首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
白俊艳  张勤  贾小平 《遗传》2007,29(3):259-264
标记辅助导入是分子遗传信息应用于动物育种的一个重要方面, 其目的是在标记信息的辅助下将一个品种(供体)中的一个或多个优良基因导入另一个品种(受体), 同时还要尽可能地保持受体群体原有的遗传背景。在标记辅助导入过程中, 标记信息既可用于辅助前景选择, 即对目标基因携带者的选择, 以保证目标基因的正确导入, 也可用于辅助背景选择, 即对受体基因组的选择, 以加快受体遗传背景的恢复。本文介绍了标记辅助导入的原理和基本方法, 综述了目前已提出的不同前景选择和背景选择方法以及消除遗传累赘(与目标基因连锁的不利基因)的方法, 同时列举了标记辅助导入在动物上的一些成功应用。  相似文献   

2.
A within-family marker-assisted selection scheme was designed for typical aquaculture breeding schemes, where most traits are recorded on sibs of the candidates. Here, sibs of candidates were tested for the trait and genotyped to establish genetic marker effects on the trait. BLUP breeding values were calculated, including information of the markers (MAS) or not (NONMAS). These breeding values were identical for all family members in the NONMAS schemes, but differed between family members in the MAS schemes, making within-family selection possible. MAS had up to twice the total genetic gain of the corresponding NONMAS scheme. MAS was somewhat less effective when heritability increased from 0.06 to 0.12 or when the frequency of the positive allele was < 0.5. The relative efficiency of MAS was higher for schemes with more candidates, because of larger fullsib family sizes. MAS was also more efficient when male:female mating ratio changed from 1:1 to 1:5 or when the QTL explained more of the total genetic variation. Four instead of two markers linked to the QTL increased genetic gain somewhat. There was no significant difference in polygenic genetic gain between MAS and NONMAS for most schemes. The rates of inbreeding were lower for MAS than NON-MAS schemes, because fewer full-sibs were selected by MAS.  相似文献   

3.
Three different methods for foreground selection and four different methods for background selection were compared in terms of the efficiency of marker-assisted introgression of a QTL allele from a donor line into a recipient line and also in terms of the recovery of the recipient genetic background. The results showed that for the introgression of a donor QTL allele, a direct selection on the QTL itself (when the QTL genotype can be directly identified) would ensure that the allele is successfully introgressed and rapidly fixed. However, when a direct selection on the QTL is not feasible, an indirect selection using two closely linked flanking markers can be used, which also shows similar results. For the recovery of the recipient genetic background, if the goal is to recover the whole genetic background of the recipient, genomic similarity selection or marker index selection would be the best choice: Only three generations of backcrosses were required to recover over 98% of the recipient genome. Whereas if the goal is to recover certain background traits of the recipient, MBLUP selection would give the best results, which achieved not only over 99% recovery of the recipient QTL alleles for the background traits after three generations of backcrosses, but also showed the best genetic improvement of these traits.  相似文献   

4.
DNA markers have enormous potential to improve the efficiency and precision of conventional plant breeding via marker-assisted selection (MAS). The large number of quantitative trait loci (QTLs) mapping studies for diverse crops species have provided an abundance of DNA marker-trait associations. In this review, we present an overview of the advantages of MAS and its most widely used applications in plant breeding, providing examples from cereal crops. We also consider reasons why MAS has had only a small impact on plant breeding so far and suggest ways in which the potential of MAS can be realized. Finally, we discuss reasons why the greater adoption of MAS in the future is inevitable, although the extent of its use will depend on available resources, especially for orphan crops, and may be delayed in less-developed countries. Achieving a substantial impact on crop improvement by MAS represents the great challenge for agricultural scientists in the next few decades.  相似文献   

5.
6.
标记辅助导入中不同前景和背景选择方法的比较   总被引:5,自引:0,他引:5  
白俊艳  张勤  贾小平 《遗传学报》2006,33(12):1073-1080
标记辅助导入是分子遗传信息应用于动物育种的一个重要方面,其目的是在标记信息的辅助下将一个品种(供体)中的一个或多个优良基因导入另一个品种(受体),同时还要尽可能地保持受体群体原有的遗传背景。标记辅助导入的过程包括3个阶段,第一阶段是杂交,即供体与受体杂交产生F1代个体,第二阶段是回交,即F1个体以及后续各个世代的后代个体重复地与受体回交,以使受体的遗传背景得到恢复,第三阶段是横交,即重复回交后得到的个体彼此问交配,以便获得供体基因的纯合个体,使该基因在群体中固定。在回交和横交阶段,都要对参与交配的个体进行选择。在选择中,要分别进行前景选择和背景选择,前景选择是对供体基因的选择,选择携带有供体基因个体参加配种,从而使该基因在回交过程中不会丢失,并在横交过程中能尽快固定,背景选择是对受体遗传背景的选择,选择那些含有受体基因组比例较高的个体参加配种,从而加快恢复受体遗传背景的速度。本研究通过计算机模拟对不同的前景选择方法和不同的背景选择方法进行了比较。前景选择方法包括对受体基因的直接选择(假设该基冈可以直接测定)、利用单个连锁标记的间接选择和利用两侧标记的间接选择3种,背景选择方法包括随机选择、基因组相似性选择、指数选择和标记辅助BLUP(MBLUP)选择4种。研究结果表明,对于前景选择来说,对供体基因的直接选择能保证该基因在回交的各个世代中保持一个稳定的频率(0.25)并在横交阶段迅速固定(2个世代),用两侧标记的间接选择也能得到类似的结果,但如果仅利用单个连锁标记进行选择,则会导致供体基因的频率在回交阶段中有所下降,并在横交阶段不能被固定。对于背景选择来说,如果最终的目的是要完全恢复受体的遗传背景,基因组相似性选择或标记指数选择是最好的选择方法,它们可使受体的遗传背景在回交3个世代后就恢复到98%以上,而随机选择或MBLUP选择需要至少5个世代的回交才能达到这个水平。但如果最终的目的只是要恢复受体的某些优良性状,则MBLUP选择是值得推荐的方法,它可使影响这些性状的受体基因频率在回交3个世代后就达到99%以上,而且还能在整个基因导入过程中给这些性状带来最大的遗传进展。虽然用标记指数选择也有相似的结果,但与之相比,MBLUP的成本要低得多,更具有实际可行性。  相似文献   

7.
A method for marker-assisted selection based on QTLs with epistatic effects   总被引:8,自引:0,他引:8  
Liu P  Zhu J  Lou X  Lu Y 《Genetica》2003,119(1):75-86
A method for marker-assisted selection (MAS) based on quantitative trait loci (QTLs) with epistatic effects is proposed. The efficiency of such method is investigated by simulations under a wide range of situations. In the presence of epistasis, MAS generally yields longer persistence response than that based exclusively on additive or additive and dominance. Neglecting epistasis could result in considerable loss in response, and more pronounced at later generations. In addition to population size and trait heritability, genetic variance configurations play an important role in determining both the short- and long-term efficiencies of MAS. MAS using breeding values not only achieves higher response, but also tends to have smaller standard error than other methods in most cases. Errors in QTL detection cause distinct reductions in responses to MAS in most cases. It is thus concluded that verifications of putative QTL and its magnitude of effect and accurate map chromosome location are imperative to realize the potentials of MAS.  相似文献   

8.
    
Daniel Gianola 《Genetics》2013,194(3):573-596
Whole-genome enabled prediction of complex traits has received enormous attention in animal and plant breeding and is making inroads into human and even Drosophila genetics. The term “Bayesian alphabet” denotes a growing number of letters of the alphabet used to denote various Bayesian linear regressions that differ in the priors adopted, while sharing the same sampling model. We explore the role of the prior distribution in whole-genome regression models for dissecting complex traits in what is now a standard situation with genomic data where the number of unknown parameters (p) typically exceeds sample size (n). Members of the alphabet aim to confront this overparameterization in various manners, but it is shown here that the prior is always influential, unless np. This happens because parameters are not likelihood identified, so Bayesian learning is imperfect. Since inferences are not devoid of the influence of the prior, claims about genetic architecture from these methods should be taken with caution. However, all such procedures may deliver reasonable predictions of complex traits, provided that some parameters (“tuning knobs”) are assessed via a properly conducted cross-validation. It is concluded that members of the alphabet have a room in whole-genome prediction of phenotypes, but have somewhat doubtful inferential value, at least when sample size is such that np.  相似文献   

9.
    
Genomic Selection is an important topic in quantitative genetics and breeding. Not only does it allow the full use of current molecular genetic technologies, it stimulates also the development of new methods and models. Genomic selection, if fully implemented in commercial farming, should have a major impact on the productivity of various agricultural systems. But suggested approaches need to be applicable in commercial breeding populations. Many of the published research studies focus on methodologies. We conclude from the reviewed publications, that a stronger focus on strategies for the implementation of genomic selection in advanced breeding lines, introduction of new varieties, hybrids or multi-line crosses is needed. Efforts to find solutions for a better prediction and integration of environmental influences need to continue within applied breeding schemes. Goals of the implementation of genomic selection into crop breeding should be carefully defined and crop breeders in the private sector will play a substantial part in the decision-making process. However, the lack of published results from studies within, or in collaboration with, private companies diminishes the knowledge on the status of genomic selection within applied breeding programmes. Studies on the implementation of genomic selection in plant breeding need to evaluate models and methods with an enhanced emphasis on population-specific requirements and production environments. Adaptation of methods to breeding schemes or changes to breeding programmes for a better integration of genomic selection strategies are needed across species. More openness with a continuous exchange will contribute to successes.  相似文献   

10.
    
  相似文献   

11.
The eating and cooking qualities of rice are heavily emphasized in breeding programs because they determine market values and they are the appealing attributes sought by consumers. Conventional breeding has developed traditional varieties with improved eating and cooking qualities. Recently, intensive genetic studies have pinpointed the genes that control eating and cooking quality traits. Advances in genetic studies have developed molecular techniques, thereby allowing marker-assisted breeding (MAB) for improved eating and cooking qualities in rice. MAB has gained the attention of rice breeders for the advantages it can offer that conventional breeding cannot. There have been successful cases of using MAB to improve the eating and cooking qualities in rice over the years. Nevertheless, MAB should be applied cautiously given the intensive effort needed for genotyping. Perspectives from conventional breeding to marker-assisted breeding will be discussed in this review for the advancement of the eating and cooking qualities of fragrance, amylose content (AC), gel consistency (GC) and gelatinization temperature (GT) in rice. These four parameters are associated with eating and cooking qualities in rice. The genetic basis of these four parameters is also included in this review. MAB is another approach to rice variety improvement and development in addition to being an alternative to genetic engineering. The MAB approach shortens the varietal development time, and is therefore able to deliver improved rice varieties to farmers within a shorter period of time.  相似文献   

12.
谈成  边成  杨达  李宁  吴珍芳  胡晓湘 《遗传》2017,39(11):1033-1045
基因组选择(genomic selection, GS)是畜禽经济性状遗传改良的重要方法。随着高密度SNP芯片和二代测序价格的下降,GS技术越来越多被应用于奶牛、猪、鸡等农业动物育种中。然而,降低全基因组SNP分型成本、提高基因组育种值(genomic estimated breeding value,GEBV)估计准确性仍然是GS研究的主要难题。本文从全基因组SNP分型策略和GEBV估计模型两个方面进行了综述,并对目前GS技术在主要畜禽品种中的应用现状进行了介绍,以期为GS在农业动物育种中的深入开展提供借鉴和参考。  相似文献   

13.
Cereals are grown in almost every region of the world and are exposed to a variety of environmental stresses that severely affect their growth and grain yield. Of various abiotic stresses, salinity is one of the more significant threats to cereal crops. To ensure food security, there is a need to adopt strategies to overcome this specific threat. Undoubtedly, plant scientists have been exploiting a variety of approaches to achieve enhanced crop productivity on salt affected soils. Of the various biotic approaches, conventional breeding, marker-assisted selection and genetic engineering to develop salt-tolerant lines/cultivars of cereals all seem plausible. Some success stories have been reported for improvement in salt tolerance of wheat and rice, but are scarce for other cereals. A number of barriers to the development of salt-tolerant cultivars/lines have been identified and include a lack of knowledge about the genetics of crops, their physiological and biochemical behavior, wide variation in environmental conditions, and the complex polygenic nature of the salt tolerance character. This review focuses on how improvements have been made in salt tolerance in cereals through different biotic means, such as conventional breeding, marker assisted selection and genetic engineering.  相似文献   

14.
  总被引:2,自引:1,他引:2  
  相似文献   

15.
植物抗病育种中的标记辅助选择与甘蔗   总被引:3,自引:0,他引:3  
抗病基因的分子标记具有稳定、准确、高效的特点,通过对基因型而不是表型的直接选择,抗病基因分子标记应用于辅助选择可大大加快常规育种进程,提高育种效率。本文评述了植物抗病育种中标记辅助选择的发展概况,介绍了各种DNA分子标记技术及植物抗病基因连锁标记的筛选方法,重点介绍了甘蔗抗病基因分子标记研究的现状,展望了分子标记辅助选择在甘蔗抗病育种中的前景。  相似文献   

16.
17.
A method proposed herein allows simultaneous selection for several production traits, taking into consideration their marginal economic values (i.e. the economic value of a trait's additional unit). This economic index-marker assisted selection (EI-MAS) method is based on the calculation of the predicted economic breeding value (BV), using information on DNA markers that have previously been found to be associated with relevant quantitative trait loci. Based on the proposed method, results with real birds showed that sire progeny performance was significantly correlated with expected performance (r = 0.61-0.76; P = 0.03-0.01). Simulation analysis using a computer program written specifically for this purpose suggested that the relative advantage of EI-MAS would be large for traits with low heritability values. As expected, the response to EI-MAS was higher when the map distance between the marker and the quantitative trait gene was small, and vice versa. A large number of distantly located markers, spread 10 cM apart, yielded higher response to selection than a small number of closely located markers spread 3 cM apart. Additionally, the response to EI-MAS was higher when a large number (ca.150) of progeny was used for the prediction equation.  相似文献   

18.
为了改良水稻优良恢复系福恢673的稻瘟病抗性,以该恢复系为轮回亲本,以携有3个稻瘟病抗性基因(Pi-1、Pi-9和Pi-k~h)的优质恢复系金恢1059为供体亲本,通过回交育种结合分子标记辅助选择,选育出10个导入了这3个抗稻瘟病基因的福恢673近等基因系,其遗传背景恢复率为92.96%–98.59%。抗性鉴定结果表明,这些近等基因系及其与不育系宜香A配制的杂种一代均表现抗稻瘟病,抗性明显强于对照福恢673和宜优673,且半数以上杂种一代基本保留了原组合的主要优点。用近等基因系Line 9配组的杂交稻新组合两优7283和金泰优683在区试中均表现出产量高、稻瘟病抗性强、生育期适中等特点,表明该近等基因系具较好的应用前景。  相似文献   

19.
QGENE: software for marker-based genomic analysis and breeding   总被引:15,自引:0,他引:15  
Efficient use of DNA markers for genomic research and crop improvement will depend as much on computational tools as on laboratory technology. The large size and multidimensional character of marker datasets invite novel approaches to data visualization. Described here is a software application embodying two design principles: conventional reduction of raw genetic marker data to numerical summary statistics, and fast, interactive graphical display of both data and statistics. The program performs various analyses for mapping quantitative-trait loci in real or simulated datasets and other analyses in aid of phenotypic and marker-assisted breeding. Functionality is described and some output is illustrated.  相似文献   

20.
近年来,随着基因芯片技术的发展与育种技术的进步,动植物的基因组选择成为研究热点。在家畜育种中,基因组选择凭借其准确性高、世代间隔短和育种成本低等优势被应用于各种经济动物的种畜选择中。本文详细介绍了基因分型技术和基因组育种值估计方法(最小二乘法、RR-BLUP法、GBLUP法、ssGBLUP法、贝叶斯A法、贝叶斯B法等),并对这些育种方法选用的标记范围、准确性以及计算速度进行了比较,总结了我国和其他国家基因组选择在种畜选择中的应用情况及存在的问题,展望了目前国内外在基因组选择上的最新研究动态及进展,以期为其他育种工作者进一步了解基因组选择提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号