首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 685 毫秒
1.
Recretohalophytes with specialized salt-secreting structures, including salt glands and salt bladders, can secrete excess salts from plant tissues and enhance salinity tolerance of plants. However, the pathway and property of salt secretion by the salt gland has not been elucidated. In the article, Limonium bicolor Kuntze was used to investigate the pathway and characteristics of salt secretion of salt gland. Scanning electron microscope micrographs showed that each of the secretory cells had a pore in the center of the cuticle, and the rice grain-like secretions were observed above the pore. The chemical composition of secretions from secretory pores was mainly NaCl using environmental scanning electron microscope technique. Non-invasive micro-test technology was used to directly measure ion secretion rate of salt gland, and secretion rates of Na+ and Cl? were greatly enhanced by a 200-mmol/L NaCl treatment. However, epidermal cells and stoma showed little secretion of ions. In conclusion, our results provide evidence that the salt glands of L. bicolor have four secretory pores and that NaCl is secreted through these pores of salt gland.  相似文献   

2.
The divalent cation, Ca2+, plays crucial roles in plant growth, development and stress resistance. Limonium bicolor seedlings were treated with 200 mM NaCl combined with three levels of Ca2+ (0 mM, 5 mM and 20 mM) for 15 days to study the effects of Ca2+ on development and salt-secretion rates of salt glands. It was shown that the 4th leaf areas of L. bicolor seedlings under 20 mM Ca2+ treatment were significantly higher than those under 0 mM and 5 mM Ca2+ treatments. The total number and the densities of salt glands per leaf increased markedly with increased Ca2+ concentrations. The diameters of salt glands increased by 59% and 63% as Ca2+ concentration increased from zero to 5 mM and 20 mM, respectively. Under 20 mM Ca2+ treatment, the salt-secretion rate per leaf was obviously higher than that treated with 5 mM Ca2+, but there was no significant difference in the salt-secretion rates per salt gland between the two groups. Under 0 mM Ca2+ treatment, leaf-cell membrane permeability increased significantly, which led to serious leakage of ions and a significant increase in Na+ loss rate. The results showed that the increase of Ca2+ concentration markedly enhanced development and salt-secretion rates of salt glands in the leaves of L. bicolor, the increase of salt secretion per leaf is due to the efficiency of the secretion process per salt gland and the number of salt glands, the salt-secretion rates per salt gland have a relationship with the diameters of salt glands.  相似文献   

3.
Twenty days’ exposure to 50 or 100 mM NaCl in the rooting medium substantially increased fresh and dry weights of seedling shoots of the recretohalophyte Limonium sinense while 200 or 300 mM were increasingly inhibitory. KCl treatment was only slightly stimulating (50 mM) or strongly inhibitory (100–300 mM). Lesser effects on leaf area were also seen. Diameter of foliar salt glands was significantly larger than that of controls in 100 and 200 mM NaCl with the effect being reversed at higher concentrations. Gland enlargement was also observed in the presence of 100 mM KCl, while larger concentrations reduced gland size. Generally, gland diameter was larger in the presence of NaCl than in KCl. NaCl and KCl also increased gland number per leaf and secretion rate per gland. At 100 and 200 mM NaCl or KCl, Na+ secretion per leaf from NaCl-treated plants exceeded K+ secretion rate from KCl-treated plants while at 200 mM, Na+ secretion per gland was significantly higher for Na+ than for K+. Evidence of cell death in leaves of salt-treated plants using Evans blue staining indicates that release of cell contents through loss of membrane integrity contributed to the secretion values. We conclude that the greater tolerance of L. sinenseto to NaCl compared to KCl is linked to the more effective secretion of Na+ than of K+ and, in turn, to a greater stimulation of salt gland formation and activity and larger gland diameter.  相似文献   

4.
The sublingual salt gland is the primary site of salt excretion in sea snakes; however, little is known about the mechanisms mediating ion excretion. Na+/K+–ATPase (NKA) and Na+/K+/2Cl cotransporter (NKCC) are two proteins known to regulate membrane potential and drive salt secretion in most vertebrate secretory cells. We hypothesized that NKA and NKCC would localize to the basolateral membranes of the principal cells comprising the tubular epithelia of sea snake salt glands. Although there is evidence of NKA activity in salt glands from several species of sea snake, the localization of NKA and NKCC and other potential ion transporters remains unstudied. Using histology and immunohistochemistry, we localized NKA and NKCC in salt glands from three species of laticaudine sea snake: Laticauda semifasciata, L. laticaudata, and L. colubrina. Antibody specificity was confirmed using Western blots. The compound tubular glands of all three species were found to be composed of serous secretory epithelia, and NKA and NKCC were abundant in the basolateral membranes. These results are consistent with the morphology of secretory epithelia found in the rectal salt glands of marine elasmobranchs, the nasal glands of marine birds and the gills of teleost fishes, suggesting a similar function in regulating ion secretion.  相似文献   

5.
THE AVIAN SALT GLAND   总被引:1,自引:0,他引:1  
  相似文献   

6.
Previous studies indicate that the roots of nonhalophytes showed negative halotropism to salt stress to avoid salt damage. However, halotropism of euhalophytes and their possible reasons are little known. Limonium bicolor, a typical recretohalophyte with multicellular salt glands, was used to study halotropism compared with Arabidopsis thaliana under NaCl, KCl and Na2SO4 stress. The elongation of the roots in L. bicolor was significantly promoted by the appropriate concentrations of NaCl, KCl and Na2SO4, but those of A. thaliana was markedly inhibited. However, isosmotic mannitol with 200?mM NaCl did not affect the root growth of both L. bicolor and A. thaliana. The root activity of both L. bicolor and A. thaliana was enhanced by salts. Compared with K+, Cl, and SO42?, Na+ played a critical role in halotropism of L. bicolor. Furthermore, the gravitropic setpoint angle of L. bicolor increased under NaCl, KCl and Na2SO4 treatments compared with controls, and the phenomenon was most apparent under NaCl treatments. The endogenous IAA content of the NaCl-treated L. bicolor seedlings was significantly higher than that of the controls. These results suggest that the recretohalophyte L. bicolor has positive halotropism and Na+ plays a pivotal role in L. bicolor’s positive root halotropism by regulating IAA.  相似文献   

7.
With the expansion of saline land worldwide, it is essential to establish a model halophyte to study the salt‐tolerance mechanism. The salt glands in the epidermis of Limonium bicolor (a recretohalophyte) play a pivotal role in salt tolerance by secreting excess salts from tissues. Despite the importance of salt secretion, nothing is known about the molecular mechanisms of salt gland development. In this study, we applied RNA sequencing to profile early leaf development using five distinct developmental stages, which were quantified by successive collections of the first true leaves of L. bicolor with precise spatial and temporal resolution. Specific gene expression patterns were identified for each developmental stage. In particular, we found that genes controlling salt gland differentiation in L. bicolor may evolve in a trichome formation, which was also confirmed by mutants with increased salt gland densities. Genes involved in the special ultrastructure of salt glands were also elucidated. Twenty‐six genes were proposed to participate in salt gland differentiation. Our dataset sheds light on the molecular processes underpinning salt gland development and thus represents a first step towards the bioengineering of active salt‐secretion capacity in crops.  相似文献   

8.
NO, as a signaling molecule, is involved in abiotic stresses. Limonium bicolor seedlings were treated with 200 mM NaCl combined with 0.05 mM SNP for 20 days to study the effects of NO on development and salt-secretion rates of salt glands. It was shown that the total number of salt glands on adaxial surfaces under condition of 200 mM NaCl containing 0.05 mM SNP treatment increased significantly compared with that under 200 mM NaCl treatment. Na+ secretion rate per leaf under 200 mM NaCl containing 0.05 mM SNP was significantly higher than that under 200 mM NaCl without SNP. However, there was no significant difference in salt-secretion rate of individual salt glands between 200 mM NaCl containing 0.05 mM SNP treatment and 200 mM NaCl treatment. Although there was no significant difference in salt-secretion rate of individual glands, Na+ concentration in the leaves treated with 200 mM NaCl solution containing SNP was significantly lower than that treated with 200 mM NaCl solution. Treatment with 200 mM NaCl solution containing SNP caused a remarkable increase in Na+ concentration in salt glands. Obviously, the efficiency of the secretion process per gland was enhanced by adding SNP to NaCl. The results showed NO may enhance the salt secretion by inducing more dermatogen cells to develop into salt glands and by enhancing the efficiency of the secretion process per gland.  相似文献   

9.
Summary The structure of thezonula occludens in the secretory epithelium of the salt gland of the domestic duck was determined by thin section and freeze-fracture electron microscopy. These glands secrete an effluent with a NaCl concentration four times that of plasma, and thus maintain a steep ionic gradient across their secretory epithelium. Freezefracture replicas from salt stressed ducks demonstrate that thezonula occludens is surprisingly shallow in depth (20–25 nm) and generally consists of two parallel junctional strands which are juxaposed along their entire length. In addition to the simplicity of the junction separating mucosal and serosal compartments, the ratio of junctional length to apical surface area is large since luminal surfaces of secretory cells are narrow and intermesh with one another. Thezonula occludens in nonsecreting fresh water-adapted birds is similar to the salt stressed group except that two sets of double strand junctions are seen in addition to junctions consisting of a single set. Based on previous ultrastructural, cytochemical and physiological studies in salt glands and in other epithelia, a model for salt secretion was suggested in which intercellular space Na+, generated by basolateral ouabain-sensitive Na+ pumps, reaches the lumen via a paracellular route (Ernst & Mills, 1977,J. Cell Biol. 75:74). The simplicity of the morphological appearance of thezonula occludens in the salt gland, which resembles that described for several epithelia known to be leaky to ions, is consistent with this hypothesis.  相似文献   

10.
Summary The lachrymal salt glands ofChelonia mydas were functional when hatchlings emerged from the nest. Osmotic concentrations up to 720 mosmol kg–1 were recorded in spontaneously produced tears (salt gland secretions). When injected with a Na+ load (1500–2700 mol (100 g)–1) newly emerged hatchlings produced tears ranging in osmotic concentration from 1000–1900 mosmol kg–1 with Na+ secretion rates from single glands of 200–475 mol (100 g·h)–1. In these circumstances the rate of sodium excretion, via the salt glands, was equivalent to the sodium content of 0.2 to 0.5 ml of sea water per hour. Since the apparent drinking rate of hatchlings within the first two days of entering sea water was approximately 0.5 to 1.7 ml per day, the excretion of Na+ imbibed by drinking is well within the secretory capacity of the lachrymal salt glands.In feeding hatchlings extraordinarily high Na+ secretion rates were induced by Na+ loading. Hatchlings which were loaded with Na+ by injection (1500–5400 mol (100 g)–1) produced tears having osmotic concentrations between 1500 and >2000 mosmol kg–1. The Na+ secretion rates from single glands were 750–4185 mol (100 g·h)–1 with extremely high short term rates of 10700 mol (100 g·h)–1 (50 mol min–1 for 28 g hatchlings).In terms of gland mass the highest long term secretion rate translates into 21 mmol of Na+ per gram of salt gland per hour and is the highest secretion rate yet recorded for a reptilian salt gland. This rate is almost three times the highest rate recorded for sea snakes (8 mmol g·h–1) and is similar to rates commonly observed in avian salt glands (25 mmol g·h–1).Secretion by the lachrymal salt glands was initiated by increased blood concentrations of Na+ or K+, K+ being as effective as Na+ but with the composition of the teras being virtually unchanged compared to tears from Na+ stimulated hatchlings. Preliminary experiments indicated that secretion was not initiated by increased Cl concentration in the blood or by increased volume or osmotic concentration of the blood.Abbreviation O.P. osmotic pressure  相似文献   

11.
Summary The intestinal caeca reabsorb urinary sodium chloride (NaCl) and water (Rice and Skadhauge 1982). Free water may be generated if the reabsorbed NaCl is secreted via salt gland secretion (Schmidt-Nielsen et al. 1958). Therefore ceacal ligation should (a) reduce hingut NaCl and water reabsorption, (b) enhance the increase in plasma osmolality during saline acclimation, and (c) affect drakes more than ducks. Twelve Pekin drakes and 13 Pekin ducks, Anas platyrhynchos, were caecally ligated or sham operated before acclimation to 450 mmol · 1 NaCl. Body mass, hematocrit, plasma osmolality, and inonic concentrations of plasma, cloacal fluid, and salt gland secretion were measured after each increase in drinking water salinity. Osmoregulatory organ masses were determined. Caecal ligation did not effect plasma osmolality or ion concentrations of plasma, cloacal fluid, or salt gland secretion, but reduced salt gland size in ducks. Drakes and ducks drinking fresh water had the same hematocrit, plasma osmolality, and plasma concentrations of Na+ and Cl. In both sexes exposure to 75 mmol · 1-1 NaCl significantly decreased plasma [Na+] and doubled cloacal fluid [Na+]. Exposure to 450 mmol · 1-1 NaCl decreased body mass and increased hematocrit, plasma [Na+], [Cl], and plasma osmolality (more in drakes than in ducks); cloacal fluid osmolality nearly doubled compared to freshwater-adapted ducks, due mainly to osmolytes other than Na+ and Cl. The [Cl] in salt gland secretion only slightly exceeded drinking water [Cl].Abbreviations AVT antiduretic hormone - CF cloacal fluid - ECFV extraoellular fluid volume - FW freshwater acclimated - Hct hematocrit - MDWE mean daily water flux - [Na +]cf cloacal fluid sodium concentration - [Na +]pl plasma sodium concentration - Osm cf cloacal fluid osmolality - Osm pl plasma osmolality - SGS salt gland secretion - TBW total body water  相似文献   

12.
Summary The lachrymal salt glands of hatchlings of the green sea turtle (Chelonia mydas) secrete a hyperosmotic (up to 2000 mosmol·kg–1) NaCl solution. X-ray microanalysis of frozen-hydrated glands showed that during secretion intracellular Na+ concentration in the principal cells increased from 13 to 34 mmol·l–1 of cell water, whilst Cl and K+ concentrations remained unchanged at 81 mmol·l–1 and 160–174 mmol·l–1, respectively. The high Cl concentration and the change in Na+ concentration are consistent with the prevailing paradigm for secretion by the structurally and functionally similar elasmobranch rectal gland. Concentrations of Na+, Cl and K+ in the lumina of secretory tubules of secreting (Na+ 122, Cl 167, K+ 38 mmol·l–1) and non-secreting (Na+ 114, Cl–1 174, K+ 44 mmol·l–1) glands were similar and the fluid was calculated to be approximately isosmotic with blood. In the central canals Na+ and Cl concentrations were similar but K+ concentration was lower (11–15 mmol·l–1). It is concluded that either a high transepithelial NaCl gradient in secretory tubules and central canals is very rapidly dissipated during the short time between gland excision and freezing, or that ductal modification of an initial isosmotic secretion occurs.  相似文献   

13.
Improving salinity tolerance in the most widely cultivated cereal, bread wheat (Triticum aestivum L.), is essential to increase grain yields on saline agricultural lands. A Portuguese landrace, Mocho de Espiga Branca accumulates up to sixfold greater leaf and sheath sodium (Na+) than two Australian cultivars, Gladius and Scout, under salt stress in hydroponics. Despite high leaf and sheath Na+ concentrations, Mocho de Espiga Branca maintained similar salinity tolerance compared to Gladius and Scout. A naturally occurring single nucleotide substitution was identified in the gene encoding a major Na+ transporter TaHKT1;5-D in Mocho de Espiga Branca, which resulted in a L190P amino acid residue variation. This variant prevents Mocho de Espiga Branca from retrieving Na+ from the root xylem leading to a high shoot Na+ concentration. The identification of the tissue-tolerant Mocho de Espiga Branca will accelerate the development of more elite salt-tolerant bread wheat cultivars.  相似文献   

14.
The present study aimed to determine the mechanism of cation-selective secretion by multicellular salt glands. Using a hydroponic culture system, the secretion and accumulation of Na+ and K+ in Tamarix ramosissima and T. laxa under different salt stresses (NaCl, KCl and NaCl+KCl) were studied. Additionally, the effects of salt gland inhibitors (orthovanadate, Ba2+, ouabain, tetraethylammonium (TEA) and verapamil) on Na+ and K+ secretion and accumulation were examined. Treatment with NaCl (at 0–200 mmol L−1 levels) significantly increased Na+ secretion, whereas KCl treatment (at 0–200 mmol L−1 levels) significantly increased K+ secretion. The ratio of secretion to accumulation of Na+ was higher than that of K+. The changes in Na+ and K+ secretion differed after adding different ions into the single-salt solutions. Addition of NaCl to the KCl solution (at 100 mmol L−1 level, respectively) led to a significant decrease in K+ secretion rate, whereas addition of KCl to the NaCl solution (at 100 mmol L−1 level, respectively) had little impact on the Na+ secretion rate. These results indicated that Na+ secretion in Tamarix was highly selective. In addition, Na+ secretion was significantly inhibited by orthovanadate, ouabain, TEA and verapamil, and K+ secretion was significantly inhibited by ouabain, TEA and verapamil. The different impacts of orthovanadate on Na+ and K+ secretion might be the primary cause for the different Na+ and K+ secretion abilities of multicellular salt glands in Tamarix.  相似文献   

15.
罗达  吴正保  史彦江  宋锋惠 《生态学报》2022,42(5):1876-1888
研究盐胁迫下3个品种平欧杂种榛幼苗叶片解剖结构和离子代谢特征,以揭示盐胁迫响应与适应机制及不同品种的耐盐性差异。以‘达维’、‘辽榛7号’、‘玉坠’2年生压条苗为材料,在盆栽条件下经轻度、中度、重度(分别为50、100、200 mmol/L NaCl)盐胁迫处理,设对照为0,研究幼苗叶片显微解剖结构参数和Na~+、K~+、Cl~-、Ca2+含量的变化及其在根、茎、叶中的吸收、运输和分配特征。不同品种平欧杂种榛叶片厚度、上表皮厚度、下表皮厚度、栅栏组织和海绵组织厚度随着盐胁迫程度的增强呈现出先增加后降低的特点,轻度和中度胁迫下各参数显著高于对照。中度盐胁迫显著提高了各品种叶片结构紧密度。盐胁迫导致平欧杂种榛根、茎、叶Na~+和Cl~-含量明显高于对照。盐胁迫下,Na~+和Cl~-在叶中的绝对含量明显高于茎和根,但二者的增幅以根中最大,叶中最小,表明平欧杂种榛根系首先会吸收并截留一定数量的Na~+和Cl~-,然后将其运输至茎和叶中。与对照相比,轻度和中度盐胁迫下根、茎对K~+和Ca2+的吸收保持稳定或减少,叶对K~+和Ca2+...  相似文献   

16.
Summary A method is described for isolating mesophyll protoplasts from leaves and secretory cell protoplasts from salt glands of the facultative halophyte, Ceratostigma plumbaginoides (L.). Rates of ATP hydrolysis in both cell types were determined, and levels in secretory cell protoplast preparations were fourfold higher than those in mesophyll protoplast preparations, based on total protein. The rate of ATP hydrolysis was sensitive to azide and vanadate, and stimulated by Triton-X-100. Additionally, immunoblot procedures using an antibody to the plasma membrane H+/ATPase was used to compare ATPase levels of the mesophyll and secretory cell protoplasts. Results indicate that secretory cells have a higher concentration of H+/ATPase than mesophyll cells, consistent with their putative function in salt glands.Abbreviations ATP adenosine triphosphate - BSA bovine serum albumin - DIDS diisothiocyano-2,2'-disulfonic acid stilbene - DNP dinitrophenol - DTT dithiothreitol - FITC fluorescein isothiocyanate - NAD+/NADH nicotinamide adenine dinucleotide - SDS sodium dodecylsulfate  相似文献   

17.
18.
19.
In halophytic plants, the high-affinity potassium transporter HKT gene family can selectively uptake K+ in the presence of toxic concentrations of Na+. This has so far not been well examined in glycophytic crops. Here, we report the characterization of SbHKTI;4, a member of the HKT gene family from Sorghum bicolor. Upon Na+ stress, SbHKT1;4 expression was more strongly upregulated in salt-tolerant sorghum accession, correlating with a better balanced Na+/ K+ ratio and enhanced plant growth. Heterogeneous expression analyses in mutants of Saccharomyces cerevisiae and Arabidopsis thaliana indicated that overexpressing SbHKT1;4 resulted in hypersensitivity to Na+ stress, and such hypersensitivity could be alleviated with the supply of elevated levels of K+, implicating that SbHKT1;4 may mediate K+ uptake in the presence of excessive Na+. Further electrophysiological evidence demonstrated that SbHKT1;4 could transport Na+ and K+ when expressed in Xenopus laevis oocytes. The relevance of the finding that SbHKTI;4 functions to maintain optimal Na+/K+ balance under Na+ stress to the breeding of salt-tolerant glycophytic crops is discussed.  相似文献   

20.
With the spread of saline soils worldwide, it has become increasingly important to understand salt-tolerant mechanisms and to develop halophytes with increased salt tolerance. Limonium bicolor is a typical recretohalophyte and has a typical salt excretory structure in the epidermis called the salt gland. A method that can be used to screen a large population of L. bicolor mutants for altered salt gland density and altered salt secretion is needed but is currently unavailable. Leaves of 1-month-old L. bicolor seedlings were processed by three traditional methods [epidermal peel, nail impression, and clearing/differential interference contrast microscope (clearing/DIC) method] and a fluorescence method (fluorescence microscopic examination of cleared leaves). With the fluorescence method, the autofluorescence of salt glands under UV excitation (330–380 nm) was easily distinguished with the least labor and time. The fluorescence method was used to screen ~ 10,000 seedlings (which grew from gamma-irradiated seeds). Four mutants with reduced salt gland density and 15 with increased salt gland density were obtained. Both kinds of mutants will be useful for the isolation of genes involved in salt gland development and salt secretion in L. bicolor and other halophytes. The fluorescence method was also successfully used to observe the salt glands of Aegialitis rotundifolia and the stomata and trichomes of Arabidopsis. The fluorescence method described here will be useful for examining plant epidermal structures that have autofluorescence under UV or other wavelengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号