首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
COVID-19 displays diverse disease severities and symptoms including acute systemic inflammation and hypercytokinemia, with subsequent dysregulation of immune cells. Bacterial superinfections in COVID-19 can further complicate the disease course and are associated with increased mortality. However, there is limited understanding of how SARS-CoV-2 pathogenesis and hypercytokinemia impede the innate immune function against bacterial superinfections. We assessed the influence of COVID-19 plasma hypercytokinemia on the functional responses of myeloid immune cells upon bacterial challenges from acute-phase COVID-19 patients and their corresponding recovery-phase. We show that a severe hypercytokinemia status in COVID-19 patients correlates with the development of bacterial superinfections. Neutrophils and monocytes derived from COVID-19 patients in their acute-phase showed an impaired intracellular microbicidal capacity upon bacterial challenges. The impaired microbicidal capacity was reflected by abrogated MPO and reduced NETs production in neutrophils along with reduced ROS production in both neutrophils and monocytes. Moreover, we observed a distinct pattern of cell surface receptor expression on both neutrophils and monocytes, in line with suppressed autocrine and paracrine cytokine signaling. This phenotype was characterized by a high expression of CD66b, CXCR4 and low expression of CXCR1, CXCR2 and CD15 in neutrophils and low expression of HLA-DR, CD86 and high expression of CD163 and CD11b in monocytes. Furthermore, the impaired antibacterial effector function was mediated by synergistic effect of the cytokines TNF-α, IFN-γ and IL-4. COVID-19 patients receiving dexamethasone showed a significant reduction of overall inflammatory markers in the plasma as well as exhibited an enhanced immune response towards bacterial challenge ex vivo. Finally, broad anti-inflammatory treatment was associated with a reduction in CRP, IL-6 levels as well as length of ICU stay and ventilation-days in critically ill COVID-19 patients. Our data provides insights into the transient functional dysregulation of myeloid immune cells against subsequent bacterial infections in COVID-19 patients and describe a beneficial role for the use of dexamethasone in these patients.  相似文献   

2.
3.
Patients with sepsis display increased concentrations of sTREM-1 (soluble Triggering Receptor Expressed on Myeloid cells 1), and a phase II clinical trial focusing on TREM-1 modulation is ongoing. We investigated whether sTREM-1 circulating concentrations are associated with the outcome of patients with coronavirus disease 2019 (COVID-19) to assess the role of this pathway in COVID-19. This observational study was performed in two independent cohorts of patients with COVID-19. Plasma concentrations of sTREM-1 were assessed after ICU admission (pilot cohort) or after COVID-19 diagnosis (validation cohort). Routine laboratory and clinical parameters were collected from electronic patient files. Results showed sTREM-1 plasma concentrations were significantly elevated in patients with COVID-19 (161 [129–196] pg/ml) compared to healthy controls (104 [75–124] pg/ml; P<0.001). Patients with severe COVID-19 needing ICU admission displayed even higher sTREM-1 concentrations compared to less severely ill COVID-19 patients receiving clinical ward-based care (235 [176–319] pg/ml and 195 [139–283] pg/ml, respectively, P = 0.017). In addition, higher sTREM-1 plasma concentrations were observed in patients who did not survive the infection (326 [207–445] pg/ml) compared to survivors (199 [142–278] pg/ml, P<0.001). Survival analyses indicated that patients with higher sTREM-1 concentrations are at higher risk for death (hazard ratio = 3.3, 95%CI: 1.4–7.8). In conclusion, plasma sTREM-1 concentrations are elevated in patients with COVID-19, relate to disease severity, and discriminate between survivors and non-survivors. This suggests that the TREM-1 pathway is involved in the inflammatory reaction and the disease course of COVID-19, and therefore may be considered as a therapeutic target in severely ill patients with COVID-19.  相似文献   

4.
Background. Humoral immunity requires interaction between B cell and T follicular helper cells (Tfh) to produce effective immune response, but the data regarding a role of B cells and Tfh in SARS-CoV-2 defense are still sparse. Methods. Blood samples from patients with acute COVID-19 (n = 64), convalescents patients who had specific IgG to SARS-CoV-2 N-protein (n = 55), and healthy donors with no detectable antibodies to any SARS-CoV-2 proteins (HC, n = 44) were analyses by multicolor flow cytometry. Results. Patients with acute COVID-19 showed decreased levels of memory B cells subsets and increased proportion plasma cell precursors compared to HC and COVID-19 convalescent patients, whereas for the latter the elevated numbers of virgin naïve, Bm2′ and “Bm3+Bm4” was found if compared with HC. During acute COVID-19 CXCR3+CCR6− Tfh1-like cells were decreased and the levels of CXCR3−CCR6+ Tfh17-like were increased then in HC and convalescent patients. Finally, COVID-19 convalescent patients had increased levels of Tfh2-, Tfh17- and DP Tfh-like cells while comparing their amount with HC. Conclusions. Our data indicate that COVID-19 can impact the humoral immunity in the long-term.  相似文献   

5.
The SARS-CoV-2 infection causes severe respiratory involvement (COVID-19) in 5–20% of patients through initial immune derangement, followed by intense cytokine production and vascular leakage. Evidence of immune involvement point to the participation of T, B, and NK cells in the lack of control of virus replication leading to COVID-19. NK cells contribute to early phases of virus control and to the regulation of adaptive responses. The precise mechanism of NK cell dysregulation is poorly understood, with little information on tissue margination or turnover. We investigated these aspects by multiparameter flow cytometry in a cohort of 28 patients hospitalized with early COVID-19.Relevant decreases in CD56brightCD16+/- NK subsets were detected, with a shift of circulating NK cells toward more mature CD56dimCD16+KIR+NKG2A+ and “memory” KIR+CD57+CD85j+ cells with increased inhibitory NKG2A and KIR molecules. Impaired cytotoxicity and IFN-γ production were associated with conserved expression of natural cytotoxicity receptors and perforin. Moreover, intense NK cell activation with increased HLA-DR and CD69 expression was associated with the circulation of CD69+CD103+ CXCR6+ tissue-resident NK cells and of CD34+DNAM-1brightCXCR4+ inflammatory precursors to mature functional NK cells. Severe disease trajectories were directly associated with the proportion of CD34+DNAM-1brightCXCR4+ precursors and inversely associated with the proportion of NKG2D+ and of CD103+ NK cells.Intense NK cell activation and trafficking to and from tissues occurs early in COVID-19, and is associated with subsequent disease progression, providing an insight into the mechanism of clinical deterioration. Strategies to positively manipulate tissue-resident NK cell responses may provide advantages to future therapeutic and vaccine approaches.  相似文献   

6.
Prior studies have demonstrated that immunologic dysfunction underpins severe illness in COVID-19 patients, but have lacked an in-depth analysis of the immunologic drivers of death in the most critically ill patients. We performed immunophenotyping of viral antigen-specific and unconventional T cell responses, neutralizing antibodies, and serum proteins in critically ill patients with SARS-CoV-2 infection, using influenza infection, SARS-CoV-2-convalescent health care workers, and healthy adults as controls. We identify mucosal-associated invariant T (MAIT) cell activation as an independent and significant predictor of death in COVID-19 (HR = 5.92, 95% CI = 2.49–14.1). MAIT cell activation correlates with several other mortality-associated immunologic measures including broad activation of CD8+ T cells and non-Vδ2 γδT cells, and elevated levels of cytokines and chemokines, including GM-CSF, CXCL10, CCL2, and IL-6. MAIT cell activation is also a predictor of disease severity in influenza (ECMO/death HR = 4.43, 95% CI = 1.08–18.2). Single-cell RNA-sequencing reveals a shift from focused IFNα-driven signals in COVID-19 ICU patients who survive to broad pro-inflammatory responses in fatal COVID-19 –a feature not observed in severe influenza. We conclude that fatal COVID-19 infection is driven by uncoordinated inflammatory responses that drive a hierarchy of T cell activation, elements of which can serve as prognostic indicators and potential targets for immune intervention.  相似文献   

7.
Opportunistic fungal infections increase morbidity and mortality in COVID-19 patients monitored in intensive care units (ICU). As patients’ hospitalization days in the ICU and intubation period increase, opportunistic infections also increase, which prolongs hospital stay days and elevates costs. The study aimed to describe the profile of fungal infections and identify the risk factors associated with mortality in COVID-19 intensive care patients. The records of 627 patients hospitalized in ICU with the diagnosis of COVID-19 were investigated from electronic health records and hospitalization files. The demographic characteristics (age, gender), the number of ICU hospitalization days and mortality rates, APACHE II scores, accompanying diseases, antibiotic-steroid treatments taken during hospitalization, and microbiological results (blood, urine, tracheal aspirate samples) of the patients were recorded. Opportunistic fungal infection was detected in 32 patients (5.10%) of 627 patients monitored in ICU with a COVID-19 diagnosis. The average APACHE II score of the patients was 28 ± 6. While 25 of the patients (78.12%) died, seven (21.87%) were discharged from the ICU. Candida parapsilosis (43.7%) was the opportunistic fungal agent isolated from most blood samples taken from COVID-19 positive patients. The mortality rate of COVID-19 positive patients with candidemia was 80%. While two out of the three patients (66.6%) for whom fungi were grown from their tracheal aspirate died, one patient (33.3%) was transferred to the ward. Opportunistic fungal infections increase the mortality rate of COVID-19-positive patients. In addition to the risk factors that we cannot change, invasive procedures should be avoided, constant blood sugar regulation should be applied, and unnecessary antibiotics use should be avoided.  相似文献   

8.
To simultaneously determine clinical and immunological responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in young and old females and males, 681 coronavirus disease 2019 (COVID-19) patients and 369 normal controls (NCs) were analyzed based on age and sex classifications using multiple linear regression analysis. Compared to the age-matched NCs, both young and old male and female non-comorbid COVID-19 patients had lower lymphocyte counts and alanine aminotransferase (ALT) concentration, and only young male and female patients had lower neutrophil counts. Compared to young patients, both old males and females had significantly higher plasma ALT and AST concentrations. Compared to young and old females, age-matched males had higher plasma ALT and AST concentrations, but only young males had higher C-reactive protein (CRP) concentration. Compared to females, old males, but not young males, showed higher incidence of critical illness. Compared to young patients, old females had more leukocyte and neutrophil counts above the normal upper limit and B cell count below the normal lower limit (NLL), while old males had more lymphocyte and natural killer (NK) cell counts below the NLL. No sex or age associations with B cell and NK cell counts were observed. However, there were age-dependent decreases in CD8+ T-cell counts in both male and female COVID-19 patients. Age was negatively associated with CD8+ T cell counts but positively associated with neutrophil count, CRP, ALT, and AST concentrations, and sex (females) was negatively associated with neutrophil count, CRP, ALT, and AST concentrations. The present study suggests that SARS-CoV-2 infection mainly induced 1) beneficial sex (female)-related differences regarding reduced COVID-19 disease severity and negative associations with inflammatory responses and liver damage, and 2) harmful age-related differences relating to negative associations with CD8+ T cell count and positive associations with inflammatory responses and liver damage. Thus, sex and age are biological variables that should be considered in the prevention and treatment of COVID-19.  相似文献   

9.
10.
11.
By the beginning of 2021, the battle against coronavirus disease 2019 (COVID-19) remains ongoing. Investigating the adaptive immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, in patients who have recovered from this disease could contribute to our understanding of the natural host immune response. We enrolled 38 participants in this study. 7 healthy participants and 31 COVID-19 patients who had recovered from COVID-19 and categorized them into 3 groups according to their previous clinical presentations: 10 moderate, 9 mild, and 12 asymptomatic. Flow cytometry analysis of peripheral lymphocyte counts in recovered patients showed significantly increased levels of CD4+ T cells in patients with a history of mild and moderate COVID-19 symptoms compared with those healthy individuals (p < 0.05 and p < 0.0001 respectively). whereas no significant difference was observed in the CD8+ T cell percentage in COVID-19-recovered patients compared with healthy individuals. Our study demonstrated that antibodies against the SARS-CoV-2 spike protein (anti-S) IgG antibody production could be observed in all recovered COVID-19 patients, regardless of whether they were asymptomatic (p < 0.05)or presented with mild (p < 0.0001) or moderate symptoms (p < 0.01). Anti-S IgG antibodies could be detected in participants up to 90 days post-infection. In conclusion, the lymphocyte levels in recovered patients were associated with the clinical presentation of the disease, and further analysis is required to investigate relationships between different clinical presentations and lymphocyte activation and function.  相似文献   

12.
BackgroundData regarding outcomes among patients with cancer and co-morbid cardiovascular disease (CVD)/cardiovascular risk factors (CVRF) after SARS-CoV-2 infection are limited.ObjectivesTo compare Coronavirus disease 2019 (COVID-19) related complications among cancer patients with and without co-morbid CVD/CVRF.MethodsRetrospective cohort study of patients with cancer and laboratory-confirmed SARS-CoV-2, reported to the COVID-19 and Cancer Consortium (CCC19) registry from 03/17/2020 to 12/31/2021. CVD/CVRF was defined as established CVD or no established CVD, male ≥ 55 or female ≥ 60 years, and one additional CVRF. The primary endpoint was an ordinal COVID-19 severity outcome including need for hospitalization, supplemental oxygen, intensive care unit (ICU), mechanical ventilation, ICU or mechanical ventilation plus vasopressors, and death. Secondary endpoints included incident adverse CV events. Ordinal logistic regression models estimated associations of CVD/CVRF with COVID-19 severity. Effect modification by recent cancer therapy was evaluated.ResultsAmong 10,876 SARS-CoV-2 infected patients with cancer (median age 65 [IQR 54–74] years, 53% female, 52% White), 6253 patients (57%) had co-morbid CVD/CVRF. Co-morbid CVD/CVRF was associated with higher COVID-19 severity (adjusted OR: 1.25 [95% CI 1.11–1.40]). Adverse CV events were significantly higher in patients with CVD/CVRF (all p<0.001). CVD/CVRF was associated with worse COVID-19 severity in patients who had not received recent cancer therapy, but not in those undergoing active cancer therapy (OR 1.51 [95% CI 1.31–1.74] vs. OR 1.04 [95% CI 0.90–1.20], pinteraction <0.001).ConclusionsCo-morbid CVD/CVRF is associated with higher COVID-19 severity among patients with cancer, particularly those not receiving active cancer therapy. While infrequent, COVID-19 related CV complications were higher in patients with comorbid CVD/CVRF. (COVID-19 and Cancer Consortium Registry [CCC19]; NCT04354701).  相似文献   

13.
BackgroundStudies have shown that cardiac arrhythmias may occur in up to 44% of patients with severe coronavirus disease 2019 (COVID-19) and has been associated with an increased risk of death. This systematic review and meta-analysis aimed to evaluate the incidence of cardiac arrhythmias in patients with COVID-19 and their implications on patient prognosis.MethodsWe performed a systematic literature search from PubMed, SCOPUS, Europe PMC, Cochrane Central Databases, and Google Scholar + Preprint Servers. The primary endpoint of the study was poor outcomes including mortality, severe COVID-19, and the need for ICU care.ResultsA total of 4 studies including 784 patients were analyzed. The incidence of arrhythmia in patients with COVID-19 was 19% (9–28%; I2: 91.45). Arrhythmia occurred in 48% (38–57%; I2: 48.08) of patients with poor outcome and 6% (1–12%; I2: 85.33%) of patients without poor outcome. Patients with COVID-19 experiencing arrhythmia had an increased risk of poor outcome (RR 7.96 [3.77, 16.81], p < 0.001; I2: 71.1%). The funnel-plot analysis showed an asymmetrical funnel plot with most of the studies on the right side of the effect estimate. The regression-based Egger’s test showed indication of small-study effects (p = 0.001).ConclusionCardiac arrhythmias were significantly associated with an increased risk of poor outcome in COVID-19. Arrhythmias were observed in 19% of patients with COVID-19 and in 48% of patients with COVID-19 and poor outcomes.  相似文献   

14.
During the development of COVID-19 caused by SARS-CoV-2 infection from mild disease to severe disease, it can trigger a series of complications and stimulate a strong cellular and humoral immune response. However, the precise identification of blood immune cell response dynamics and the relevance to disease progression in COVID-19 patients remains unclear. We propose for the first time to use changes in cell numbers to establish new subgroups, which were divided into four groups: first from high to low cell number (H_L_Group), first from low to high (L_H_Group), continuously high (H_Group), and continuously low (L_Group). It was found that in the course of disease development. In the T cell subgroup, the immune response is mainly concentrated in the H_L_Group cell type, and the complications are mainly in the L_H_Group cell type. In the NK cell subgroup, the moderate patients are mainly related to cellular immunity, and the severe patients are mainly caused by the disease, while severe patients are mainly related to complications caused by diseases. Our study provides a dynamic response of immune cells in human blood during SARS-CoV-2 infection and the first subgroup analysis using dynamic changes in cell numbers, providing a new reference for clinical treatment of COVID-19.  相似文献   

15.
NLRP3 inflammasome is a critical immune component that plays a crucial role in mounting innate immune responses. The deleterious effects of inflammasome activation have been correlated with the COVID-19 disease severity. In the presence of several underlying disorders, the immune components of our bodies are dysregulated, creating conditions that could adversely affect us other than providing a required level of protection. In this review, we focused on the occurrence of NLRP3 inflammasome activation in response to SARS-COV-2 infection, dysregulation of NLRP3 activation events in the presence of several comorbidities, the contribution of activated NLRP3 inflammasome to the severity of COVID-19, and available therapeutics for the treatment of such NLRP3 inflammasome related diseases based on current knowledge. The primed state of immunity in individuals with comorbidities (risk factors) could accelerate many deaths and severe COVID-19 cases via activation of NLRP3 inflammasome and the release of downstream inflammatory molecules. Therefore, a detailed understanding of the host–pathogen interaction is needed to clarify the pathophysiology and select a potential therapeutic approach.  相似文献   

16.
Disease manifestations in COVID-19 range from mild to severe illness associated with a dysregulated innate immune response. Alterations in function and regeneration of dendritic cells (DCs) and monocytes may contribute to immunopathology and influence adaptive immune responses in COVID-19 patients. We analyzed circulating DC and monocyte subsets in 65 hospitalized COVID-19 patients with mild/moderate or severe disease from acute illness to recovery and in healthy controls. Persisting reduction of all DC subpopulations was accompanied by an expansion of proliferating LineageHLADR+ cells lacking DC markers. Increased frequency of CD163+ CD14+ cells within the recently discovered DC3 subpopulation in patients with more severe disease was associated with systemic inflammation, activated T follicular helper cells, and antibody-secreting cells. Persistent downregulation of CD86 and upregulation of programmed death-ligand 1 (PD-L1) in conventional DCs (cDC2 and DC3) and classical monocytes associated with a reduced capacity to stimulate naïve CD4+ T cells correlated with disease severity. Long-lasting depletion and functional impairment of DCs and monocytes may have consequences for susceptibility to secondary infections and therapy of COVID-19 patients.  相似文献   

17.
18.
《Cytotherapy》2022,24(3):235-248
The emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses a never before seen challenge to human health and the economy. Considering its clinical impact, with no streamlined therapeutic strategies in sight, it is crucial to understand the infection process of SARS-CoV-2. Our limited knowledge of the mechanisms underlying SARS-CoV-2 infection impedes the development of alternative therapeutics to address the pandemic. This aspect can be addressed by modeling SARS-CoV-2 infection in the human context to facilitate drug screening and discovery. Human induced pluripotent stem cell (iPSC)-derived lung epithelial cells and organoids recapitulating the features and functionality of the alveolar cell types can serve as an in vitro human model and screening platform for SARS-CoV-2. Recent studies suggest an immune system asynchrony leading to compromised function and a decreased proportion of specific immune cell types in coronavirus disease 2019 (COVID-19) patients. Replenishing these specific immune cells may serve as useful treatment modality against SARS-CoV-2 infection. Here the authors review protocols for deriving lung epithelial cells, alveolar organoids and specific immune cell types, such as T lymphocytes and natural killer cells, from iPSCs with the aim to aid investigators in making relevant in vitro models of SARS-CoV-2 along with the possibility derive immune cell types to treat COVID-19.  相似文献   

19.
Hypozincemia is prevalent in severe acute respiratory syndrome coronavirus-2 (SARS-COV-2)-infected patients and has been considered as a risk factor in severe coronavirus disease-2019 (COVID-19). Whereas zinc might affect SARS-COV-2 replication and cell entry, the link between zinc deficiency and COVID-19 severity could also be attributed to the effects of COVID-19 on the body metabolism and immune response. Zinc deficiency is more prevalent in the elderly and patients with underlying chronic diseases, with established deleterious consequences such as the increased risk of respiratory infection. We reviewed the expected effects of zinc deficiency on COVID-19-related pathophysiological mechanisms focusing on both the renin–angiotensin and kinin-kallikrein systems. Mechanisms and effects were extrapolated from the available scientific literature. Zinc deficiency alters angiotensin-converting enzyme-2 (ACE2) function, leading to the accumulation of angiotensin II, des-Arg9-bradykinin and Lys-des-Arg9-bradykinin, which results in an exaggerated pro-inflammatory response, vasoconstriction and pro-thrombotic effects. Additionally, zinc deficiency blocks the activation of the plasma contact system, a protease cascade initiated by factor VII activation. Suggested mechanisms include the inhibition of Factor XII activation and limitation of high-molecular-weight kininogen, prekallikrein and Factor XII to bind to endothelial cells. The subsequent accumulation of Factor XII and deficiency in bradykinin are responsible for increased production of inflammatory mediators and marked hypercoagulability, as typically observed in COVID-19 patients. To conclude, zinc deficiency may affect both the renin–angiotensin and kinin-kallikrein systems, leading to the exaggerated inflammatory manifestations characteristic of severe COVID-19.  相似文献   

20.
《Endocrine practice》2020,26(6):668-674
Objective: Previous studies on coronavirus disease 2019 (COVID-19) were based on information from the general population. We aimed to further clarify the clinical characteristics of diabetes with COVID-19.Methods: Twenty-eight patients with diabetes and COVID-19 were enrolled from January 29, 2020, to February 10, 2020, with a final follow-up on February 22, 2020. Epidemiologic, demographic, clinical, laboratory, treatment, and outcome data were analyzed.Results: The average age of the 28 patients was 68.6 ± 9.0 years. Most (75%) patients were male. Only 39.3% of the patients had a clear exposure of COVID-19. Fever (92.9%), dry cough (82.1%), and fatigue (64.3%) were the most common symptoms, followed by dyspnea (57.1%), anorexia (57.1%), diarrhea (42.9%), expectoration (25.0%), and nausea (21.4%). Fourteen patients were admitted to the intensive care unit (ICU). The hemoglobin A1c level was similar between ICU and non-ICU patients. ICU patients had a higher respiratory rate, higher levels of random blood glucose, aspartate transaminase, bilirubin, creatine, N-terminal prohormone of brain natriuretic peptide, troponin I, D-dimers, procalcitonin, C-reactive protein, ferritin, interleukin (IL)-2R, IL-6, and IL-8 than non-ICU patients. Eleven of 14 ICU patients received noninvasive ventilation and 7 patients received invasive mechanical ventilation. Twelve patients died in the ICU group and no patients died in the non-ICU group.Conclusion: ICU cases showed higher rates of organ failure and mortality than non-ICU cases. The poor outcomes of patients with diabetes and COVID-19 indicated that more supervision is required in these patients.Abbreviations: COVID-19 = coronavirus disease 2019; ICU = intensive care unit; MERS-CoV = middle East respiratory syndrome-related coronavirus; 2019- nCoV = 2019 novel coronavirus; NT-proBNP = N-terminal prohormone of brain natriuretic peptide; SARS-CoV = severe acute respiratory syndrome-related coronavirus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号