoring PTEN expression to target FAK/AKT signaling pathway might be a potent strategy for renal fibrosis treatment.  相似文献   

7.
Renal tubular epithelial cells may undergo epithelial-mesenchymal transition (EMT) in response to stimuli, such as transforming growth factor (TGF)-β1, leading to myofibroblast activation and renal fibrosis. The formin mDia1 is required for nucleation and polymerization of actin and the microtubule cytoskeleton. The present study sought to explore the role of mDia1 in EMT of tubular epithelial cells. A rat model of unilateral ureteral obstruction (UUO) was established. The expression of TGF-β1, collagen I, collagen III, and mDia1 in the kidneys was examined at day 7 after surgery. The effect of mDia1 on EMT was explored in NRK-52E cells by exposing them to TGF-β1. Increased expression of TGF-β1, collagen I, collagen III, and mDia1 was found in obstructive kidneys of UUO model rats. Exposing rat tubular epithelial cells to TGF-β1 promoted collagen I and collagen III expression but had no effect on mDia1 expression. Silencing mDia1 expression impeded epithelial cell migration as well as reduced TGF-β1, collagen, and Profilin1 expression, whereas mDia1 overexpression exerted an opposite effect. Furthermore, mDia1 regulated the expression of vimentin, α-smooth muscle actin, and E-cadherin and focal adhesion-kinase (FAK)/Src activation through Profilin1. Inhibition of the mDia1 activator RhoA by fasudil reversed EMT, and FAK/Src activation induced by mDia1. In conclusion, mDia1 regulated tubular epithelial cell migration, collagen expression, and EMT in NRK-52E cells exposed to TGF-β1. Thus, suppression of mDia1 activation might be a strategy to counteract renal fibrosis.  相似文献   

8.
Fibroblast-myofibroblast transdifferentiation (FMT) is widely recognized as the major pathological feature of renal fibrosis. Although melatonin has exerted antifibrogenic activity in many diseases, its role in renal FMT remains unclear. In the present study, the aim was to explore the effect of melatonin on renal FMT and the underlying mechanisms. We established the transforming growth factor (TGF)-β1 stimulated rat renal fibroblast cells (NRK-49F) model in vitro and unilateral ureteral obstruction (UUO) mice model in vivo. We assessed levels of α-smooth muscle actin (α-SMA), col1a1 and fibronectin, STAT3 and AP-1, as well as miR-21-5p and its target genes (Spry1, PTEN, Smurf2 and PDCD4). We found that melatonin reduced the expression of α-SMA, col1a1 and fibronectin, as well as the formation of α-SMA filament in TGF-β1-treated NRK-49F cells. Meanwhile, melatonin inhibited STAT3 phosphorylation, down-regulated miR-21-5p expression, and up-regulated Spry1 and PTEN expression. Moreover, miR-21-5p mimics partially antagonized the anti-fibrotic effect of melatonin. For animal experiments, the results revealed that melatonin remarkably ameliorated UUO-induced renal fibrosis, attenuated the expression of miR-21-5p and pro-fibrotic proteins and elevated Spry1 and PTEN expression. Nevertheless, agomir of miR-21-5p blocked the renoprotective effect of melatonin in UUO mice. These results indicated that melatonin could alleviate TGF-β1-induced renal FMT and UUO-induced renal fibrosis through down-regulation of miR-21-5p. Regulation of miR-21-5p/PTEN and/or miR-21-5p/Spry1 signal might be involved in the anti-fibrotic effect of melatonin in the kidneys of UUO mice.  相似文献   

9.
Response gene to complement 32 (RGC-32) is a downstream target of transforming growth factor-β (TGF-β). TGF-β is known to play a pathogenic role in renal fibrosis. In this study, we investigated RGC-32 function in renal fibrosis following unilateral ureteral obstruction (UUO) in mice, a model of progressive tubulointerstitial fibrosis. RGC-32 is normally expressed only in blood vessels of mouse kidney. However, UUO induces RGC-32 expression in renal interstitial cells at the early stage of kidney injury, suggesting that RGC-32 is involved in interstitial fibroblast activation. Indeed, expression of smooth muscle α-actin (α-SMA), an indicator of fibroblast activation, is limited to the interstitial cells at the early stage, and became apparent later in both interstitial and tubular cells. RGC-32 knockdown by shRNA significantly inhibits UUO-induced renal structural damage, α-SMA expression and collagen deposition, suggesting that RGC-32 is essential for the onset of renal interstitial fibrosis. In vitro studies indicate that RGC-32 mediates TGF-β-induced fibroblast activation. Mechanistically, RGC-32 interacts with Smad3 and enhances Smad3 binding to the Smad binding element in α-SMA promoter as demonstrated by DNA affinity assay. In the chromatin setting, Smad3, but not Smad2, binds to α-SMA promoter in fibroblasts. RGC-32 appears to be essential for Smad3 interaction with the promoters of fibroblast activation-related genes in vivo. Functionally, RGC-32 is crucial for Smad3-mediated α-SMA promoter activity. Taken together, we identify RGC-32 as a novel fibrogenic factor contributing to the pathogenesis of renal fibrosis through fibroblast activation.  相似文献   

10.
Epithelial–mesenchymal transition (EMT) of tubular epithelial cells is a key event in renal interstitial fibrosis and the progression of chronic kidney disease (CKD). Apelin is a regulatory peptide involved in the regulation of normal renal hemodynamics and tubular functions, but its role in renal fibrosis remains unknown. In this study, we examined the inhibitory effects of apelin on transforming growth factor-β1 (TGF-β1)-induced EMT in HK-2 cells, and evaluated its therapeutic efficacy in mice with complete unilateral ureteral obstruction (UUO). In vitro, apelin inhibited TGF-β1-mediated upregulation of α-smooth muscle actin (α-SMA) and downregulation of E-cadherin. Increased levels of phosphorylated Smad-2/3 and decreased levels of Smad7 in TGF-β1-stimulated cells were reversed by apelin co-treatment. In the UUO model, administration of apelin significantly attenuated renal interstitial fibrosis, as evidenced by the maintenance of E-cadherin and laminin expression, and markedly suppressed expression of α-SMA, TGF-β1 and its type I receptor, as well as interstitial matrix components. Interestingly, in UUO mice, there was a reduction in the plasma level of apelin, which was compensated by upregulation of APJ expression in the injured kidney. Exogenous supplementation of apelin normalized the level of plasmatic apelin and renal APJ. In conclusion, our study provides the first evidence that apelin is able to ameliorate renal interstitial fibrosis by suppression of tubular EMT through a Smad-dependent mechanism. The apelinergic system itself may promote some compensatory response in the renal fibrotic process. These results suggest that apelin has potential renoprotective effects and may be an effective agent for retarding CKD progression.  相似文献   

11.
Although long noncoding RNA (LncRNA) are important players in the initiation and progression of many pathological processes, the role of LncRNAENST00000453774.1 (LncRNA 74.1) in renal fibrosis still remains unclear. Lentivirus mediated LncRNA 74.1 overexpressing HK2 cells and overexpression mice models were constructed. HK2 cells induced by transforming growth factor-β (TGF-β) in vitro, and the mice UUO model in vivo were used to simulate renal fibrosis. The expression of LncRNA 74.1 was significantly downregulated in the TGF-β-induced HK-2 cell fibrosis and clinical renal fibrosis specimens. LncRNA 74.1 overexpression obviously attenuated renal fibrosis in vitro and unilateral ureteral obstruction-induced renal fibrosis in vivo. LncRNA 74.1 promoted reactive oxygen species defense by activating prosurvival autophagy then decreased ECM-related proteins fibronectin and collagen I involved in renal fibrosis. We also found that Nrf2-keap1 signaling played important roles in the remission of ECM mediated by LncRNA 74.1. This study indicates that LncRNA 74.1 downregulation would contribute to renal fibrosis and its overexpression might represent a novel anti-fibrotic treatment in renal diseases.  相似文献   

12.
TGF-β signaling plays a principal role in renal fibrosis, but the precise mechanisms and the downstream factors are still largely unknown. Sox9 exhibits diverse roles in regulating the production of extracellular matrix proteins. Here we found that Sox9 was induced by TGF-β in the kidney fibroblast and acted as an important downstream mediator of TGF-β signaling in promoting renal fibrosis. TGF-β/Smad signaling mediated the upregulation of Sox9 in kidney fibroblast by binding to a conserved enhancer. In different mouse models of renal fibrosis, as well as in the kidney biopsy tissue from patients with renal fibrosis, Sox9 expression significantly increased. Immunostaining confirmed the upregulation of Sox9 in the kidney fibroblast during renal fibrosis. Delivery of Sox9 knockdown plasmid to the kidney by ultrasound microbubble–mediated gene transfer suppressed the unilateral ureteral obstruction (UUO) or folic acid-induced mouse renal fibrosis, whereas ectopic expression of Sox9 aggravated renal fibrosis. In addition, we identified Sox9 as a direct target of miR-30. Notably, miR-30 expression was significantly inhibited by TGF-β1 in the kidney fibroblast and the downregulation of miR-30 was observed in renal fibrosis. Mechanistically, inhibition of miR-30 independently strengthened the effect of TGF-β/Smad signaling on Sox9 upregulation. Adenovirus-mediated ectopic expression of miR-30 in kidney fibroblast greatly reduced UUO-induced renal fibrosis by targeting Sox9. These findings link Sox9 to intrinsic mechanisms of TGF-β signaling in renal fibrosis and may have therapeutic potential for tissue fibrosis.  相似文献   

13.
Renal fibrosis acts as a clinical predictor in patients with chronic kidney disease and is characterized by excessive extracellular matrix (ECM) accumulation. Our previous study suggested that mindin can function as a mediator for liver steatosis pathogenesis. However, the role of mindin in renal fibrosis remains obscure. Here, tumour necrosis factor (TGF)-β-treated HK-2 cells and global mindin knockout mouse were induced with renal ischaemia reperfusion injury (IRI) to test the relationship between mindin and renal fibrosis. In vitro, mindin overexpression promoted p65—the hub subunit of the NF-κB signalling pathway—translocation from the cytoplasm into the nucleus, resulting in NF-κB pathway activation in TGF-β-treated HK-2 cells. Meanwhile, mindin activated the TGF-β/Smad pathway, thereby causing fibrotic-related protein expression in vitro. Mindin−/− mice exhibited less kidney lesions than controls, with small renal tubular expansion, inflammatory cell infiltration, as well as collagen accumulation, following renal IRI. Mechanistically, mindin−/− mice suppressed p65 translocation and deactivated NF-κB pathway. Simultaneously, mindin disruption inhibited the TGF-β/Smad pathway, alleviating the expression of ECM-related proteins. Hence, mindin may be a novel target of renal IRI in the treatment of renal fibrogenesis.  相似文献   

14.
Epithelial to mesenchymal transition (EMT) of tubular cells contributes to the renal accumulation of matrix protein that is associated with diabetic nephropathy. Both high glucose and transforming growth factor-β (TGF-β) are able to induce EMT in cell culture. In this study, we examined the role of the thioredoxin-interacting protein (TXNIP) on EMT induced by high glucose or TGF-β1 in HK-2 cells. EMT was assessed by the expression of α-smooth muscle actin (α-SMA) and E-cadherin and the induction of a myofibroblastic phenotype. High glucose (30 mM) was shown to induce EMT at 72 h. This was blocked by knockdown of TXNIP or antioxidant NAC. Meanwhile, we also found that knockdown of TXNIP or antioxidant NAC inhibited high glucose-induced generation of reactive oxygen species (ROS), phosphorylation of p38 MAPK and ERK1/2 and expression of TGF-β1. HK-2 cells that were exposed to TGF-β1 (4 ng/ml) also underwent EMT. The expression of TXNIP gene and protein was increased in HK-2 cells treated with TGF-β1. Transfection with TXNIP shRNA was able to attenuate TGF-β1 induced-EMT. These results suggested that knockdown of TXNIP antagonized high glucose-induced EMT by inhibiting ROS production, activation of p38 MAPK and ERK1/2, and expression of TGF-β1, highlighting TXNIP as a potential therapy target for diabetic nephropathy.  相似文献   

15.
Posttranslational modification of proteins could regulate their multiple biological functions. Transforming growth factor-β receptor I and II (ALK5 and TGF-βRII), which are glycoproteins, play important roles in the renal tubular epithelial-mesenchymal transition (EMT). In the present study, we examined the role of core fucosylation of TGF-βRII and ALK5, which is regulated by α-1,6 fucosyltransferase (Fut8), in the process of EMT of cultured human renal proximal tubular epithelial (HK-2) cells. The typical cell model of EMT induced by TGF-β1 was constructed to address the role of core fucosylation in EMT. Core fucosylation was found to be essential for both TGF-βRII and ALK5 to fulfill their functions, and blocking it with Fut8 small interfering RNA greatly reduced the phosphorylation of Smad2/3 protein, caused the inactivation of TGF-β/Smad2/3 signaling, and resulted in remission of EMT. More importantly, even with high levels of expressions of TGF-β1, TGF-βRII, and ALK5, blocking core fucosylation also could attenuate the EMT of HK-2 cells. Thus blocking core fucosylation of TGF-βRII and ALK5 may attenuate EMT independently of the expression of these proteins. This study may provide new insight into the role of glycosylation in renal interstitial fibrosis. Furthermore, core fucosylation may be a novel potential therapeutic target for treatment of renal tubular EMT.  相似文献   

16.
17.
Autophagy is an important homoeostatic mechanism for the lysosomal degradation of protein aggregates and damaged cytoplasmic components. Recent studies suggest that autophagy which is induced by TGF-β1 suppresses kidney fibrosis in renal tubular epithelial cells (RTECs) of obstructed kidneys. Sphingosine kinase 1(SK1), converting sphingosine into endogenous sphingosine-1-phosphate (S1P), was shown to modulate autophagy and involved in the processes of fibrotic diseases. Since SK1 activity is also up-regulated by TGF-β1, we explored its effect on the induction of autophagy and development of renal fibrosis in this study. In vitro, SK1 expression and activity were markedly increased by TGF-β1 stimulation in a time and concentration dependent manner, and concomitant changes in autophagic response were observed in HK-2 cells. Further, knockdown of SK-1 led to a decrease of autophagy whereas overexpression of SK1 caused a greater induction of autophagy. In addition, overexpression of SK1 resulted in decreased of mature TGF-β levels through autophagic degradation. In vivo, SK1 enzymatic activity and autophagic response were both up-regulated in a mouse model of kidney fibrosis induced by unilateral ureteral obstruction (UUO); meanwhile, increased of mature TGF-β1 and deposition of extracellular matrix (ECM) were observed in tubulointerstitial areas compared with sham-operated mice. However, aggravation of renal fibrosis was detected when SK1 inhibitor PF-543 was applied to suppress SK1 enzymatic activity in UUO mice. At the same time, autophagy was also inhibited by PF-543. Thus, our findings suggest that SK1 activation is renoprotective via induction of autophagy in the fibrotic process.  相似文献   

18.
BackgroundRenal fibrosis is the final manifestation of chronic kidney disease (CKD). Renal fibrosis is largely driven by oxidative stress and inflammation.PurposeThe aim of the current study was to identify novel poricoic acids from Poria cocos and investigated their antifibrotic effects and the underlying mechanism.MethodsIn this study, we identified six novel poricoic acids from Poria cocos and examined their antifibrotic effect using transforming growth factor-β1- (TGF-β1-) induced cultured human kidney proximal tubular epithelial cells (HK-2) and mice with unilateral ureteral obstruction (UUO).ResultsTreatment with six poricoic acids significantly inhibited TGF-β1-induced α-smooth muscle actin expression at both mRNA and protein levels in HK-2 cells. Three compounds with an intact carboxyl group at C-3 position showed a stronger inhibitory effect than that of other three compounds with esterified carboxyl group at the C-3 position. Mechanistically, poricoic acid ZM (PZM) and poricoic acid ZP (PZP) attenuate renal fibrosis through the modulation of redox signalling including the inhibition of proinflammatory nuclear factor kappa B (NF-κB) signalling and its target genes as well as the activation of antioxidative nuclear factor-erythroid-2-related factor 2 (Nrf2) signalling and its downstream target gene in both TGF-β1-induced HK-2 cells and UUO mice. PZM treatment and PZP treatment inhibit the upregulated aryl hydrocarbon receptor and they target the gene expression in UUO mice. Intriguingly, PZM treatment exhibits a stronger inhibitory effect than that of the PZP treatment. Structure–function relationship reveals that the carboxyl group at C-3 position is the most important bioactive function group in secolanostane tetracyclic triterpenoids against renal fibrosis.ConclusionsPZM and PZP attenuated renal fibrosis through the modulation of redox signalling and the aryl hydrocarbon receptor signalling pathway. Our findings will provide several promising leading compounds against renal fibrosis.  相似文献   

19.
Although Smad3 is a key mediator for fibrosis, its functional role and mechanisms in hypertensive nephropathy remain largely unclear. This was examined in the present study in a mouse model of hypertension induced in Smad3 knockout (KO) and wild-type (WT) mice by subcutaneous angiotensin II infusion and in vitro in mesangial cells lacking Smad3. After angiotensin II infusion, both Smad3 KO and WT mice developed equally high levels of blood pressure. However, disruption of Smad3 prevented angiotensin II-induced kidney injury by lowering albuminuria and serum creatinine (P < 0.01), inhibiting renal fibrosis such as collagen type I and IV, fibronectin, and α-SMA expression (all P < 0.01), and blocking renal inflammation including macrophage and T cell infiltration and upregulation of IL-1β, TNF-α, and monocyte chemoattractant protein-1 in vivo and in vitro (all P < 0.001). Further studies revealed that blockade of angiotensin II-induced renal transforming growth factor (TGF)-β1 expression and inhibition of Smurf2-mediated degradation of renal Smad7 are mechanisms by which Smad3 KO mice were protected from angiotensin II-induced renal fibrosis and NF-κB-driven renal inflammation in vivo and in vitro. In conclusion, Smad3 is a key mediator of hypertensive nephropathy. Smad3 promotes Smurf2-dependent ubiquitin degradation of renal Smad7, thereby enhancing angiotensin II-induced TGF-β/Smad3-mediated renal fibrosis and NF-κB-driven renal inflammation. Results from this study suggest that inhibition of Smad3 or overexpression of Smad7 may be a novel therapeutic strategy for hypertensive nephropathy.  相似文献   

20.
Activation of fibroblasts and their differentiation into myofibroblasts, excessive collagen production and fibrosis occurs in a number of bladder diseases. Similarly, conversion of epithelial cells into mesenchymal cells (EMT) has been shown to increase fibroblasts like cells. TGF-β1 can induce the EMT and the role of TGF-β1-induced EMT during bladder injury leading to fibrosis and possible organ failure is gaining increasing interest. Here we show that EMT and fibrosis in porcine bladder urothelial (UC) cells are Smad dependent. Fresh normal porcine bladder urothelial cells were grown in culture with or without TGF-β1 and EMT markers were assessed. TGF-β1 treatment induced changes in cellular morphology as depicted by a significant decrease in the expression of E-cadherin and corresponding increase in N-cadherin and α-SMA. We knocked down Smad2 and Smad3 by Smad specific siRNA. Downregulation of E-cadherin expression by TGF-β1 was Smad3-dependent, whereas N-cadherin and α-SMA were dependent on both Smad2 and Smad3. Connective tissue growth factor (CTGF/CCN2), matrix metalloproteinase-2 and -9 (MMP-2, MMP-9) has been shown to play important roles in the pathogenesis of fibrosis. Induction of these genes by TGF-β1 was found to be time dependent. Upregulation of CTGF/CCN2 by TGF-β1 was Smad3 dependent; whereas MMP-2 was Smad2 dependent. Smad2 and Smad3 both participated in MMP-9 expression. TGF-β1 reprogrammed mesenchymal fibroblast like cells robustly expressed collagen I and III and these was inhibited by SB-431542, a TGF-β receptor inhibitor. Our results indicate that EMT of porcine bladder UC cells is TGF-β1 dependent and is mediated through Smad2 and Smad3. TGF-β1 may be an important factor in the development of bladder fibrosis via an EMT mechanism. This identifies a potential amenable therapeutic target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号