首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phytohormones play an essential role in plant growth and development in response to environmental stresses. However, plant hormones require a complex signaling network combined with other signaling pathways to perform their proper functions. Thus, multiple phytohormonal signaling pathways are a prerequisite for understanding plant defense mechanism against stressful conditions. MicroRNAs (miRNAs) are master regulators of eukaryotic gene expression and are also influenced by a wide range of plant development events by suppressing their target genes. In recent decades, the mechanisms of phytohormone biosynthesis, signaling, pathways of miRNA biosynthesis and regulation were profoundly characterized. Recent findings have shown that miRNAs and plant hormones are integrated with the regulation of environmental stress. miRNAs target several components of phytohormone pathways, and plant hormones also regulate the expression of miRNAs or their target genes inversely. In this article, recent developments related to molecular linkages between miRNAs and phytohormones were reviewed, focusing on drought stress.  相似文献   

2.
Changing concepts in plant hormone action   总被引:4,自引:0,他引:4  
Summary A plant hormone is not, in the classic animal sense, a chemical synthesized in one organ, transported to a second organ to exert a chemical action to control a physiological event. Any phytohormone can be synthesized everywhere and can influence different growth and development processes at different places. The concept of physiological activity under hormonal control cannot be dissociated from changes in concentrations at the site of action, from spatial differences and changes in the tissue's sensitivity to the compound, from its transport and its metabolism, from balances and interactions with the other phytohormones, or in their metabolic relationships, and in their signaling pathways as well. Secondary messengers are also involved. Hormonal involvement in physiological processes can appear through several distinct manifestations (as environmental sensors, homeostatic regulators and spatio-temporal synchronizers, resource allocators, biotime adjusters, etc.), dependent on or integrated with the primary biochemical pathways. The time has also passed for the hypothesized ‘specific’ developmental hormones, rhizocaline, canlocaline, and florigen: root, stem, and flower formation result from a sequential control of specific events at the right places through a coordinated control by electrical signals, the known phytohormones and nonspecific molecules of primary and secondary metabolism, and involve both cytoplasmic and apoplastic compartments. These contemporary views are examined in this review.  相似文献   

3.
许佳  侯宁  韩凝  边红武  朱睦元 《遗传》2016,38(5):418-426
植物激素是调控植物生长发育的信号分子。近年来的研究发现,小分子RNA作为基因表达调控网络的组分,参与植物激素信号途径,在植物生长发育和胁迫反应方面发挥重要作用。本文综述了miRNA和次级siRNA(Short interfering RNAs)介导的基因调控与植物激素信号通路相互作用的研究进展,主要包括生长素、赤霉素、油菜素内酯和脱落酸途径涉及的miRNA及其功能,并对不同发育过程中miRNA参与的不同激素信号通路的交叉和互作进行了讨论。  相似文献   

4.
The data concerning the plant sex regulation by phytohormones are presented. Functioning of signaling pathways regulating floral development and sex expression, including those with phytohormone involvement, are considered. The role of phytohormones in the functioning of systems and mechanisms of sex regulation is analyzed. The examples of sex reversion by plant treatment with phytohormones are presented. It is demonstrated that many genes determining sex encode proteins involved in the phytohormone metabolism. The significance of phytohormone investigation for the understanding of molecular mechanisms of plant sex regulation is discussed.  相似文献   

5.
《Trends in plant science》2023,28(4):399-414
Phytohormones have crucial roles in plant growth, development, and acclimation to environmental stress; however, measuring phytohormone levels and unraveling their complex signaling networks and interactions remains challenging. Mass spectrometry (MS) has revolutionized the study of complex biological systems, enabling the comprehensive identification and quantification of phytohormones and their related targets. Here, we review recent advances in MS technologies and highlight studies that have used MS to discover and analyze phytohormone-mediated molecular events. In particular, we focus on the application of MS for profiling phytohormones, elucidating phosphorylation signaling, and mapping protein interactions in plants.  相似文献   

6.
The transition from vegetative to reproductive growth is a major phase change in angiosperms. In annual plants such as Arabidopsis thaliana (Arabidopsis), this change is irreversible, and as such, the regulation of its timing must be tightly controlled. Plant hormone (phytohormone) signalling is known to regulate suites of morphogenic processes in Arabidopsis a role in flowering-time control is starting to emerge as one key-controlling step. This review focuses on experimental evidence in the Arabidopsis that both classical and newly described phytohormones serve within the signal network leading to a reproductive phase transition, as both positive and repressive elements, depending on the phytohormone and growth conditions. Examples of genetic and pharmacological experiments that implicate phytohormones as components of the floral-timing syndrome will be described. I hope that this review will serve as a primer for future research on the mechanisms of action for each respective phytohormone on the floral transition in Arabidopsis, and lead to further experimentation on the crosstalk that likely bridges between them.  相似文献   

7.
植物荫蔽胁迫的激素信号响应   总被引:1,自引:0,他引:1  
植物的生长发育与光信号密切相关, 外界光强、光质的变化会改变植物的生长发育状态。在自然或人工生态系统中, 植株个体的光环境往往会被其周围植物所影响, 导致荫蔽胁迫, 其主要表现为光合有效辐射以及红光与远红光比值(R:FR)降低。荫蔽胁迫对植物生长发育的多个时期均有影响, 如抑制种子萌发、促进幼苗下胚轴伸长及促进植物花期提前等, 这对农业生产不利, 会导致作物产量以及品质的降低。植物激素是调控植物生长发育的关键内源因子。大量研究表明, 生长素(IAA)、赤霉素(GA)及油菜素甾醇(BR)等植物激素均参与介导植物的荫蔽胁迫响应。当植物处于荫蔽胁迫时, 光信号的改变会影响植物激素的合成及信号转导。不同植物激素对荫蔽胁迫的响应各不相同, 但其信号通路之间却存在互作关系, 从而形成复杂的网络状调控路径。该文总结了几种主要植物激素(生长素、赤霉素、油菜素甾醇及乙烯)响应荫蔽胁迫的机理, 重点论述了荫蔽胁迫对植物激素合成及信号通路的影响, 以及植物激素调控荫蔽胁迫下植物生长的分子机理, 并对未来潜在的研究热点进行了分析。  相似文献   

8.
Jasmonates, ubiquitous cyclopentanone compounds, are reviewed as new regulators for plant growth and development. They may complement the group of well-established “classic” phytohormones. Jasmonates influence a multiplicity of plant physiological processes by inhibition, promotion or induction. In many aspects they are similar to abscisic acid, especially in responses to stress. The review contains information on the chemical structures and metabolism of jasmonates, contributes to their biological role and describes possible mode(s) of action at the level of molecular biology and gene expression. In particular, emphasis is placed on the gene expression and accumulation of jasmonate-induced abundant polypeptides as a stress response of the plant cells. A hypothesis is attempted in which endogenous jasmonates represent an integral part of the signal transduction chain between stress signal(s) and stress response(s).  相似文献   

9.
Phytohormones are central players in diverse plant physiological events, such as plant growth, development, and environmental stress and defense responses. The elucidation of their regulatory mechanisms through phytohormone receptors could facilitate the generation of transgenic crops with cultivation advantages and the rational design of growth control chemicals. During the last decade, accumulated structural data on phytohormone receptors have provided critical insights into the molecular mechanisms of phytohormone perception and signal transduction. Here, we review the structural bases of phytohormone recognition and receptor activation. As a common feature, phytohormones regulate the interaction between the receptors and their respective target proteins (also called co-receptors) by two types of regulatory mechanisms, acting as either “molecular glue” or an “allosteric regulator.” However, individual phytohormone receptors adopt specific structural features that are essential for activation. In addition, recent studies have focused on the molecular diversity of redundant phytohormone receptors.  相似文献   

10.
In angiosperms,floral transition is a key developmental transition from the vegetative to reproductive growth,and requires precise regulation to maximize the reproductive success.A complex regulatory network governs this transition through integrating flowering pathways in response to multiple exogenous and endogenous cues.Phytohormones are essential for proper plant developmental regulation and have been extensively studied for their involvement in the floral transition.Among various phytohormones,gibberellin(GA)plays a major role in affecting flowering in the model plant Arabidopsis thaliana.The GA pathway interact with other flowering genetic pathways and phytohormone signaling pathways through either DELLA proteins or mediating GA homeostasis.In this review,we summarize the recent advances in understanding the mechanisms of DELLA-mediated GA pathway in flowering time control in Arabidopsis,and discuss its possible link with other phytohormone pathways during the floral transition.  相似文献   

11.
《Trends in plant science》2023,28(7):808-824
Temperature influences the seasonal growth and geographical distribution of plants. Heat or cold stress occur when temperatures exceed or fall below the physiological optimum ranges, resulting in detrimental and irreversible damage to plant growth, development, and yield. Ethylene is a gaseous phytohormone with an important role in plant development and multiple stress responses. Recent studies have shown that, in many plant species, both heat and cold stress affect ethylene biosynthesis and signaling pathways. In this review, we summarize recent advances in understanding the role of ethylene in plant temperature stress responses and its crosstalk with other phytohormones. We also discuss potential strategies and knowledge gaps that need to be adopted and filled to develop temperature stress-tolerant crops by optimizing ethylene response.  相似文献   

12.
This review highlights the effects of ??classic?? phytohormones (auxins, cytokinins, gibberellins, abscisic acid, ethylene, and brassinosteroids) and also of important signaling molecules, such as jasmonic acid, strigolactones, and nitric oxide, on the main components of the plant cytoskeleton, microtubules and microfilaments. The effects of these growth regulators on orientation and organization of microtubules and actin filaments, realization of cytoskeleton-dependent processes, expression of tubulin and actin genes, and interaction of various phytohormones in their influence on the cytoskeleton are discussed.  相似文献   

13.
14.
Growth and development are coordinated by an array of intercellular communications. Known plant signaling molecules include phytohormones and hormone peptides. Although both classes can be implicated in the same developmental processes, little is known about the interplay between phytohormone action and peptide signaling within the cellular microenvironment. We show that genes coding for small secretory peptides, designated GOLVEN (GLV), modulate the distribution of the phytohormone auxin. The deregulation of the GLV function impairs the formation of auxin gradients and alters the reorientation of shoots and roots after a gravity stimulus. Specifically, the GLV signal modulates the trafficking dynamics of the auxin efflux carrier PIN-FORMED2 involved in root tropic responses and meristem organization. Our work links the local action of secretory peptides with phytohormone transport.  相似文献   

15.
16.
17.
Callus induction,which results in fate transition in plant cells,is considered as the first and key step for plant regeneration.This process can be stimulated in different tissues by a callus-inducing medium(CIM),which contains a high concentration of phytohormone auxin.Although a few key regulators for callus induction have been identified,the multiple aspects of the regulatory mechanism driven by high levels of auxin still need further investigation.Here,we find that high auxin induces callus ...  相似文献   

18.
The functional analysis of phytohormone production, interaction, and regulation in higher plants has re-emerged in the past 10 years due to spectacular advances in integrative study models. However, plants are not axenic in natural conditions and are usually colonized or influenced directly by different microorganisms such as rhizobacteria of which many have the ability to produce phytohormones. This review summarizes information related to the biosynthesis, metabolism, regulation, physiological role, and agronomical impact of phytohormones produced by the model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum, considered to be one of the most representative PGPR. We include exhaustive information about the phytohormones auxins, gibberellins, cytokinins, ethylene, and abscisic acid, as well as the plant growth regulators polyamines and nitric oxide. We deal with their metabolism by Azospirillum sp. in chemically defined medium, in plant–microbe interactions, or in the context of the agronomical use of Azospirillum sp.  相似文献   

19.
The highly coordinated, dynamic nature of growth requires plants to perceive and react to various environmental signals in an interactive manner. Elaborate signaling networks mediate this plasticity in growth and the ability to adapt to changing environmental conditions. The fluctuations of stress-responsive hormones help alter the cellular dynamics and hence play a central role in coordinately regulating the growth responses under stress. Recent experimental data unequivocally demonstrated that interactions among various phytohormones are the rule rather than exception in integrating the diverse input signals and readjusting growth as well as acquiring stress tolerance. The presence of multiple and often redundant signaling intermediates for each phytohormone appears to help in such crosstalk. Furthermore, there are several examples of similar developmental changes occurring in response to distinct abiotic stress signals, which can be explained by the crosstalk in phytohormone signaling. Therefore, in this brief review, we have highlighted the major phytohormone crosstalks with a focus on the response of plants to abiotic stresses. The recent findings have made it increasingly apparent that such crosstalk will also explain the extreme pleiotropic responses elicited by various phytohormones. Indeed, it would not be presumptuous to expect that in the coming years this paradigm will take a central role in explaining developmental regulation.  相似文献   

20.
气体植物激素乙烯在植物生长发育及应对胁迫的防御反应中起重要调控作用.通过20多年的研究,利用模式植物拟南芥,勾画出一条自内质网膜受体至细胞核内转录因子的线性乙烯信号转导通路.本文概述了研究乙烯信号转导的方法及乙烯信号转导的基本过程;阐述了最新发现的乙烯信号从内质网膜传递到细胞核的分子机制,即原本定位于内质网膜上的EIN2蛋白其C端被剪切之后进入细胞核,然后通过抑制EBF1/2而稳定转录因子EIN3/EIL1;根据最近多个小组报道EIN3/EIL1直接调控除乙烯响应基因之外的其他生物学过程相关基因,提出了EIN3/EIL1可以作为网络节点整合多条信号通路的新观点;通过分析不同信号通路调控EIN3/EIL1的方式,发现不仅EIN3/EIL1的蛋白稳定性受到调控,而且其转录活性还受到诸如JAZ,DELLA等转录调节因子的调控.本文展望了未来乙烯信号转导通路的研究方向与研究热点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号