首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The development of resistance and heterogeneity in differential response towards tyrosine kinase inhibitors (TKI) in chronic myeloid leukaemia (CML) treatment has led to the exploration of factors independent of the Philadelphia chromosome. Among these are the association of deletions of genes on derivative (der) 9 chromosome with adverse outcomes in CML patients. However, the functional role of genes near the breakpoint on der (9) in CML prognosis and progression remains largely unexplored. Copy number variation and mRNA expression were evaluated for five genes located near the breakpoint on der (9). Our data showed a significant association between microdeletions of the FUBP3 gene and its reduced expression with poor prognostic markers and adverse response outcomes in CML patients. Further investigation using K562 cells showed that the decrease in FUBP3 protein was associated with an increase in proliferation and survival due to activation of the MAPK–ERK pathway. We have established a novel direct interaction of FUBP3 protein and PRC2 complex in the regulation of ERK signalling via PAK1. Our findings demonstrate the role of the FUBP3 gene located on der (9) in poor response and progression in CML with the identification of additional druggable targets such as PAK1 in improving response outcomes in CML patients.  相似文献   

2.
Guanylate binding proteins (GBPs) are interferon-inducible large GTPases and play a crucial role in cell-autonomous immunity. However, the biology function of GBPs in cancer remains elusive. GBP3 is specifically expressed in adult brain. Here we show that GBP3 is highly elevated in human glioma tumors and glioma cell lines. Overexpression of GBP3 dramatically increased glioma cell proliferation whereas silencing GBP3 by RNA interference produced opposite effects. We further showed that GBP3 expression was able to induce sequestosome-1(SQSTM1, also named p62) expression and activate extracellular signal-regulated kinase (ERK1/2). The SQSTM1-ERK1/2 signaling cascade was essential for GBP3-promoted cell growth because depletion of SQSTM1 markedly reduced the phosphorylated ERK1/2 levels and GBP3-mediated cell growth, and inhibition of mitogen-activated protein kinase/ERK kinase abolished GBP3-induced glioma cell proliferation. Consistently, GBP3 overexpression significantly promoted glioma tumor growth in vivo and its expression was inversely correlated with the survival rate of glioma patients. Taken together, these results for the first time suggest that GBP3 contributes to the proliferation of glioma cells via regulating SQSTM1-ERK1/2 pathway, and GBP3 might represent as a new potential therapeutic target against glioma.  相似文献   

3.
4.
Inadequate trophoblastic invasion is considered as one of hallmarks of preeclampsia (PE), which is characterized by newly onset of hypertension (>140/90 mmHg) and proteinuria (>300 mg in a 24‐h urine) after 20 weeks of gestation. Accumulating evidence has indicated that long noncoding RNAs are aberrantly expressed in PE, whereas detailed mechanisms are unknown. In the present study, we showed that lncRNA Taurine upregulated 1 (TUG1) were downregulated in preeclamptic placenta and in HTR8/SVneo cells under hypoxic conditions, together with reduced enhancer of zeste homolog2 (EZH2) and embryonic ectoderm development (EED) expression, major components of polycomb repressive complex 2 (PRC2), as well as activation of Nodal/ALK7 signalling pathway. Mechanistically, we found that TUG1 bound to PRC2 (EZH2/EED) in HTR8/SVneo cells and weakened TUG1/PRC2 interplay was correlated with upregulation of Nodal expression via decreasing H3K27me3 mark at the promoter region of Nodal gene under hypoxic conditions. And activation of Nodal signalling prohibited trophoblast invasion via reducing MMP2 levels. Overexpression of TUG1 or EZH2 significantly attenuated hypoxia‐induced reduction of trophoblastic invasiveness via negative modulating Nodal/ALK7 signalling and rescuing expression of its downstream target MMP2. These investigations might provide some evidence for novel mechanisms responsible for inadequate trophoblastic invasion and might shed some light on identifying future therapeutic targets for PE.  相似文献   

5.
6.
7.
8.
The cation-independent mannose-6-phosphate receptor (CI-MPR) follows a highly regulated sorting itinerary to deliver hydrolases from the trans-Golgi network (TGN) to lysosomes. Cycling of CI-MPR between the TGN and early endosomes is mediated by GGA3, which directs TGN export, and PACS-1, which directs endosome-to-TGN retrieval. Despite executing opposing sorting steps, GGA3 and PACS-1 bind to an overlapping CI-MPR trafficking motif and their sorting activity is controlled by the CK2 phosphorylation of their respective autoregulatory domains. However, how CK2 coordinates these opposing roles is unknown. We report a CK2-activated phosphorylation cascade controlling PACS-1- and GGA3-mediated CI-MPR sorting. PACS-1 links GGA3 to CK2, forming a multimeric complex required for CI-MPR sorting. PACS-1-bound CK2 stimulates GGA3 phosphorylation, releasing GGA3 from CI-MPR and early endosomes. Bound CK2 also phosphorylates PACS-1Ser(278), promoting binding of PACS-1 to CI-MPR to retrieve the receptor to the TGN. Our results identify a CK2-controlled cascade regulating hydrolase trafficking and sorting of itinerant proteins in the TGN/endosomal system.  相似文献   

9.
As an outcome of chronic liver disease, liver fibrosis involves the activation of hepatic stellate cells (HSCs) caused by a variety of chronic liver injuries. It is important to explore approaches to inhibit the activation and proliferation of HSCs for the treatment of liver fibrosis. PLK1 is overexpressed in many human tumour cells and has become a popular drug target in tumour therapy. Therefore, further study of the function of PLK1 in the cell cycle is valid. In the present study, we found that PLK1 expression was elevated in primary HSCs isolated from CCl4‐induced liver fibrosis mice and LX‐2 cells stimulated with TGF‐β1. Knockdown of PLK1 inhibited α‐SMA and Col1α1 expression and reduced the activation of HSCs in CCl4‐induced liver fibrosis mice and LX‐2 cells stimulated with TGF‐β1. We further showed that inhibiting the expression of PLK1 reduced the proliferation of HSCs and promoted HSCs apoptosis in vivo and in vitro. Furthermore, we found that the Wnt/β‐catenin signalling pathway may be essential for PLK1‐mediated HSCs activation. Together, blocking PLK1 effectively suppressed liver fibrosis by inhibiting HSC activation, which may provide a new treatment strategy for liver fibrosis.  相似文献   

10.
11.
12.
13.
Several microRNAs are associated with carcinogenesis and tumour progression. Herein, our observations suggest both miR24-2 and Pim1 are up-regulated in human liver cancers, and miR24-2 accelerates growth of liver cancer cells in vitro and in vivo. Mechanistically, miR24-2 increases the expression of N6-adenosine-methyltransferase METTL3 and thereafter promotes the expression of miR6079 via RNA methylation modification. Furthermore, miR6079 targets JMJD2A and then increased the tri-methylation of histone H3 on the ninth lysine (H3K9me3). Therefore, miR24-2 inhibits JMJD2A by increasing miR6079 and then increases H3K9me3. Strikingly, miR24-2 increases the expression of Pim1 dependent on H3K9me3 and METTL3. Notably, our findings suggest that miR24-2 alters several related genes (pHistone H3, SUZ12, SUV39H1, Nanog, MEKK4, pTyr) and accelerates progression of liver cancer cells through Pim1 activation. In particular, Pim1 is required for the oncogenic action of miR24-2 in liver cancer. This study elucidates a novel mechanism for miR24-2 in liver cancer and suggests that miR24-2 may be used as novel therapeutic targets of liver cancer.  相似文献   

14.
Hepatocellular carcinoma (HCC) is a common disease with a significant mortality, and there is no effective treatment for advanced patients. Growing evidence indicates that circRNAs are closely related to HCC progression, may be used as biomarkers and targets for the diagnosis and treatment of HCC. Recent researches have shown that circPUM1 may play an oncogene role in a variety of human cancers, but its role in HCC development has not been reported. Our study found that circPUM1 could promote the proliferation, migration and invasion of HCC cells in vitro. In addition, in vivo studies showed that circPUM1 could increase the development of HCC tumours and regulate the expression of EMT-related proteins. Furthermore, we demonstrated that circPUM1 could promote the development of HCC by up-regulating the expression of MAP3K2 via sponging miR-1208. Our study suggested that circPUM1 may be a potential therapeutic target for HCC.  相似文献   

15.
16.
17.
《Molecular cell》2022,82(24):4611-4626.e7
  1. Download : Download high-res image (165KB)
  2. Download : Download full-size image
  相似文献   

18.
19.
Pancreatic stellate cells (PSCs) play a critical role in fibrogenesis during alcoholic chronic pancreatitis (ACP). Transforming growth factor‐beta1 (TGF‐β1) is a key regulator of extracellular matrix production and PSC activation. Endotoxin lipopolysaccharide (LPS) has been recognized as a trigger factor in the pathogenesis of ACP. This study aimed to investigate the mechanisms by which LPS modulates TGF‐β1 signalling and pancreatic fibrosis. Sprague‐Dawley rats fed with a Lieber‐DeCarli alcohol (ALC) liquid diet for 10 weeks with or without LPS challenge during the last 3 weeks. In vitro studies were performed using rat macrophages (Mφs) and PSCs (RP‐2 cell line). The results showed that repeated LPS challenge resulted in significantly more collagen production and PSC activation compared to rats fed with ALC alone. LPS administration caused overexpression of pancreatic TLR4 or TGF‐β1 which was paralleled by an increased number of TLR4‐positive or TGF‐β1‐positive Mφs or PSCs in ALC‐fed rats. In vitro, TLR4 or TGF‐β1 production in Mφs or RP‐2 cells was up‐regulated by LPS. LPS alone or in combination with TGF‐β1 significantly increased type I collagen and α‐SMA production and Smad2 and 3 phosphorylation in serum‐starved RP‐2 cells. TGF‐β pseudoreceptor BAMBI production was repressed by LPS, which was antagonized by Si‐TLR4 RNA or by inhibitors of MyD88/NF‐kB. Additionally, knockdown of Bambi with Si‐Bambi RNA significantly increased TGF‐β1 signalling in RP‐2 cells. These findings indicate that LPS increases TGF‐β1 production through paracrine and autocrine mechanisms and that LPS enhances TGF‐β1 signalling in PSCs by repressing BAMBI via TLR4/MyD88/NF‐kB activation.  相似文献   

20.
Etscheid M  Beer N  Dodt J 《Cellular signalling》2005,17(12):1486-1494
The hyaluronan-binding protease (HABP) is a serine protease in human plasma which is structurally related to plasminogen activators, coagulation factor XII and hepathocyte growth factor activator. It can in vitro activate the coagulation factor FVII, kininogen and plasminogen activators. The present study was initiated to gain a more complete picture of the cell-associated activities of this fibrinolysis-related protease. Treatment of lung fibroblasts with HABP lead to a rapid activation of signalling pathways, including the mitogen-activated protein kinase (MAPK) pathway with c-Raf, MEK and ERK1/2. Additionally the activation of the PI3K/Akt pathway and of several translation-related proteins was found. Proliferation assays confirmed the assumption of a strong growth-stimulating effect of HABP on human lung and skin fibroblasts. Intracellular signalling and growth stimulation were strongly dependent on the proteolytic activity of HABP. Stimulation of signalling and proliferation by HABP involved the fibroblast growth factor receptor 1 (FGFR-1). HABP-stimulated proliferation of lung fibroblasts MRC-5 was accompanied by a significant intracellular increase in basic fibroblast growth factor (bFGF), the major ligand of FGFR-1; bFGF could however not be identified in the supernatant of HABP-treated cells. Though, the conditioned medium from HABP-treated cells showed a strong growth-promoting activity on quiescent fibroblasts, indicating the release of a yet unknown growth factor amplifying the initial growth stimulus. In a two-dimensional wound model HABP stimulated the invasion of fibroblasts into a scratch area, adding a strong pro-migratory activity to this plasma protease. In summary, HABP exhibits a significant growth factor-like activity on quiescent human lung and dermal fibroblasts. Our findings suggest that this fibrinolysis-related plasma protease may participate in physiologic or pathologic processes where cell proliferation and migration are pivotal, like tissue repair, vascular remodelling, wound healing or tumor development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号