首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microsatellites (SSRs) are widely used in cereal research, and their use in marker assisted breeding has increased the speed and efficiency of germplasm improvement. Central to the application of SSRs for many purposes are methodologies enabling the low-cost acquisition of large quantities of genetic information for gene and genotype identification. In this study, multiplex-ready PCR was evaluated in barley and bread wheat as an approach for rapid and more automated SSR genotyping on a fluorescence-based DNA fragment analyzer. Multiplex-ready PCR is a method that allows SSR genotyping to be performed using a standardized protocol. The method enables flexible fluorescence labeling of SSRs, generates a relatively constant amount of PCR product for each marker, and has a high amenability to multiplex PCR (the simultaneous amplification of several SSRs in the same reaction). A high (92%) compatibility of published SSRs with multiplex-ready PCR is demonstrated, and the usefulness of the method for large scale genotyping is shown by its application for whole genome marker assisted breeding in barley. A database of more than 2,800 barley and wheat SSRs, and a suite of bio-informatic tools were developed to support the deployment of multiplex-ready PCR for various genetic applications, and are accessible at . Multiplex-ready PCR is broadly applicable to cereal genomics research and marker assisted breeding, and should be transferable to similar analyses of any animal or plant species.  相似文献   

2.
The advent of large-scale DNA sequencing technology has generated a tremendous amount of sequence information for many important organisms. We have developed a rapid and efficient PCR-based technique, which uses bioinformatics tools and expressed sequence tag (EST) database information to generate polymorphic markers around targeted candidate gene sequences. This target region amplification polymorphism (TRAP) technique uses 2 primers of 18 nucleotides to generate markers. One of the primers, the fixed primer, is designed from the targeted EST sequence in the database; the second primer, the arbitrary primer, is an arbitrary sequence with either an AT-or GC-rich core to anneal with an intron or exon, respectively. PCR amplification is run for the first 5 cycles with an annealing temperature of 35°C, followed by 35 cycles with an annealing temperature of 50°C. For different plant species, each PCR reaction can generate as many as 50 scorable fragments with sizes ranging from 50–900 bp when separated on a 6.5% polyacrylamide sequencing gel. The TRAP technique should be useful in genotyping germplasm collections and in tagging genes governing desirable agronomic traits of crop plants.  相似文献   

3.
To enable rapid selection of traits in marker‐assisted breeding, markers must be technically simple, low‐cost, high‐throughput and randomly distributed in a genome. We developed such a technology, designated as Multiplex Restriction Amplicon Sequencing (MRASeq), which reduces genome complexity by polymerase chain reaction (PCR) amplification of amplicons flanked by restriction sites. The first PCR primers contain restriction site sequences at 3’‐ends, preceded by 6‐10 bases of specific or degenerate nucleotide sequences and then by a unique M13‐tail sequence which serves as a binding site for a second PCR that adds sequencing primers and barcodes to allow sample multiplexing for sequencing. The sequences of restriction sites and adjacent nucleotides can be altered to suit different species. Physical mapping of MRASeq SNPs from a biparental population of allohexaploid wheat (Triticum aestivum L.) showed a random distribution of SNPs across the genome. MRASeq generated thousands of SNPs from a wheat biparental population and natural populations of wheat and barley (Hordeum vulgare L.). This novel, next‐generation sequencing‐based genotyping platform can be used for linkage mapping to screen quantitative trait loci (QTL), background selection in breeding and many other genetics and breeding applications of various species.  相似文献   

4.
The polymerase chain reaction (PCR) is sensitive to mismatches between primer and template, and mismatches can lead to inefficient amplification of targeted regions of DNA template. In PCRs in which a degenerate primer pool is employed, each primer can behave differently. Therefore, inefficiencies due to different primer melting temperatures within a degenerate primer pool, in addition to mismatches between primer binding sites and primers, can lead to a distortion of the true relative abundance of targets in the original DNA pool. A theoretical analysis indicated that a combination of primer-template and primer-amplicon interactions during PCR cycles 3–12 is potentially responsible for this distortion. To test this hypothesis, we developed a novel amplification strategy, entitled “Polymerase-exonuclease (PEX) PCR”, in which primer-template interactions and primer-amplicon interactions are separated. The PEX PCR method substantially and significantly improved the evenness of recovery of sequences from a mock community of known composition, and allowed for amplification of templates with introduced mismatches near the 3’ end of the primer annealing sites. When the PEX PCR method was applied to genomic DNA extracted from complex environmental samples, a significant shift in the observed microbial community was detected. Furthermore, the PEX PCR method provides a mechanism to identify which primers in a primer pool are annealing to target gDNA. Primer utilization patterns revealed that at high annealing temperatures in the PEX PCR method, perfect match annealing predominates, while at lower annealing temperatures, primers with up to four mismatches with templates can contribute substantially to amplification. The PEX PCR method is simple to perform, is limited to PCR mixes and a single exonuclease step which can be performed without reaction cleanup, and is recommended for reactions in which degenerate primer pools are used or when mismatches between primers and template are possible.  相似文献   

5.
6.
Molecular genotyping has important biomedical and forensic applications. However, limiting amounts of human biological material often yield genomic DNA (gDNA) in insufficient quantity and of poor quality for a reliable analysis. This motivated the development of an efficient whole genome amplification method with quantitatively unbiased representation usable on fresh and degraded gDNA. Amplification of fresh frozen, formalin-fixed paraffin-embedded (FFPE) and DNase-degraded DNA using degenerate oligonucleotide-primed PCR or primer extension amplification using a short primer sequence bioinformatically optimized for coverage of the human genome was compared with amplification using current primers by chromosome-based and BAC-array comparative genomic hybridization (CGH), genotyping at short tandem repeats (STRs) and single base mutation detection. Compared with current primers, genome amplification using the bioinformatically optimized primer was significantly less biased on CGH in self-self hybridizations, and replicated tumour genome copy number aberrations, even from FFPE tissue. STR genotyping could be performed on degraded gDNA amplified using our technique but failed with multiple displacement amplification. Of the 18 different single base mutations 16 (89.5%) were correctly identified by sequencing gDNA amplified from clinical samples using our technique. This simple and efficient isothermal method should be helpful for genetic research and clinical and forensic applications.  相似文献   

7.
The application of high-throughput SNP genotyping is a great challenge for many research projects in the plant genetics domain. The GOOD assay for mass spectrometry, Amplifluor and TaqMan are three methods that rely on different principles for allele discrimination and detection, specifically, primer extension, allele-specific PCR and hybridization, respectively. First, with the goal of assessing allele frequencies by means of SNP genotyping, we compared these methods on a set of three SNPs present in the herbicide resistance genes CSR, AXR1 and IXR1 of Arabidopsis thaliana. In this comparison, we obtained the best results with TaqMan based on PCR specificity, flexibility in primer design and success rate. We also used mass spectrometry for genotyping polyploid species. Finally, a combination of the three methods was used for medium- to high-throughput genotyping in a number of different plant species. Here, we show that all three genotyping technologies are successful in discriminating alleles in various plant species and discuss the factors that must be considered in assessing which method to use for a given application.  相似文献   

8.
In Pyrosequencing, the addition of nucleotides to a primer-template hybrid is monitored by enzymatic conversion of chemical energy into detectable light. The technique yields both qualitative and quantitative sequence information because the chemical energy is released by a stoichiometric split off of pyrophosphates from incorporated deoxynucleotide triphosphates and a defined nucleotide dispensation order is given. Because Pyrosequencing works best if single-stranded DNA templates are used, template generation usually requires PCR with a target-specific biotinylated primer and a subsequent purification involving interaction of the biotin label with immobilized streptavidin. To circumvent the need for numerous and expensive template-specific biotinylated primers, we developed a method that uses the ligation of amplified DNA fragments into a plasmid vector, thereby facilitating subsequent PCR using a universal vector-specific biotinylated primer. This approach allows easy and straightforward isolation of single-stranded templates of any PCR product. As a proof of principle, we used the method for genotyping two single-nucleotide polymorphisms in the human genes CARD15 and A2M and for characterization of four multisite variations in the human DEFB104 gene.  相似文献   

9.
目前广泛使用的基于PCR基础的分子标记多为扩增非编码区域,或是随机基因组中扩增,在QTL定位中得到的位点一般与目标性状基因距离较远,我们开发了一个新的基于启动子序列目的基因型分子标记技术——启动子区域相关序列多态性(SCRP),试图使标记能够更为准确的反映不同品种的遗传基础。它利用启动子位置保守一致序列 (“Kozak”序列) 作为其上游引物,利用内含子富含“AATT”的特性,作为核心序列设计下游引物,上下游引物均为18bp,引物间通过组合配对的方式作为扩增引物对。设计了14条上游引物和10条下游引物,共140对引物组合,对34个苜蓿品种进行扩增,研究了34个苜蓿的遗传多样性。每个PCR反应产生3~16个50~2000bp的条带,结果表明该标记简单、可靠、具有较高多态性,并且扩增区域为一种目的基因型分子标记,在种质资源研究中具有重要价值。  相似文献   

10.
Among commonly applied molecular markers, simple sequence repeats (SSRs, or microsatellites) possess advantages such as a high level of polymorphism and codominant pattern of inheritance at individual loci. To facilitate systematic and rapid genetic mapping in soybean, we designed a genotyping panel comprised 304 SSR markers selected for allelic diversity and chromosomal location so as to provide wide coverage. Most primer pairs for the markers in the panel were redesigned to yield amplicons of 80–600 bp in multiplex polymerase chain reaction (PCR) and fluorescence-based sequencer analysis, and they were labelled with one of four different fluorescent dyes. Multiplex PCR with sets of six to eight primer pairs per reaction generated allelic data for 283 of the 304 SSR loci in three different mapping populations, with the loci mapping to the same positions as previously determined. Four SSRs on each chromosome were analysed for allelic diversity in 87 diverse soybean germplasms with four-plex PCR. These 80 loci showed an average allele number and polymorphic information content value of 14.8 and 0.78, respectively. The high level of polymorphism, ease of analysis, and high accuracy of the SSR genotyping panel should render it widely applicable to soybean genetics and breeding.  相似文献   

11.
We have developed a new primer design method based on the QuickChange™ site-directed mutagenesis protocol, which significantly improves the PCR amplification efficiency. This design method minimizes primer dimerization and ensures the priority of primer-template annealing over primer self-pairing during the PCR. Several different multiple mutations (up to 7 bases) were successfully performed with this partial overlapping primer design in a variety of vectors ranging from 4 to 12 kb in length. In comparison, all attempts failed when using complete-overlapping primer pairs as recommended in the standard QuickChange™ protocol. Our protocol was further extended to site-saturation mutagenesis by introducing randomized codons. Our data indicated no specific sequence selection during library construction, with the randomized positions resulting in average occurrence of each base in each position. This method should be useful to facilitate the preparation of high-quality site saturation libraries.  相似文献   

12.
A method for genotyping K-casein ( A, B, E ), β-casein ( A 1, A 2, A 3, A5, B ) and β-lactoglobulin ( A, B ) simultaneously by the use of allele discrimination by primer length combined with automated detection of fragments with a sequencing instrument is described. Seven different mutations within the milk protein genes were analysed in order to distinguish between the alleles examined. The samples were amplified in two separate multiplex polymerase chain reactions (PCRs), which were then pooled and separated according to size in a single lane on the gel. By using stringent PCR conditions, we have been able to achieve allele-specific amplifications and minimize amplification of mismatched primer for all seven mutations.  相似文献   

13.
The fifth component of complement (C5) is considered to be the center of complement activation and function. However, there are no genetically engineered knockout mice for this gene, and the only commercially available inherited C5-deficient mice, in which a “TA” nucleotide deletion in the coding frame was previously identified, are in theC57BL/10Sn genetic background rather than the commonly used backgrounds C57BL/6 and BALB/c. Therefore, these mice must be backcrossed into the desired genetic background. Here, we developed an ARMS (amplification refractory mutation system) PCR method using a specific primer pair that was able to discriminate between the genotypes when the resulting product was analyzed by agarose gel electrophoresis. These results were supported by quantitative RT-PCR and semi-quantitative PCR and were consistent with the results from sequencing each backcrossed generation. Using ARMS-PCR method, we generated C5-deficient mice in the C57BL/6 background over 9 backcrossed generations and further verified the phenotype using complement-mediated hemolytic assays. In this study, we describe a simple, rapid and reliable PCR-based method for genotyping inherited C5-deficient mice that may be used to backcross C57BL/10Sn mice into other genetic backgrounds.  相似文献   

14.
In non‐model organisms, evolutionary questions are frequently addressed using reduced representation sequencing techniques due to their low cost, ease of use, and because they do not require genomic resources such as a reference genome. However, evidence is accumulating that such techniques may be affected by specific biases, questioning the accuracy of obtained genotypes, and as a consequence, their usefulness in evolutionary studies. Here, we introduce three strategies to estimate genotyping error rates from such data: through the comparison to high quality genotypes obtained with a different technique, from individual replicates, or from a population sample when assuming Hardy‐Weinberg equilibrium. Applying these strategies to data obtained with Restriction site Associated DNA sequencing (RAD‐seq), arguably the most popular reduced representation sequencing technique, revealed per‐allele genotyping error rates that were much higher than sequencing error rates, particularly at heterozygous sites that were wrongly inferred as homozygous. As we exemplify through the inference of genome‐wide and local ancestry of well characterized hybrids of two Eurasian poplar (Populus) species, such high error rates may lead to wrong biological conclusions. By properly accounting for these error rates in downstream analyses, either by incorporating genotyping errors directly or by recalibrating genotype likelihoods, we were nevertheless able to use the RAD‐seq data to support biologically meaningful and robust inferences of ancestry among Populus hybrids. Based on these findings, we strongly recommend carefully assessing genotyping error rates in reduced representation sequencing experiments, and to properly account for these in downstream analyses, for instance using the tools presented here.  相似文献   

15.

Background

Multiplexing technologies, which allow for simultaneous detection of multiple nucleic acid sequences in a single reaction, can save a lot of time, cost and labor compared to traditional single reaction detection methods. However, the multiplexing method currently used requires precise handiwork and many complicated steps, making a new, simpler technique desirable. Oligonucleotides containing locked nucleic acid residues are an attractive tool because they have strong affinities for their complementary targets, they have been used to avoid dimer formation and mismatch hybridization and to enhance efficient priming. In this study, we aimed to investigate the use of locked nucleic acid pentamers for genomic DNA amplification and multiplex genotyping.

Results

We designed locked nucleic acid pentamers as universal PCR primers for genomic DNA amplification. The locked nucleic acid pentamers were able to prime amplification of the selected sequences within the investigated genomes, and the resulting products were similar in length to those obtained by restriction digest. In Real Time PCR of genomic DNA from three bacterial species, locked nucleic acid pentamers showed high priming efficiencies. Data from bias tests demonstrated that locked nucleic acid pentamers have equal affinities for each of the six genes tested from the Klebsiella pneumoniae genome. Combined with suspension array genotyping, locked nucleic acid pentamer-based PCR amplification was able to identify a total of 15 strains, including 3 species of bacteria, by gene- and species-specific probes. Among the 32 species used in the assay, 28 species and 50 different genes were clearly identified using this method.

Conclusion

As a novel genomic DNA amplification, the use of locked nucleic acid pentamers as universal primer pairs in conjunction with suspension array genotyping, allows for the identification of multiple distinct genes or species with a single amplification procedure. This demonstrates that locked nucleic acid pentamer-based PCR can be utilized extensively in pathogen identification.  相似文献   

16.
The source of DNA of adequate quality and quantity is an important consideration in genome analysis. In many animal and livestock species, easy access to DNA will facilitate the rapid and reliable genotyping of a large number of individual individuals. Here, we describe the use, for the first time, of buccal cells from non-human mammalian species as a source of DNA template for PCR and restriction analysis. The buccal cells from the pig, cow and human, were used to amplify PCR fragments that were scanned SNPs and for comparative genome analysis. The work indicates that buccal cells are also adequate sources of DNA for genome analysis of animals that have been identified as priorities in comparative genomics.  相似文献   

17.

Background

Identification of DNA sequence diversity is a powerful means for assessing the species present in environmental samples. The most common molecular strategies for estimating taxonomic composition depend upon PCR with universal primers that amplify an orthologous DNA region from a range of species. The diversity of sequences within a sample that can be detected by universal primers is often compromised by high concentrations of some DNA templates. If the DNA within the sample contains a small number of sequences in relatively high concentrations, then less concentrated sequences are often not amplified because the PCR favours the dominant DNA types. This is a particular problem in molecular diet studies, where predator DNA is often present in great excess of food-derived DNA.

Results

We have developed a strategy where a universal PCR simultaneously amplifies DNA from food items present in DNA purified from stomach samples, while the predator's own DNA is blocked from amplification by the addition of a modified predator-specific blocking primer. Three different types of modified primers were tested out; one annealing inhibiting primer overlapping with the 3' end of one of the universal primers, another annealing inhibiting primer also having an internal modification of five dI molecules making it a dual priming oligo, and a third elongation arrest primer located between the two universal primers. All blocking primers were modified with a C3 spacer. In artificial PCR mixtures, annealing inhibiting primers proved to be the most efficient ones and this method reduced predator amplicons to undetectable levels even when predator template was present in 1000 fold excess of the prey template. The prey template then showed strong PCR amplification where none was detectable without the addition of blocking primer. Our method was applied to identifying the winter food of one of the most abundant animals in the world, the Antarctic krill, Euphausia superba. Dietary item DNA was PCR amplified from a range of species in krill stomachs for which we had no prior sequence knowledge.

Conclusion

We present a simple, robust and cheap method that is easily adaptable to many situations where a rare DNA template is to be PCR amplified in the presence of a higher concentration template with identical PCR primer binding sites.  相似文献   

18.
We extended the concept of fluorescent microsatellite genotyping with a single-universal tailed primer to the simultaneous use of three different tailed primers to allow multiplexed 4-color detection for medium throughput genotyping of plant species. The method was tested on Eucalyptus DNA samples using three forward primer sequences of human microsatellite markers labeled with different fluorescent dyes. The robustness of the method was tested for the simultaneous detection and genetic analysis of microsatellites in a genetic mapping experiment. This method allows reliable and cost-effective genotyping with the same level of multiplexing attained in regular microsatellite fluorescent detection assays. Besides the enhanced quality of the genotypic data provided by the fluorescent detection method when compared to colorimetric ones, the economy brought about by this method becomes greater with an increasing number of microsatellite markers. This method has been particularly useful for genotyping populations of several tropical tree species addressing community-wide population genetics and conservation questions.  相似文献   

19.
人类血小板抗原1~6系统同步基因分型的研究   总被引:4,自引:1,他引:3  
邓志辉  吴国光  李大成 《遗传》2004,26(5):594-598
为研究采用PCR—SSP技术,建立可靠的人类血小板抗原HPA-1,2,3,4,5,6系统的同步基因分型方法,并以所建立的方法研究血小板抗原。设计合成18条序列特异性引物,探索最佳退火温度,通过调整引物浓度、Mg2+离子浓度,使HPA-1~6系统等位基因在同一条件下进行同步扩增和扩增产物在同一凝胶中进行同步电泳。引物的特异性和灵敏度采用基因型已知的质控DNA进行验证。应用此方法,对2000年度国际输血协会(ISBT)第十届血小板基因定型与血清学工作组送检的15份考核样本(其中血样2份,DNA样本13份)进行了基因分型。用此方法检测质控DNA,结果与已知的HPA基因型完全相符;15份第十届血小板基因定型与血清学工作组的考核样本的检测结果,与ISBT公布的结果完全相同,准确率达100%。Abstract: To set up the simultaneous genotyping of human platelet antigens of 1,2,3,4,5,6 system by PCR—SSP assay and use the genotyping method for the study of platelet antigens. In this study, 18 sequence-specific primers were designed and synthesized. The annealing temperature for all sequence-specific primer pair, the concentration of each primer pair and the concentration of Mg2+ were adjusted to the optimum so that HPA-1 to 6 systems could be amplified simultaneously under the same PCR cycling parameters. The electrophoresis of PCR products was conducted simultaneously on the same agarose gel. Control DNA samples that genotypes known were used to confirm the sensitivity and specificity of each sequence-specific primer. 15 coded samples (including 2 blood samples and 13 DNA samples) distributed by 10TH Platelet Genotyping and Serology Workshop of the International Society of Blood Transfusion (ISBT) were typed for HPA-1 to 6 systems by this method. A concordance rate of 100 percent was observed between the results of control DNA samples typed by our PCR—SSP assay and the data of known specificity of control DNA. The results of 15 coded samples tested by our method agreed well with the results provided by ISBT report.  相似文献   

20.
Cultivated soybean (Glycine max) suffers from a narrow germplasm relative to other crop species, probably because of under‐use of wild soybean (Glycine soja) as a breeding resource. Use of a single nucleotide polymorphism (SNP) genotyping array is a promising method for dissecting cultivated and wild germplasms to identify important adaptive genes through high‐density genetic mapping and genome‐wide association studies. Here we describe a large soybean SNP array for use in diversity analyses, linkage mapping and genome‐wide association analyses. More than four million high‐quality SNPs identified from high‐depth genome re‐sequencing of 16 soybean accessions and low‐depth genome re‐sequencing of 31 soybean accessions were used to select 180 961 SNPs for creation of the Axiom® SoyaSNP array. Validation analysis for a set of 222 diverse soybean lines showed that 170 223 markers were of good quality for genotyping. Phylogenetic and allele frequency analyses of the validation set data indicated that accessions showing an intermediate morphology between cultivated and wild soybeans collected in Korea were natural hybrids. More than 90 unanchored scaffolds in the current soybean reference sequence were assigned to chromosomes using this array. Finally, dense average spacing and preferential distribution of the SNPs in gene‐rich chromosomal regions suggest that this array may be suitable for genome‐wide association studies of soybean germplasm. Taken together, these results suggest that use of this array may be a powerful method for soybean genetic analyses relating to many aspects of soybean breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号