首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The genus Olpidiopsis of the Oomycota includes several species that are aquatic parasites and hyperparasites. Despite their widespread occurrence and potential ecological importance, only a handful of these species has been subjected to phylogenetic investigations, so far. Most species have not been observed and reported for several decades. In the current study, the freshwater diatom parasite Olpidiopsis gillii (de Wild.) Friedmann was rediscovered from the river Main in Germany and investigated for its phylogenetic placement using nuclear small ribosomal subunit (SSU) sequences. The absence of a zoospore diplanetism is a characteristic of the genus Olpidiopsis, which is in contrast to the diplanetism observed in species of Ectrogella. The phylogenetic reconstruction revealed that Olpidiopsis gillii is a basal lineage within the oomycetes, grouping together with the recently-described marine diatom parasite Olpidiopsis drebesii with high support, and loosely associated with Olpidiopsis species parasitising red algae. However, as there are no sequence data available for the type species of both Olpidiopsis and Ectrogella the taxonomic assignment of these simple holocarpic parasites of algae and diatoms remains fraught with uncertainty.  相似文献   

2.
Olpidiopsis porphyrae sp. nov., a marine oomycete endoparasite that infects the commercially cultivated red alga Porphyra yezoensis, is described and its phylogenetic position based on molecular data and ultrastructural morphology is discussed. O. porphyrae infects the host Porphyra by means of encysted zoospores. Spherical-shaped holocarpic thalli develop within the cytoplasm of its algal host, which produce monoplanetic, subapically biflagellate zoospores. The characteristic features of this isolate are the ellipsoidal, unicellular thallus and simple holocarpic zoosporangial development, which show morphological similarity with the genus Olpidiopsis. Laboratory infection experiments with a wide range of green, brown, and red algae revealed that O. porphyrae infects several stages of the bangialean red algae (the genera Bangia and Porphyra). Molecular phylogenetic analyses inferred from both SSU rRNA and cox2 genes showed O. porphyrae branched before the main saprolegnian and peronosporalean lineages within the monophyletic oomycete clade, indicating its phylogenetic separation from them. A single or double K-body-like organelle, which contains tubular inclusions, is found located to one side of the zoospore nucleus and shows similarities to homologous organelles previously described in O. saprolegniae. The ultrastructural morphology of O. porphyrae with zoospore initials containing K-bodies and tubular mitochondrial cristae is characteristic of oomycetes. Group I intron-like multiple insertions were found in the SSU rRNA gene of O. porphyrae. This is the first report of SSU group I introns in the class Oomycetes.  相似文献   

3.
Molecular sequencing has helped resolve the phylogenetic relationships amongst the diverse groups of algal, fungal-like and protist organisms that constitute the Chromalveolate “superkingdom” clade. It is thought that the whole clade evolved from a photosynthetic ancestor and that there have been at least three independent plastid losses during their evolutionary history. The fungal-like oomycetes and hyphochytrids, together with the marine flagellates Pirsonia and Developayella, form part of the clade defined by Cavalier-Smith and Chao (2006) as the phylum “Pseudofungi”, which is a sister to the photosynthetic chromistan algae (phylum Ochrophyta). Within the oomycetes, a number of predominantly marine holocarpic genera appear to diverge before the main “saprolegnian” and “peronosporalean” lines, into which all oomycetes had been traditionally placed. It is now clear that oomycetes have their evolutionary roots in the sea. The earliest diverging oomycete genera so far documented, Eurychasma and Haptoglossa, are both obligate parasites that show a high degree of complexity and sophistication in their host parasite interactions and infection structures. Key morphological and cytological features of the oomycetes will be reviewed in the context of our revised understanding of their likely phylogeny. Recent genomic studies have revealed a number of intriguing similarities in host–pathogen interactions between the oomycetes with their distant apicocomplexan cousins. Therefore, the earlier view that oomycetes evolved from the largely saprotrophic “saprolegnian line” is not supported and current evidence shows these organisms evolved from simple holocarpic marine parasites. Both the hyphal-like pattern of growth and the acquisition of oogamous sexual reproduction probably developed largely after the migration of these organisms from the sea to land.  相似文献   

4.
Using laboratory cultures, we have documented the life cycle of Anisolpidium ectocarpii, a pathogen of Ectocarpus and other filamentous brown algae, and presented preliminary observations on Anisolpidium rosenvingei, a pathogen of Pylaiella littoralis. Consistent with earlier reports, the zoospores of both species have a single anterior flagellum, which justified the placement of Anisolpidium amongst the Hyphochytriales (Hyphochytridiomycota). We have also shown that A. ectocarpii can complete its infection cycle in a broad selection of species from various brown algal orders, whereas A. rosenvingei seemingly exhibits a strict specificity for unilocular sporangia of P. littoralis. Unexpectedly, nuclear (18S rRNA) and mitochondrial (cox1, cox2) markers regroup A. ectocarpii and A. rosenvingei, into a hitherto unrecognized monophyletic clade within the oomycetes (Oomycota), most closely related to the Olpidiopsidales. The Anisolpidium genus is therefore entirely distinct from the Hyphochytridiomycota and represents the first confirmed instance of an anteriorly uniciliate oomycete. Finally, we suggest that a valid morphological criterion to separate true hyphochytrids from oomycetes is the timing of zoospore cleavage. Given the evidence, we propose to transfer the Anisolpidiales from the Hyphochytriales to the Oomycetes.  相似文献   

5.
6.
Obligate endoparasitic oomycetes are known to ubiquitously occur in marine and freshwater diatoms, but their diversity is still largely unexplored. Many of these parasitoids are members of the early-diverging oomycete lineages (Miracula, Diatomophthora), others are within the Leptomitales of the Saprolegniomycetes (Ectrogella, Lagenisma) and some have been described in the Peronosporomycetes (Aphanomycopsis, Lagenidium). Even though some species have been recently described and two new genera were introduced (Miracula and Diatomophthora), the phylogeny and taxonomy of most of these organisms remain unresolved. This is contrasted by the high number of sequences from unclassified species, as recently revealed from environmental sequencing, suggesting the presence of several undiscovered species. In this study, a new species of Miracula is reported from a marine centric diatom (Minidiscus sp.) isolated from Skagaströnd harbor in Northwest Iceland. The morphology and life cycle traits of this novel oomycete parasite are described herein, and its taxonomic placement within the genus Miracula is confirmed by molecular phylogeny. As it cannot be assigned to any previously described species, it is introduced as Miracula islandica in this study. The genus Miracula thus contains three described holocarpic species (M. helgolandica, M. islandica, M. moenusica) to which likely additional species will need to be added in the future, considering the presence of several lineages known only from environmental sequencing that clustered within the Miracula clade.  相似文献   

7.
The usefulness of molecular phylogenetic studies has increased remarkably as the quantity and quality of available DNA sequences has increased. When compared with the progress that has occurred in angiosperms and animals, there have been relatively few target DNA regions identified for use in taxonomic studies of brown algae. Therefore, in this study, we developed a new set of primers to amplify Rubisco small subunit (rbcS) gene sequences and determined the rbcS gene sequences of various species of brown algae including those belonging to Dictyotales, Ectocarpales, Fucales and Sphacelariales. The level of sequence variations in the rbcS gene varied according to the brown algal lineages. When focusing on the relationship of species within the genus Sargassum, the rbcS gene sequences provided useful information regarding the phylogenetic relationship among sections of the subgenus Bactrophycus. Based on the broad applicability and phylogenetic utility of the rbcS gene, we suggest that the sequence be used as a new target region for the molecular systematics of brown algae.  相似文献   

8.
The morphological development, ultrastructural cytology, and molecular phylogeny of Eurychasma dicksonii, a holocarpic oomycete endoparasite of phaeophyte algae, were investigated in laboratory cultures. Infection of the host algae by E. dicksonii is initiated by an adhesorium-like infection apparatus. First non-walled, the parasite cell developed a cell wall and numerous large vacuoles once it had almost completely filled the infected host cell (foamy stage). Large-scale cytoplasmic changes led to the differentiation of a sporangium with peripheral primary cysts. Secondary zoospores appeared to be liberated from the primary cysts in the internal space left after the peripheral spores differentiated. These zoospores contained two phases of peripheral vesicles, most likely homologous to the dorsal encystment vesicles and K-bodies observed in other oomycetes. Following zoospore liberation the walls of the empty cyst were left behind, forming the so-called net sporangium, a distinctive morphological feature of this genus. The morphological and ultrastructural features of Eurychasma were discussed in relation to similarities with other oomycetes. Both SSU rRNA and COII trees pointed to a basal position of Eurychasma among the Oomycetes. The cox2 sequences also revealed that the UGA codon encoded tryptophan, constituting the first report of stop codon reassignment in an oomycete mitochondrion.  相似文献   

9.
We constructed a molecular phylogeny of 15 species of cuckoos using mitochondrial DNA sequences spanning 553 nucleotide bases of the cytochrome b gene and 298 nucleotide bases of the ND2 gene. A parallel analysis for the cytochrome b gene including published sequences in the Genbank database was performed. Phylogenetic analyses of the sequences were done using parsimony, a sequence distance method (Fitch-Margoliash), and a character-state method which uses probabilities (maximum likelihood). Phenograms support the monophyly of three major clades: Cuculinae, Phaenicophaeinae and Neomorphinae-Crotophaginae. Clamator, a strictly parasitic genus traditionally included within the Cuculinae, groups together with Coccyzus (a nonobligate parasite) and some nesting cuckoos. Tapera and Dromococcyx, the parasitic cuckoos from the New World, appear as sister genera, close to New World cuckoos: Neomorphinae and Crotophaginae. Based on the results, and being conscious that a more strict resolution of the relationships among the three major clades is required, we postulate that brood parasitism has a polyphyletic origin in the Cuculiformes, with parasite species being found within the three defined clades. Evidence suggests that species within each clade share a common parasitic ancestor, but some show partial or total loss of brood parasitic behaviour.  相似文献   

10.
11.
Five taxa included in the cestode genus Anonchotaenia (Cyclophyllidea, Paruterinidae) have been found in various birds from the Ivory Coast (West Africa). The hosts belong to the families Hirundinidae and Corvidae. A. (Paranonchotaenia) prionopos n. sp., parasitic in Prionops plumata, and A. (P.) malaconoti n. sp, parasitic in Malaconotus blanchoti, are placed in a new subgenus named Paranonchotaenia, which is erected for the Anonchotaenia species showing genital ducts passing between the longitudinal excretory stems. A. (P.) prionopos is characterised by a rather short cirrus-pouch, six to seven testes, and an integumental cavity at the distal extremity of the cirrus-pouch in gravid proglottides. A. (P.) malaconoti differs from the former species mainly by the larger cirrus-pouch and a slightly greater number of testes. The other three species are A. longiovata, parasitic in Hirundo semirufa; A. globata, parasitic in Psadiloprocne obscura (the latter two species are recorded from new hosts and new geographical areas); and Anonchotaenia sp., parasitic in Hirundo rustica. It is assumed that the subgenus A. (Anonchotaenia) is rather a parasite of the Passerida and that the subgenus A. (Paranonchotaenia) tends to be parasitic in the Corvida.This paper is a part of the author's thesis.This paper is a part of the author's thesis.  相似文献   

12.
The diatom genera Licmophora and Fragilaria are frequent epiphytes on marine macroalgae and can be infected by intracellular parasitoids traditionally assigned to the oomycete genus Ectrogella. Much debate and uncertainty remains about the taxonomy of these oomycetes, not least due to their morphological and developmental plasticity. Here, we used single‐cell techniques to obtain partial sequences of the parasitoids 18S and cox2 genes. The former falls into two recently identified clades of Pseudo‐nitzschia parasites temporarily named OOM_1_2 and OOM_2, closely related to the genera of brown and red algal pathogens Anisolpidium and Olpidiopsis. A third group of sequences falls at the base of the red algal parasites assigned to Olpidiopsis. In one instance, two oomycete parasitoids seemed to co‐exist in a single diatom cell; this co‐occurrence of distinct parasitoid taxa not only within a population of diatom epiphytes, but also within the same host cell, possibly explains the ongoing confusion in the taxonomy of these parasitoids. We demonstrate the polyphyly of Licmophora parasitoids previously assigned to Ectrogella (sensu Sparrow, 1960) and show that parasites of red algae assigned to the genus Olpidiopsis are most likely not monophyletic. We conclude that combining single‐cell microscopy and molecular methods is necessary for their full characterisation.  相似文献   

13.
Two new species of parasitic Copepoda (Crustacea) are described and illustrated. Paeon australis n. sp. (Sphyriidae) is the first member of its genus discovered in Australian waters. It is parasitic on Rhinobates batillum, an elasmobranch fish. The other species, Lateracanthus curtus n. sp., is a parasite of an unspecified Macrourus, a deep-water teleost, taken in the northwestern Atlantic. The systematics of the genus Lateracanthus are discussed. Lateracanthus macrurus is relegated to the status of a species inquirenda.  相似文献   

14.
Social parasitism has been researched extensively in many taxa of social insects, including ants, wasps and bees. However, little research has been done on allodapine bees, a taxon that has numerous independent origins of social parasitism. This study looks at two species of Macrogalea from Madagascar, one of which was previously believed to be a social parasite. Macrogalea is an important genus to study as it is the sister clade to all other allodapine genera, and the species of Macrogalea in Madagascar diverged recently, meaning that the study of a social parasite in this genera would provide insights into the very early stages of social parasite evolution. Macrogalea maizina was determined to be facultatively parasitic based on the presence of many traits that are common to other allodapine social parasites. The host, Macrogalea antanosy, was found to be quasisocial, with most females within a colony being able to reproduce. This has unique consequences for a parasitic strategy, as any invading parasite has no need to remove a queen or suppress the reproduction of the other colony members, a strategy that has been commonly observed for facultative parasites in other taxa. Received 10 May 2005; revised 22 July 2005; accepted 24 August 2005.  相似文献   

15.
Abstract Among the brown algae, species of the Fucaceae (Pelvetia, Fucus and Ascophyllum) were found to have a ‘photosynthetic buffering’ system, allowing the algae to carry out oxygen production without a concomitant uptake of inorganic carbon. This system was not found in other brown algae examined (e.g. Halidrys, Laminaria and Desmarestia) nor in 16 examined species of red and green algae. Pelvetia, Fucus and Ascophyllum belong to the littoral algae which are periodically emersed. In the Fucaceae, the meristodermal cells were found to have a special organization of organelles. Towards the outer cell wall there was a prominent layer of mitochondria while the chloroplasts were concentrated towards the inner and side walls. Between the mitochondria and the chloroplasts there was a large number of physodes. This arrangement of organelles was not found in the other brown algae examined nor in red or green algae. The significance of this organization of the mitochondria is discussed in connection with the function of the ‘photosynthetic buffering’ system.  相似文献   

16.
Among the numerous nonparasitic allodapine bees there are 11 known species with parasitic or probably parasitic habits. These species live in nests of their close relatives, the female parasite replacing an egg-layer of the host. Seven of the parasitic species are distributed among four otherwise nonparasitic genera, while four species of parasites are placed in three exclusively parasitic genera. The parasites have mostly arisen independently from different nonparasitic forms. There is much convergence among the parasitic forms involving such characters as the flattened or concave face, reduced eyes, reduced mouthparts, reduced wing venation, and reduced pollen-carrying scopa. In the most specialized parasitic genera the mouthparts are so small as to be almost surely useless for obtaining food from flowers. Such bees must feed in the host nest, and are not found on flowers. Their wings must be adequate to take them to a new host nest but the reduced venation and eyes must reflect the reduced locomotary and sensory needs of a bee that does not visit flowers. In this paper a new, presumably parasitic Allodapula is described as is a parasitic Braunsapis, a parasitic Allodape, and a Eucondylops. A previously described Macrogalea is recognized as a parasite for the first time. A new genus and species of parasites Nasutapsis straussorum, allied to Braunsapis, is also described. All these forms are from Africa.  相似文献   

17.
The order Oedogoniales is made up of green algae with an unusual form of cytokinesis, a ring of flagella on the zoids, and a complex sexual reproduction. The genera included in this order, Oedogonium, Oedocladium and Bulbochaete, differ in their type of habit. In this contribution we report a phylogenetic analysis using 18S ribosomal DNA sequences from 66 species of green algae, including ten species of Oedogonium isolated from fresh water bodies in Argentina. The phylogenetic study demonstrates the monophyly of the Oedogoniales within the green algae, and suggests that in this group the flagellar apparatus of the stephanokont zoid could have derived from a DO configuration. It is also found that the genus Oedogonium does not appear to be monophyletic and that the morphological characters traditionally used for the taxonomic classification of Oedogonium species do not define natural groups.  相似文献   

18.
Parasitic red algae are an interesting system for investigating the genetic changes that occur in parasites. These parasites have evolved independently multiple times within the red algae. The functional loss of plastid genomes can be investigated in these multiple independent examples, and fine-scale patterns may be discerned. The only plastid genomes from red algal parasites known so far are highly reduced and missing almost all photosynthetic genes. Our study assembled and annotated plastid genomes from the parasites Janczewskia tasmanica and its two Laurencia host species (Laurencia elata and one unidentified Laurencia sp. A25) from Australia and Janczewskia verruciformis, its host species (Laurencia catarinensis), and the closest known free-living relative (Laurencia obtusa) from the Canary Islands (Spain). For the first time we show parasitic red algal plastid genomes that are similar in size and gene content to free-living host species without any gene loss or genome reduction. The only exception was two pseudogenes (moeB and ycf46) found in the plastid genome of both isolates of J. tasmanica, indicating potential for future loss of these genes. Further comparative analyses with the three highly reduced plastid genomes showed possible gene loss patterns, in which photosynthetic gene categories were lost followed by other gene categories. Phylogenetic analyses did not confirm monophyly of Janczewskia, and the genus was subsumed into Laurencia. Further investigations will determine if any convergent small-scale patterns of gene loss exist in parasitic red algae and how these are applicable to other parasitic systems.  相似文献   

19.
Zeacarpa leiomorpha is a crustose brown alga endemic to South Africa. The species has been tentatively placed in Ralfsiaceae, but its ordinal assignment has been uncertain. The molecular phylogeny of brown algae based on concatenated DNA sequences of seven chloroplast and mitochondrial gene sequences (atpB, psaA, psaB, psbA, psbC, rbcL, and cox1) of taxa covering most of the orders revealed the most related phylogenetic relationship of Z. leiomorpha to Nemoderma tingitanum (Nemodermatales) rather than Ralfsiaceae (Ralfsiales). Morphologically, Zeacarpa and Nemoderma share crustose thallus structure and multiple discoidal chloroplasts without pyrenoids in each cell, however, the formation of lateral unilocular zoidangia in tufts in loose upright filaments in Zeacarpa is distinctive in brown algae. Considering the relatively distant genetic divergence between the two taxa, comparable to that among families or orders in representative brown algae, in addition to the above‐mentioned unique morphological features, we propose the classification of Zeacarpa in a new family Zeacarpaceae in the order Nemodermatales.  相似文献   

20.
Four benthic algae are reported here for the first time in the North Carolina flora. The new brown algal genus and species, Onslowia endophytica Searles, is described as an endophyte of Halymenia floridana from the North Carolina continental shelf. New records of Boodleopsis pusilla and Naccaria corymbosa from North Carolina constitute range extensions of these tropical species on the American coast north from Florida. Blastophysa rhizopus, an endophyte and epiphyte known from the North Atlantic coast of Europe and America as well as the Caribbean is reported from North Carolina for the first time and in a new host, Predaea feldmannii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号