首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ecological and genetic studies of marine turtles generally support the hypothesis of natal homing, but leave open the question of the geographical scale of genetic exchange and the capacity of turtles to shift breeding sites. Here we combine analyses of mitochondrial DNA (mtDNA) variation and recapture data to assess the geographical scale of individual breeding populations and the distribution of such populations through Australasia. We conducted multiscale assessments of mtDNA variation among 714 samples from 27 green turtle rookeries and of adult female dispersal among nesting sites in eastern Australia. Many of these rookeries are on shelves that were flooded by rising sea levels less than 10 000 years (c. 450 generations) ago. Analyses of sequence variation among the mtDNA control region revealed 25 haplotypes, and their frequency distributions indicated 17 genetically distinct breeding stocks (Management Units) consisting either of individual rookeries or groups of rookeries in general that are separated by more than 500 km. The population structure inferred from mtDNA was consistent with the scale of movements observed in long-term mark-recapture studies of east Australian rookeries. Phylogenetic analysis of the haplotypes revealed five clades with significant partitioning of sequence diversity (Phi = 68.4) between Pacific Ocean and Southeast Asian/Indian Ocean rookeries. Isolation by distance was indicated for rookeries separated by up to 2000 km but explained only 12% of the genetic structure. The emerging general picture is one of dynamic population structure influenced by the capacity of females to relocate among proximal breeding sites, although this may be conditional on large population sizes as existed historically across this region.  相似文献   

2.
The Tropical Eastern Pacific (TEP) is a dynamic coastal environment characterized by a complex system of oceanic processes and discontinuous rocky habitats. These features, in conjunction with the ecological and physiological characteristics of Anisotremus interruptus, might limit gene flow and shape the evolutionary history of the species. In this study, we investigate the evolutionary history of the reef fish A. interruptus (and its Atlantic sister species A. surinamensis) throughout its range in the TEP, using two mitochondrial (cox1 and cytb) and two nuclear markers (S7 and RAG1). We found three genetic groups of A. interruptus with recent divergence times from the Galapagos Archipelago, Revillagigedo Archipelago, the continental TEP, and A. surinamensis the sister specie from the Atlantic. The haplotype mtDNA networks show A. surinamensis in a central position with respect to Pacific genetic haplogroups, whereas nDNA networks show mixed haplotypes between the four genetic groups. In the species tree, A. surinamensis appears as the sister species of all the Pacific samples and the Galapagos Archipelago population emerges as a genetically distinctive group. The samples from the Revillagigedo Archipelago also constitute a genetic distinctive group, closely related to the continental samples. Continental individuals do not show significant genetic structure and exhibit a population expansion during the Pleistocene. The sandy gaps of the TEP not appear to act as barriers isolating populations of A. interruptus, whereas the open sea gap between the oceanic islands and the continental coast do.  相似文献   

3.
Using a combination of mitochondrial and z‐linked sequences, microsatellite data, and spatio‐geographic modeling, we examined historical and contemporary factors influencing the population genetic structure of the purple finch (Haemorhous purpureus). Mitochondrial DNA data show the presence of two distinct groups corresponding to the two subspecies, H. p. purpureus and H. p. californicus. The two subspecies likely survived in separate refugia during the last glacial maximum, one on the Pacific Coast and one east of the Rocky Mountains, and now remain distinct lineages with little evidence of gene flow between them. Southwestern British Columbia is a notable exception, as subspecies mixing between central British Columbia and Vancouver Island populations suggests a possible contact zone in this region. Z‐linked data support two mitochondrial groups; however, Coastal Oregon and central British Columbia sites show evidence of mixing. Contemporary population structure based on microsatellite data identified at least six genetic clusters: three H. p. purpureus clusters, two H. p. californicus clusters, and one mixed cluster, which likely resulted from high site fidelity and isolation by distance, combined with sexual selection on morphological characters reinforcing subspecies differences.  相似文献   

4.
Bacterioplankton nutrient metabolism in the Eastern Tropical North Pacific (ETNP) was assessed using specific activities of intracellular nitrogen (N) assimilation enzymes and hydrolytic ectoenzymes during amendment experiments, mesocosms, and diel studies of in situ rates. Glutamine synthetase (GS) and assimilatory nitrate reductase (ANR) were used to investigate N bioavailability, alkaline phosphatase (AP) to assess phosphorous (P) bioavailability and β-glucosidase (β-Glu) to detect shifts in the use of labile dissolved organic carbon (DOC). Conditions regulating activity of each enzyme were tested using incubations of < 0.6 mm size-fractionated seawater amended with different combinations of N, P, and DOC as glucose. Overall, N-deficiency was indicated by pronounced growth stimulation and repression of GS and ANR activity in incubations amended with dissolved free amino acid and ammonium. Phosphate and glucose amendments produced little or no growth stimulation, but did influence activity of all enzymes measured. Enzyme activities of bacterioplankton in mesocosms of whole plankton indicated enhanced N-deficiency and glucoside hydrolysis when the plankton community was released from any P-deficiency. Spatially, enzyme activity of bacterioplankton during two diel studies (at one slope and one open-ocean station) suggested greater N-deficiency at surface depths than within the chlorophyll maximum where activity of AP and b-Glu was often greatest. There was also greater GS and ANR activity at the open-ocean station, which had lower concentrations of dissolved inorganic N (DIN) relative to soluble reactive P (SRP), than along the continental slope of Mexico. These data suggest that bacterioplankton in surface waters of the ETNP require a large flux of DOC to drive N-deficiency; whereas, bacterioplankton deeper in the chlorophyll maximum depend on hydrolysis of complex DOC and DOP to meet their carbon demand in the presence of elevated nutrients with a low DIN:SRP ratio.  相似文献   

5.
We have estimated levels of genetic diversity and partitioning in the Mexican endemic cycad species Dioon sonorense, Dioon tomasellii, and Dioon holmgrenii, whose populations are exclusively distributed along the Pacific seaboard. For the three species, the patterns of variation at 19 allozyme loci in a total of 11 populations were evaluated. The average number of alleles per locus was in the range 2.05–1.68, corresponding to the northernmost population of D. sonorense (Mazatán), and the southernmost population of Dioon holmgrenii (Loxicha), respectively. In turn, the percentage of polymorphic loci peaked (94.73) in the El Higueral and Altamirano populations of Dioon tomasellii, and was estimated to be lowest (57.89) in the Loxicha population of D. holmgrenii. The mean expected heterozygosis varied markedly between taxa, with relatively high indices for D. sonorense and D. tomasellii (HE = 0.314 and 0.295, respectively) and substantially lower values for D. holmgrenii (HE = 0.170). Comparison of the inferred genetic structure based on F‐statistics for the three species also indicated differences along the north‐south Pacific seaboard axis. For D. sonorense and D. tomasellii, local inbreeding (FIS) was zero but global inbreeding (FIT) values were positive and significantly different from zero (0.130 and 0.116, respectively). By contrast, values of both FIT and FIS were negative and significantly different from zero (?0.116 and ?0.201, respectively) for D. holmgrenii. The genetic differentiation between populations (FST) had positive values in all taxa and corresponded with their geographic location along the north‐south axis: according to this statistic, D. sonorense was the most differentiated species (FST = 0.151), D. tomasellii had intermediate values (FST = 0.145), and D. holmgrenii was the less differentiated taxon (FST = 0.069). Finally, a phenogram representing Nei's genetic distances among populations displayed three major groups, each one corresponding to each of the studied species. Within D. tomasellii (of intermediate geographic distribution), a further division into two clusters corresponded precisely to the pair of populations that are geographically divided by the Trans Mexican Neovolcanic Mountains. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 94 , 765–776.  相似文献   

6.
The evolutionary influences of historical and contemporary factors on the population connectivity and phylogeographic structure of a brown seaweed, Sargassum ilicifolium, were elucidated using the nuclear ITS2 and mitochondrial COI markers for the collections newly sampled within its distribution range in the northwestern Pacific (NWP). Significant genetic structure at variable levels was identified between populations (pairwise FST) and among populations grouped by geographical proximity (ΦCT among regions). The adjacent groups of populations with moderate structure revealed from AMOVA appeared to have high genetic connectivity. However, a lack of genealogical concordance with the geographic distribution was uncovered for S. ilicifolium from the NWP. Such genetic homogeneity is interpreted as a result of the interaction between postglacial recolonization and dynamic oceanic current regimes in the region. Two separated glacial refugia, the South China Sea and the Okinawa Trough, in the marginal seas of east China were recognized based on the presence of endemic haplotypes and high haplotype diversity in the populations at southern China and northeast of Taiwan. Populations persisting in these refugia may have served as the source for recolonization in the NWP with the rise of sea level during the warmer interglacial periods. The role of oceanic currents in maintaining genetic connectivity of S. ilicifolium in the region was further corroborated by the coherence between the direction of oceanic currents and that of gene flow, especially along the eastern coast of Taiwan. This study underlines the interaction between historical postglacial recolonization and contemporary coastal hydrodynamics in contributing to population connectivity and distribution for this tropical seaweed in the NWP.  相似文献   

7.
The coral fauna of the Eastern Tropical Pacific (ETP) is depauperate and peripheral; hence, it has drawn attention to the factors allowing its survival. Here, we use a genetic seascape approach and ecological niche modeling to unravel the environmental factors correlating with the genetic variation of Porites panamensis, a hermatypic coral endemic to the ETP. Specifically, we test if levels of diversity and connectivity are higher among abundant than among depauperate populations, as expected by a geographically relaxed version of the Abundant Center Hypothesis (rel‐ACH). Unlike the original ACH, referring to a geographical center of distribution of maximal abundance, the rel‐ACH refers only to a center of maximum abundance, irrespective of its geographic position. The patterns of relative abundance of P. panamensis in the Mexican Pacific revealed that northern populations from Baja California represent its center of abundance; and southern depauperate populations along the continental margin are peripheral relative to it. Genetic patterns of diversity and structure of nuclear DNA sequences (ribosomal DNA and a single copy open reading frame) and five alloenzymatic loci partially agreed with rel‐ACH predictions. We found higher diversity levels in peninsular populations and significant differentiation between peninsular and continental colonies. In addition, continental populations showed higher levels of differentiation and lower connectivity than peninsular populations in the absence of isolation by distance in each region. Some discrepancies with model expectations may relate to the influence of significant habitat discontinuities in the face of limited dispersal potential. Environmental data analyses and niche modeling allowed us to identify temperature, water clarity, and substrate availability as the main factors correlating with patterns of abundance, genetic diversity, and structure, which may hold the key to the survival of P. panamensis in the face of widespread environmental degradation.  相似文献   

8.
Whereas terrestrial animal populations might show genetic connectivity within a continent, marine species, such as hermatypic corals, may have connectivity stretching to all corners of the planet. We quantified the genetic variability within and among populations of the widespread scleractinian coral, Plesiastrea versipora along the eastern Australian seaboard (4145 km) and the Ryukyu Archipelago (Japan, 681 km) using sequences of internal transcribed spacers (ITS1-2) from ribosomal DNA. Geographic patterns in genetic variability were deduced from a nested clade analysis (NCA) performed on a parsimony network haplotype. This analysis allowed the establishment of geographical associations in the distribution of haplotypes within the network cladogram, therefore allowing us to deduce phylogeographical patterns based under models of restricted gene flow, fragmentation and range expansion. No significant structure was found among Ryukyu Archipelago populations. The lack of an association between the positions of haplotypes in the cladogram with geographical location of these populations may be accounted for by a high level of gene flow of P. versipora within this region, probably due to the strong Kuroshio Current. In contrast, strong geographical associations were apparent among populations of P. versipora along the south-east coast of Australia. This pattern of restricted genetic connectivity among populations of P. versipora on the eastern seaboard of Australia seems to be associated with the present surface ocean current (the East Australian Current) on this side of the south-western Pacific Ocean.  相似文献   

9.
Coral reefs are the most complex and diverse of aquatic ecosystems. Their vulnerability and deterioration in the face of anthropogenic disturbance require the adoption of conservation and restoration efforts to maintain their resilience, for which connectivity is of paramount importance. Dispersal of meroplanktonic larval stages drives the levels of connectivity among coral populations and is influenced by the local current regime, the synchronization of spawning events, and the capacity of larvae to reach recruitment sites. This research aims to quantify the levels of connectivity among Pavona gigantea populations in the Mexican Pacific, using two mitochondrial genes and a nuclear gene. Mitochondrial genes were insufficiently variable to test geographical heterogeneity, whereas the more variable (h ≥ 0.86) nuclear rDNA indicated significant geographic differentiation (Φ ST  = 0.159, P < 0.001) among five locations along the Mexican Pacific, but no evidence of isolation by distance. Gene flow was limited among most sampled locales, and the largest estimate suggested moderate and unidirectional gene flow from Huatulco Bays to La Paz Bay and Marietas Islands. We found partial agreement between the patterns of connectivity among localities and the general pattern of superficial oceanographic circulation of the region, particularly in reference with the expected influence of the northward flowing West Mexican Current. These results suggest a limited demographic connectivity among Pavona gigantea populations along the Mexican Pacific, mediated by passive larval transport, and highlight the difficulty of predicting connectivity patterns on the basis of highly variable oceanographic regimes and reproductive events. The limited connectivity is of consequence for the viability and vulnerability of local populations and should be considered in the management and conservation strategies in the region.  相似文献   

10.
The ecological theory of adaptive radiation predicts that the evolution of phenotypic diversity within species is generated by divergent natural selection arising from different environments and competition between species. Genetic connectivity among populations is likely also to have an important role in both the origin and maintenance of adaptive genetic diversity. Our goal was to evaluate the potential roles of genetic connectivity and natural selection in the maintenance of adaptive phenotypic differences among morphs of Arctic charr, Salvelinus alpinus, in Iceland. At a large spatial scale, we tested the predictive power of geographic structure and phenotypic variation for patterns of neutral genetic variation among populations throughout Iceland. At a smaller scale, we evaluated the genetic differentiation between two morphs in Lake Thingvallavatn relative to historically explicit, coalescent-based null models of the evolutionary history of these lineages. At the large spatial scale, populations are highly differentiated, but weakly structured, both geographically and with respect to patterns of phenotypic variation. At the intralacustrine scale, we observe modest genetic differentiation between two morphs, but this level of differentiation is nonetheless consistent with strong reproductive isolation throughout the Holocene. Rather than a result of the homogenizing effect of gene flow in a system at migration-drift equilibrium, the modest level of genetic differentiation could equally be a result of slow neutral divergence by drift in large populations. We conclude that contemporary and recent patterns of restricted gene flow have been highly conducive to the evolution and maintenance of adaptive genetic variation in Icelandic Arctic charr.  相似文献   

11.
Coral reefs worldwide are threatened by thermal stress caused by climate change. Especially devastating periods of coral loss frequently occur during El Niño‐Southern Oscillation (ENSO) events originating in the Eastern Tropical Pacific (ETP). El Niño‐induced thermal stress is considered the primary threat to ETP coral reefs. An increase in the frequency and intensity of ENSO events predicted in the coming decades threatens a pan‐tropical collapse of coral reefs. During the 1982–1983 El Niño, most reefs in the Galapagos Islands collapsed, and many more in the region were decimated by massive coral bleaching and mortality. However, after repeated thermal stress disturbances, such as those caused by the 1997–1998 El Niño, ETP corals reefs have demonstrated regional persistence and resiliency. Using a 44 year dataset (1970–2014) of live coral cover from the ETP, we assess whether ETP reefs exhibit the same decline as seen globally for other reefs. Also, we compare the ETP live coral cover rate of change with data from the maximum Degree Heating Weeks experienced by these reefs to assess the role of thermal stress on coral reef survival. We find that during the period 1970–2014, ETP coral cover exhibited temporary reductions following major ENSO events, but no overall decline. Further, we find that ETP reef recovery patterns allow coral to persist under these El Niño‐stressed conditions, often recovering from these events in 10–15 years. Accumulative heat stress explains 31% of the overall annual rate of change of living coral cover in the ETP. This suggests that ETP coral reefs have adapted to thermal extremes to date, and may have the ability to adapt to near‐term future climate‐change thermal anomalies. These findings for ETP reef resilience may provide general insights for the future of coral reef survival and recovery elsewhere under intensifying El Niño scenarios.  相似文献   

12.
We examined rates of N2 fixation from the surface to 2000 m depth in the Eastern Tropical South Pacific (ETSP) during El Niño (2010) and La Niña (2011). Replicated vertical profiles performed under oxygen-free conditions show that N2 fixation takes place both in euphotic and aphotic waters, with rates reaching 155 to 509 µmol N m−2 d−1 in 2010 and 24±14 to 118±87 µmol N m−2 d−1 in 2011. In the aphotic layers, volumetric N2 fixation rates were relatively low (<1.00 nmol N L−1 d−1), but when integrated over the whole aphotic layer, they accounted for 87–90% of total rates (euphotic+aphotic) for the two cruises. Phylogenetic studies performed in microcosms experiments confirm the presence of diazotrophs in the deep waters of the Oxygen Minimum Zone (OMZ), which were comprised of non-cyanobacterial diazotrophs affiliated with nifH clusters 1K (predominantly comprised of α-proteobacteria), 1G (predominantly comprised of γ-proteobacteria), and 3 (sulfate reducing genera of the δ-proteobacteria and Clostridium spp., Vibrio spp.). Organic and inorganic nutrient addition bioassays revealed that amino acids significantly stimulated N2 fixation in the core of the OMZ at all stations tested and as did simple carbohydrates at stations located nearest the coast of Peru/Chile. The episodic supply of these substrates from upper layers are hypothesized to explain the observed variability of N2 fixation in the ETSP.  相似文献   

13.
The toxin-producing microbial species Alexandrium minutum has a wide distribution in the Mediterranean Sea and causes high biomass blooms with consequences on the environment, human health and coastal-related economic activities. Comprehension of algal genetic differences and associated connectivity is fundamental to understand the geographical scale of adaptation and dispersal pathways of harmful microalgal species. In the present study, we combine A. minutum population genetic analyses based on microsatellites with indirect connectivity (C(i)) estimations derived from a general circulation model of the Mediterranean sea. Our results show that four major clusters of genetically homogeneous groups can be identified, loosely corresponding to four regional seas: Adriatic, Ionian, Tyrrhenian and Catalan. Each of the four clusters included a small fraction of mixed and allochthonous genotypes from other Mediterranean areas, but the assignment to one of the four clusters was sufficiently robust as proved by the high ancestry coefficient values displayed by most of the individuals (>84%). The population structure of A. minutum on this scale can be explained by microalgal dispersion following the main regional circulation patterns over successive generations. We hypothesize that limited connectivity among the A. minutum populations results in low gene flow but not in the erosion of variability within the population, as indicated by the high gene diversity values. This study represents a first and new integrated approach, combining both genetic and numerical methods, to characterize and interpret the population structure of a toxic microalgal species. This approach of characterizing genetic population structure and connectivity at a regional scale holds promise for the control and management of the harmful algal bloom events in the Mediterranean Sea.  相似文献   

14.
Coral reefs in the Tropical Eastern Pacific (TEP) are among the most isolated in the world. This isolation has resulted in relatively low species diversity but comparatively high endemism. The dominant reef-building corals of the TEP are the Pocillopora corals, a ubiquitous Indo-Pacific genus commonly regarded as inferior reef-builder. In addition to being the dominant reef-builders in the TEP, the Pocilloporids have undergone a reproductive shift from internally brooding larvae through most of their Indo-Pacific range to free-spawning in the TEP. Using genetic data from the internally transcribed spacer (ITS) regions of the nuclear ribosomal DNA gene cluster, we show here that this apparent reproductive shift coincides with interspecific hybridization among TEP Pocillopora species. We document a pattern of one-way gene flow into the main TEP reef builder P. damicornis from one or both of its TEP congeners — P. eydouxi and P. elegans . Our data provide preliminary evidence that trans-Pacific gene flow in P. damicornis between the Central and Eastern Pacific is restricted as well (ΦST = 0.419, P  < 0.0001). In combination, these results suggest that Eastern Pacific corals exist in relative isolation from their Central Pacific counterparts and interact with each other differently via hybridization.  相似文献   

15.
Oceanic islands are good model systems with which to explore factors affecting exotic species diversity. Islands vary in size, topography, substrate type, degree of isolation, native species diversity, history, human population characteristics, and economic development. Moreover, islands are highly vulnerable to exotic species establishment. We used AICc analyses of data on 1132 vascular plant species for 15 countries and 114 islands from the Pacific Island Ecosystems at Risk (PIER) project to examine biological, geographical, and socioeconomic correlates of exotic species richness. PIER provides data on the distribution of naturalized non-native plant species thought to pose environmental or economic risk. We hypothesized that the numbers of PIER-listed species would be positively correlated with island size, habitat diversity, and proximity to major source pools for propagules. Further, we expected numbers of PIER-listed exotic species to be similar among islands in the same country and to be greater where human populations were larger and where economic activity was high. Most species (908) were found on ≤ 10 islands. Species number was significantly correlated with island and country areas and with native plant species richness. The strongest model revealed by AICc analyses of island data included log (area) and maximum elevation as well as country membership, substrate type, and presence of an airport with paved runway (an index of economic activity). By country, AICc analyses revealed two equivalent models, both of which included log (area) and per capita gross domestic product as well as a measure of population size (either log (population size) or (population density)). Our analyses provide strong evidence of the roles of biogeographic, environmental, and socioeconomic impacts on the distribution and spread of exotic species.  相似文献   

16.
Marine species with ranges that span the Indo-Australian Archipelago (IAA) exhibit a range of phylogeographical patterns, most of which are interpreted in the context of vicariance between Indian and Pacific Ocean populations during Pliocene and Pleistocene low sea-level stands. However, patterns often vary among ecologically similar taxa, sometimes even within genera. This study compares phylogeographical patterns in two species of highly dispersive neritid gastropod, Nerita albicilla and Nerita plicata, with nearly sympatric ranges that span the Indo-Pacific. Mitochondrial COI sequences from >1000 individuals from 97 sites reveal similar phylogenies in both species (two divergent clades differing by 3.2% and 2.3%, for N. albicilla and N. plicata, respectively). However, despite ecological similarity and congeneric status, the two species exhibit phylogeographical discordance. N. albicilla has maintained reciprocal monophyly of Indian and Pacific Ocean populations, while N. plicata is panmictic between oceans, but displays a genetic cline in the Central Pacific. Although this difference might be explained by qualitatively different demographic histories, parameter estimates from three coalescent models indicate that both species have high levels of gene flow between demes (2Nem>75), and share a common history of population expansion that is likely associated with cyclical flooding of continental shelves and island lagoons following low sea-level stands. Results indicate that ecologically similar, codistributed species may respond very differently to shared environmental processes, suggesting that relatively minor differences in traits such as pelagic larval duration or microhabitat association may profoundly impact phylogeographical structure.  相似文献   

17.
18.
Sea otters, Enhydra lutris, were once abundant along the nearshore areas of the North Pacific. The international maritime fur trade that ended in 1911 left 13 small remnant populations with low genetic diversity. Subsequent translocations into previously occupied habitat resulted in several reintroduced populations along the coast of North America. We sampled sea otters between 2008 and 2011 throughout much of their current range and used 19 nuclear microsatellite markers to evaluate genetic diversity, population structure, and connectivity between remnant and reintroduced populations. Average genetic diversity within populations was similar: observed heterozygosity 0.55 and 0.53, expected heterozygosity 0.56 and 0.52, unbiased expected heterozygosity 0.57 and 0.52, for reintroduced and remnant populations, respectively. Sea otter population structure was greatest between the Northern and Southern sea otters with further structuring in Northern sea otters into Western, Central, and Southeast populations (including the reintroduced populations). Migrant analyses suggest the successful reintroductions and growth of remnant groups have enhanced connectivity and gene flow between populations throughout many of the sampled Northern populations. We recommend that future management actions for the Southern sea otter focus on future reintroductions to fill the gap between the California and Washington populations ultimately restoring gene flow to the isolated California population.  相似文献   

19.
Measuring population connectivity is a critical task in conservation biology. While genetic markers can provide reliable long‐term historical estimates of population connectivity, scientists are still limited in their ability to determine contemporary patterns of gene flow, the most practical time frame for management. Here, we tackled this issue by developing a new approach that only requires juvenile sampling at a single time period. To demonstrate the usefulness of our method, we used the Speartooth shark (Glyphis glyphis), a critically endangered species of river shark found only in tropical northern Australia and southern Papua New Guinea. Contemporary adult and juvenile shark movements, estimated with the spatial distribution of kin pairs across and within three river systems, was contrasted with historical long‐term connectivity patterns, estimated from mitogenomes and genome‐wide SNP data. We found strong support for river fidelity in juveniles with the within‐cohort relationship analysis. Male breeding movements were highlighted with the cross‐cohort relationship analysis, and female reproductive philopatry to the river systems was revealed by the mitogenomic analysis. We show that accounting for juvenile river fidelity and female philopatry is important in population structure analysis and that targeted sampling in nurseries and juvenile aggregations should be included in the genomic toolbox of threatened species management.  相似文献   

20.
The Tropical Eastern Pacific Biogeographic Region (TEP) is delimited by steep thermal gradients to the north and south, by a wide expanse of open ocean (the East Pacific Barrier) to the west, and by the Central American land mass to the east. Four provinces within the TEP have been recognized based on the distribution of rocky shore fishes and marine invertebrates: the Cortez, Mexican, Panamic, and Galápagos Provinces. For rocky shore fishes, hypothesized barriers between these provinces are areas lacking rocky outcroppings, specifically the Central American Gap between the Panamic and Mexican Provinces, the Sinaloan Gap between the Mexican and Cortez Provinces, and the Pelagic Gap between the mainland and the Islas Galápagos. The occurrence of 33 chaenopsid fish species within these provinces, as well as other oceanic islands or archipelagos in the TEP (Isla de Malpelo, Isla del Coco, and Islas Revillagigedo) were tallied based on literature records and observations of museum specimens. Chaenopsid distributions within the TEP support these hypothesized provinces and their intervening gaps. Twenty‐one species (64% of the TEP chaenopsid fauna) are restricted to a single mainland province or one of the oceanic islands or archipelagos. Of the mainland provinces, the Cortez and Panamic exhibit similar levels of endemism (50%), but the Mexican Province has only one endemic (10%). Of the remaining chaenopsids in the Mexican Province, three are widespread, occurring in all three mainland provinces, four are shared only with the Cortez Province, and two are shared only with the Panamic Province. Within the TEP, the Pelagic Gap is the most effective (crossed by only 3 of 33 species adjacent to it), followed by the Central American Gap (crossed by 5 of 21 species), and the Sinaloan Gap (crossed by 7 of 17 species). Only one species, Chaenopsis alepidota, which is found off southern California and in the Cortez Province, crosses a barrier delimiting the TEP. Species‐level phylogenetic hypotheses for the Chaenopsidae imply exclusively allopatric speciation for these fishes in the TEP. Of the barriers delimiting the TEP, the most important in the recent evolution of chaenopsids is the Isthmian Barrier which is implicated in six speciation events. Within the TEP, the Central American Gap and Sinaloan Gap are each implicated in three speciation events, while the Pelagic Gap is implicated in three speciation events of island endemics from mainland populations and one inter‐island speciation event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号