共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The antiproliferative activity of aloe-emodin is through p53-dependent and p21-dependent apoptotic pathway in human hepatoma cell lines 总被引:12,自引:0,他引:12
The aim of this study is to investigate the anticancer effect of aloe-emodin in two human liver cancer cell lines, Hep G2 and Hep 3B. We observed that aloe-emodin inhibited cell proliferation and induced apoptosis in both examined cell lines, but with different the antiproliferative mechanisms. In Hep G2 cells, aloe-emodin induced p53 expression and was accompanied by induction of p21 expression that was associated with a cell cycle arrest in G1 phase. In addition, aloe-emodin had a marked increase in Fas/APO1 receptor and Bax expression. In contrast, with p53-deficient Hep 3B cells, the inhibition of cell proliferation of aloe-emodin was mediated through a p21-dependent manner that did not cause cell cycle arrest or increase the level of Fas/APO1 receptor, but rather promoted aloe-emodin induced apoptosis by enhancing expression of Bax. These findings suggest that aloe-emodin may be useful in liver cancer prevention. 相似文献
5.
Pablo Bora Lenka Gahurova Andrea Hauserova Martina Stiborova Rebecca Collier David Potil Zbynk Zdrhal Alexander W. Bruce 《Open biology》2021,11(7)
Successful navigation of the mouse preimplantation stages of development, during which three distinct blastocyst lineages are derived, represents a prerequisite for continued development. We previously identified a role for p38-mitogen-activated kinases (p38-MAPK) regulating blastocyst inner cell mass (ICM) cell fate, specifically primitive endoderm (PrE) differentiation, that is intimately linked to rRNA precursor processing, polysome formation and protein translation regulation. Here, we develop this work by assaying the role of DEAD-box RNA helicase 21 (DDX21), a known regulator of rRNA processing, in the context of p38-MAPK regulation of preimplantation mouse embryo development. We show nuclear DDX21 protein is robustly expressed from the 16-cell stage, becoming exclusively nucleolar during blastocyst maturation, a localization dependent on active p38-MAPK. siRNA-mediated clonal Ddx21 knockdown within developing embryos is associated with profound cell-autonomous and non-autonomous proliferation defects and reduced blastocyst volume, by the equivalent peri-implantation blastocyst stage. Moreover, ICM residing Ddx21 knockdown clones express the EPI marker NANOG but rarely express the PrE differentiation marker GATA4. These data contribute further significance to the emerging importance of lineage-specific translation regulation, as identified for p38-MAPK, during mouse preimplantation development. 相似文献
6.
Hao Chang KaiYue He Chen Li YangYue Ni MaiNing Li Lin Chen Min Hou Zikai Zhou ZhiPeng Xu MinJun Ji 《Journal of cellular and molecular medicine》2020,24(24):14325
CD4+T cells differentiate into distinct functional effector and inhibitory subsets are facilitated by distinct cytokine cues present at the time of antigen recognition. Maintaining a balance between T helper 17 (Th17) and regulatory T (Treg) cells are critical for the control of the immunopathogenesis of liver diseases. Here, by using the mouse model of helminth Schistosoma japonicum (S japonicum) infection, we show that the hepatic mRNA levels of P21‐activated kinase 1 (PAK1), a key regulator of the actin cytoskeleton, adhesion and cell motility, are significantly increased and associated with the development of liver pathology during S japonicum infection. In addition, PAK1‐deficient mice are prone to suppression of Th17 cell responses but increased Treg cells. Furthermore, PAK1 enhances macrophage activation through promoting IRF1 nuclear translocation in an NF‐κB‐dependent pathway, resulting in promoting Th17 cell differentiation through inducing IL‐6 production. These findings highlight the importance of PAK1 in macrophages fate determination and suggest that PAK1/IRF1 axis‐dependent immunomodulation can ameliorate certain T cell–based immune pathologies. 相似文献
7.
The serine/threonine kinase PAK4 regulates cytoskeletal architecture, and controls cell proliferation and survival. In most adult tissues PAK4 is expressed at low levels, but overexpression of PAK4 is associated with uncontrolled proliferation, inappropriate cell survival, and oncogenic transformation. Here we have studied for the first time, the role for PAK4 in the cell cycle. We found that PAK4 levels peak dramatically but transiently in the early part of G1 phase. Deletion of Pak4 was also associated with an increase in p21 levels, and PAK4 was required for normal p21 degradation. In serum-starved cells, the absence of PAK4 led to a reduction in the amount of cells in G1, and an increase in the amount of cells in G2/M phase. We propose that the transient increase in PAK4 levels at early G1 reduces p21 levels, thereby abrogating the activity of CDK4/CDK6 kinases, and allowing cells to proceed with the cell cycle in a precisely coordinated way. 相似文献
8.
9.
10.
Anli Gao Minjie Hu Yifei Gong Ruixiang Dong Yuan Jiang Shanying Zhu Jian Ji Dale Zhang Suoping Li Huagang He 《Molecular Plant Pathology》2020,21(7):975-984
Nucleotide-binding (NB) leucine-rich repeat (LRR) receptors (NLRs) provide resistance against several plant pathogens. We previously cloned the wheat powdery mildew resistance gene Pm21, which encodes a coiled-coil (CC) NLR that confers broad-spectrum resistance against Blumeria graminis f. sp. tritici. Here, we report comprehensive biochemical and functional analyses of Pm21 CC domain in Nicotiana benthamiana. Transient overexpression assay suggested that only the extended CC (eCC, amino acid residues 1–159) domain has cell-death-inducing activity, whereas the CC-containing truncations, including CC-NB and CC-NB-LRR, do not induce cell-death responses. Coimmunoprecipitation (Co-IP) assay showed that the eCC domain self-associates and interacts with the NB and LRR domains in planta. These results imply that the activity of the eCC domain is inhibited by the intramolecular interactions of different domains in the absence of pathogens. We found that the LRR domain plays a crucial role in D491V-mediated full-length (FL) Pm21 autoactivation. Some mutations in the CC domain leading to the loss of Pm21 resistance to powdery mildew impaired the CC activity of cell-death induction. Two mutations (R73Q and E80K) interfered with D491V-mediated Pm21 autoactivation without affecting the cell-death-inducing activity of the eCC domain. Notably, some susceptible mutants harbouring mutations in the CC domain still exhibited cell-death-inducing activity. Taken together, these results implicate the CC domain of Pm21 in cell-death signalling and disease-resistance signalling, which are potentially independent of each other. 相似文献
11.
Yeast dimorphism is an attractive model for the study of cell morphogenesis and differentiation. The non-conventional yeast Yarrowia lipolytica was chosen to characterise the regulation of dimorphic transition by extracellular pH and by the presence of organic sources of nitrogen. Organic nitrogen sources appear to be required for the morphogenic effect of pH. Two sets of mutants defective in either pH-dependent or nitrogen source-dependent signalling pathway were analysed. The results suggest that the latter but not the former is required for both normal filament formation on solid medium and pH-dependent dimorphic behaviour of Y. lipolytica in liquid medium. We propose that in this organism pH affects the formation of hyphae indirectly by modulation of availability and/or utilisation of transportable sources of nitrogen. 相似文献
12.
David KM Couch D Braun N Brown S Grosclaude J Perrot-Rechenmann C 《The Plant journal : for cell and molecular biology》2007,50(2):197-206
The phytohormone auxin has been known for >50 years to be required for entry into the cell cycle. Despite the critical effects exerted by auxin on the control of cell division, the molecular mechanism by which auxin controls this pathway is poorly understood, and how auxin is perceived upstream of any change in the cell cycle is unknown. Auxin Binding Protein 1 (ABP1) is considered to be a candidate auxin receptor, triggering early modification of ion fluxes across the plasma membrane in response to auxin. ABP1 has also been proposed to mediate auxin-dependent cell expansion, and is essential for early embryonic development. We investigated whether ABP1 has a role in the cell cycle. Functional inactivation of ABP1 in the model plant cell system BY2 was achieved through cellular immunization via the conditional expression of a single-chain fragment variable (scFv). This scFv was derived from a well characterized anti-ABP1 monoclonal antibody previously shown to block the activity of the protein. We demonstrate that functional inactivation of ABP1 results in cell-cycle arrest, and provide evidence that ABP1 plays a critical role in regulation of the cell cycle by acting at both the G1/S and G2/M checkpoints. We conclude that ABP1 is essential for the auxin control of cell division and is likely to constitute the first step of the auxin-signalling pathway mediating auxin effects on the cell cycle. 相似文献
13.
Matsushita M Tanaka S Nakamura N Inoue H Kanazawa H 《Traffic (Copenhagen, Denmark)》2004,5(3):140-151
The kinesin superfamily protein, KIF1Bβ, a splice variant of KIF1B, is involved in the transport of synaptic vesicles in neuronal cells, and is also expressed in various non-neuronal tissues. To elucidate the functions of KIF1Bβ in non-neuronal cells, we analyzed the intracellular localization of KIF1Bβ and characterized its isoform expression profile. In COS-7 cells, KIF1B colocalized with lysosomal markers and expression of a mutant form of KIF1Bβ, lacking the motor domain, impaired the intracellular distribution of lysosomes. A novel isoform of the kinesin-like protein, KIF1Bβ3, was identified in rat and simian kidney. It lacks the 5th exon of the KIF1Bβ-specific tail region. Overexpression of KIF1Bβ3 induced the translocation of lysosomes to the cell periphery. However, overexpression of KIF1Bβ3-Q98L, which harbors a pathogenic mutation associated with a familial neuropathy, Charcot-Marie-Tooth disease type 2 A, resulted in the abnormal perinuclear clustering of lysosomes. These results indicate that KIF1Bβ3 is involved in the translocation of lysosomes from perinuclear regions to the cell periphery. 相似文献
14.
Ribosomal biogenesis is correlated with cell cycle, cell proliferation, cell growth and tumorigenesis. Some oncogenes and tumor suppressors are involved in regulating the formation of mature ribosome and affecting the ribosomal biogenesis. In previous studies, the mitochondrial ribosomal protein L41 was reported to be involved in cell proliferation regulating through p21(WAF1/CIP1) and p53 pathway. In this report, we have identified a mitochondrial ribosomal protein S36 (mMRPS36), which is localized in the mitochondria, and demonstrated that overexpression of mMRPS36 in cells retards the cell proliferation and delays cell cycle progression. In addition, the mMRPS36 overexpression induces p21(WAF1/CIP1) expression, and regulates the expression and phosphorylation of p53. Our result also indicate that overexpression of mMRPS36 affects the mitochondrial function. These results suggest that mMRPS36 plays an important role in mitochondrial ribosomal biogenesis, which may cause nucleolar stress, thereby leading to cell cycle delay. 相似文献
15.
P21Waf1/Cip1 is a potent cyclin-dependent kinase inhibitor. As a downstream mediator of p53, p21Waf1/cip1involves in cell cycle arrest, differentiation and apoptosis. Previous studies in human cells provided evidencefor a link between p21Waf1/cip1 and cellular senescence. While in murine cells, the role of p21Waf1/Cip1is indefinite. We explored this issue using NIH3T3 cells with inducible p21Waf1/cip1 expression. Induc-tion of p21Waf1/Cip1 triggered G1 growth arrest, and NIH3T3-p21 cells exhibited morphologic features,such as enlarged and flattened cellular shape, specific to the senescence phenotype. We also showed thatp21Waf1/Cip1-transduced NIH3T3 cells expressedβ-galactosidase activity at pH 6.0, which is known to bea marker of senescence. Our results suggest that p21Waf1/cipx can also induce senescence-like changes inmurine cells. 相似文献
16.
Castro ME del Valle Guijarro M Moneo V Carnero A 《Journal of cellular biochemistry》2004,92(3):514-524
Oncogenic activation in primary murine fibroblasts initiates a senescence-like cell cycle arrest that depends on the p53 tumor suppressor pathway. Conditional p53 activation efficiently induced a reversible cell cycle arrest but was unable to induce features of senescence. In contrast, coexpression of oncogenic ras with p53 produced an irreversible cell cycle arrest that displayed features of cellular senescence. Introduction of a conditional murine p53 allele (p53val135) into double p53/p21-null mouse embryonic fibroblasts showed that p21waf1 was not required for this effect, since p53-/-;p21-/- double-null cells undergo terminal growth arrest with features of senescence following coexpression of oncogenic Ras and p53. Our results indicate that oncogenic activation of the Ras pathway in murine fibroblasts converts p53 into a senescence inducer through a p21waf1-independent mechanism. 相似文献
17.
Intrinsic IL-21 signaling is critical for CD8 T cell survival and memory formation in response to vaccinia viral infection 总被引:1,自引:0,他引:1
Novy P Huang X Leonard WJ Yang Y 《Journal of immunology (Baltimore, Md. : 1950)》2011,186(5):2729-2738
CD4 T cell help plays an important role in promoting CD8 T cell immunity to pathogens. In models of infection with vaccinia virus (VV) and Listeria monocytogenes, CD4 T cell help is critical for the survival of activated CD8 T cells during both the primary and memory recall responses. Still unclear, however, is how CD4 T cell help promotes CD8 T cell survival. In this study, we first showed that CD4 T cell help for the CD8 T cell response to VV infection was mediated by IL-21, a cytokine produced predominantly by activated CD4 T cells, and that direct action of IL-21 on CD8 T cells was critical for the VV-specific CD8 T cell response in vivo. We next demonstrated that this intrinsic IL-21 signaling was essential for the survival of activated CD8 T cells and the generation of long-lived memory cells. We further revealed that IL-21 promoted CD8 T cell survival in a mechanism dependent on activation of the STAT1 and STAT3 pathways and subsequent upregulation of the prosurvival molecules Bcl-2 and Bcl-x(L). These results identify a critical role for intrinsic IL-21 signaling in CD8 T cell responses to an acute viral infection in vivo and may help design effective vaccine strategies. 相似文献
18.
Alexandra R Dvorscek Craig I McKenzie Marcus J Robinson Zhoujie Ding Catherine Pitt Kristy O'Donnell Dimitra Zotos Robert Brink David M Tarlinton Isaak Quast 《EMBO reports》2022,23(9)
The proliferation and differentiation of antigen‐specific B cells, including the generation of germinal centers (GC), are prerequisites for long‐lasting, antibody‐mediated immune protection. Affinity for antigen determines B cell recruitment, proliferation, differentiation, and competitiveness in the response, largely through determining access to T cell help. However, how T cell‐derived signals contribute to these outcomes is incompletely understood. Here, we report how the signature cytokine of follicular helper T cells, IL‐21, acts as a key regulator of the initial B cell response by accelerating cell cycle progression and the rate of cycle entry, increasing their contribution to the ensuing GC. This effect occurs over a wide range of initial B cell receptor affinities and correlates with elevated AKT and S6 phosphorylation. Moreover, the resultant increased proliferation can explain the IL‐21‐mediated promotion of plasma cell differentiation. Collectively, our data establish that IL‐21 acts from the outset of a T cell‐dependent immune response to increase cell cycle progression and fuel cyclic re‐entry of B cells, thereby regulating the initial GC size and early plasma cell output. 相似文献
19.
Shikiko Watanabe John Shuttleworth Mohamed Al-Rubeai 《Biotechnology and bioengineering》2002,77(1):1-7
We have constructed NS0 myeloma cell lines that inducibly express the p21CIP1 cyclin dependent kinase inhibitor, using the Lacswitch system. Ectopic p21(CIP1) protein expression was rapidly induced within 12 h of addition of IPTG, causing G1-phase arrest and almost complete inhibition of cell proliferation. The production of a chimeric IgG4 antibody, expressed constitutively from an independent promoter, was found to be significantly increased by more than 4-fold in p21CIP1-arrested cells. This study demonstrates for the first time the successful construction of anchorage-independent and proliferation-controlled NS0 cell lines with enhanced secreted chimeric antibody production independent of the inducible promoter activity used to achieve cytostasis. 相似文献
20.
p21 and retinoblastoma protein control the absence of DNA replication in terminally differentiated muscle cells 总被引:9,自引:0,他引:9 下载免费PDF全文
Mal A Chattopadhyay D Ghosh MK Poon RY Hunter T Harter ML 《The Journal of cell biology》2000,149(2):281-292
During differentiation, skeletal muscle cells withdraw from the cell cycle and fuse into multinucleated myotubes. Unlike quiescent cells, however, these cells cannot be induced to reenter S phase by means of growth factor stimulation. The studies reported here document that both the retinoblastoma protein (Rb) and the cyclin-dependent kinase (cdk) inhibitor p21 contribute to this unresponsiveness. We show that the inactivation of Rb and p21 through the binding of the adenovirus E1A protein leads to the induction of DNA replication in differentiated muscle cells. Moreover, inactivation of p21 by E1A results in the restoration of cyclin E-cdk2 activity, a kinase made nonfunctional by the binding of p21 and whose protein levels in differentiated muscle cells is relatively low in amount. We also show that restoration of kinase activity leads to the phosphorylation of Rb but that this in itself is not sufficient for allowing differentiated muscle cells to reenter the cell cycle. All the results obtained are consistent with the fact that Rb is functioning downstream of p21 and that the activities of these two proteins may be linked in sustaining the postmitotic state. 相似文献