首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Inbreeding has the potential to cause evolutionary changes in populations, although these changes are likely to drive populations to extinction through inbreeding depression and reductions in genetic diversity. We investigated the mating system and late-stage inbreeding depression (δ) in 10 populations of Magnolia stellata using nine microsatellite markers and evaluated the effects of population size and the degree of population isolation through inbreeding and inbreeding depression on the persistence of populations. The outcrossing rates were very similar (~0.7) among populations, but the correlations of paternity, fractions of biparental inbreeding and inbreeding coefficients at the seed stage ( F S) varied among populations, suggesting that the level of outcrossing was similar among populations, while the quality of it was not. A significant negative correlation was detected between F S and population size. The average value of δ was 0.709, and the values in six of the 10 populations were significant. The values of δ differed among populations, although clear relationships with population size and the degree of population isolation were not detected. However, in one population, which was very small and located in the edge of the species' range, we obtained a very low value of δ (–0.096), which may be indicative of purging or the fixation of deleterious alleles. Existing M. stellata populations that are small (and thus might be expected to have higher frequencies of inbreeding) and have large values of δ may be in danger of declining, even if the populations are located within the central region of the species' range.  相似文献   

2.
In gynodioecious species, females sacrifice fitness by not producing pollen, and hence must have a fitness advantage over hermaphrodites. Because females are obligately outcrossed, they may derive a fitness advantage by avoiding selfing and inbreeding depression. However, both sexes are capable of biparental inbreeding, and there are currently few estimates of the independent effects of maternal sex and multiple levels of inbreeding on female advantage. To test these hypotheses, females and hermaphrodites from six Alaskan populations of Silene acaulis were crossed with pollen from self (hermaphrodites only), a sibling, a random plant within the same population, and a plant from a different population. Germination, survivorship and early growth revealed inbreeding depression for selfs and higher germination but reduced growth in sib-crosses, relative to outcrosses. Independent of mate relatedness, females germinated more seeds that grew faster than offspring from hermaphrodites. This indicates that inbreeding depression as well as maternal sex can influence breeding system evolution. The effect of maternal sex may be explained by higher performance of female genotypes and a greater abundance of female genotypes among the offspring of female mothers.  相似文献   

3.
Thermal acclimation capacity was investigated in adults of three tropical marine invertebrates, the subtidal barnacle Striatobalanus amaryllis, the intertidal gastropod Volegalea cochlidium and the intertidal barnacle Amphibalanus amphitrite. To test the relative importance of transgenerational acclimation, the developmental acclimation capacity of A. amphitrite was investigated in F1 and F2 generations reared at a subset of the same incubation temperatures. The increase in CTmax (measured through loss of key behavioural metrics) of F0 adults across the incubation temperature range 25.4–33.4 °C was low: 0.00 °C (V. cochlidium), 0.05 °C (S. amaryllis) and 0.06 °C (A. amphitrite) per 1 °C increase in incubation temperature (the acclimation response ratio; ARR). Although the effect of generation was not significant, across the incubation temperature range of 29.4–33.4 °C, the increase in CTmax in the F1 (0.30 °C) and F2 (0.15 °C) generations of A. amphitrite was greater than in the F0 (0.10 °C). These correspond to ARR's of 0.03 °C (F0), 0.08 °C (F1) and 0.04 °C (F2), respectively. The variability in CTmax between individuals in each treatment was maintained across generations, despite the high mortality of progeny. Further research is required to investigate the potential for transgenerational acclimation to provide an extra buffer for tropical marine species facing climate warming.  相似文献   

4.
Inbreeding is a major component of the mating system in populations of many plants and animals, particularly hermaphroditic species. In flowering plants, inbreeding can occur through self-pollination within flowers (autogamy), self-pollination between flowers on the same plant (geitonogamy), or cross-pollination between closely related individuals (biparental inbreeding). We performed a floral emasculation experiment in 10 populations of Aquilegia canadensis (Ranunculaceae) and used allozyme markers to estimate the relative contribution of each mode of inbreeding to the mating system. We also examined how these modes of inbreeding were influenced by aspects of population structure and floral morphology and display predicted to affect the mating system. All populations engaged in substantial inbreeding. On average, only 25% of seed was produced by outcrossing (range among populations = 9-37%), which correlated positively with both population size (r = +0.61) and density (r = +0.64). Inbreeding occurred through autogamy and biparental inbreeding, and the relative contribution of each was highly variable among populations. Estimates of geitonogamy were not significantly greater than zero in any population. We detected substantial biparental inbreeding (mean = 14% of seeds, range = 4-24%) by estimating apparent selfing in emasculated plants with no opportunity for true selfing. This mode of inbreeding correlated negatively with population size (r = -0.87) and positively with canopy cover (r = +0.90), suggesting that population characteristics that increase outcross pollen transfer reduce biparental inbreeding. Autogamy was the largest component of the mating system in all populations (mean = 58%, range = 37-84%) and, as expected, was lowest in populations with the most herkogamous flowers (r = -0.59). Although autogamy provides reproductive assurance in natural populations of A. canadensis, it discounts ovules from making superior outcrossed seed. Hence, high autogamy in these populations seems disadvantageous, and therefore it is difficult to explain the extensive variation in herkogamy observed both among and especially within populations.  相似文献   

5.
6.
Extensive mark-recapture data from banner-tailed kangaroo rats, Dipodomys spectabilis, have shown that both males and females are highly philopatric and suggest the possibility of close inbreeding. However, indirect analyses based on genetic structure appear to contradict direct observations, suggesting longer dispersal distances. Using microsatellite genotypes from most members of a banner-tailed kangaroo rat population during five successive breeding seasons, we ask how relatedness is influenced by dispersal and how it in turn influences mating patterns. The data confirm that, because of philopatry, neighbours are often close relatives. However, patterns of parentage also show that the average distance between mates is large relative to natal dispersal distances and larger than the average distance between nearest opposite-sexed neighbours. Females' mates were often not their nearest male neighbour and many were less related than the nearest male neighbour. We detected multiple paternity in some females' litters; both sexes produce offspring with multiple mates within and between breeding seasons. At the population level, heterozygosities were high and estimates of F were low, indicating that levels of inbreeding were low. Using individual inbreeding coefficients of all juveniles to estimate their parents' relatedness, we found that parental relatedness was significantly lower than relatedness between nearest opposite-sexed adult neighbours. Thus in philopatric populations, long breeding forays can cause genes to move further than individuals disperse, and polyandry may serve to reduce relatedness between mates.  相似文献   

7.
8.
9.
In Flanders (northern Belgium), the distylous self-incompatible perennial herb Primula veris is common, but mainly occurs in fragmented habitats. Distyly, which favours disassortative mating, is characterized in P. veris by two genetically determined floral morph types (pin or thrum). Using 18 polymorphic loci, we investigated fine-scale spatial genetic structure (SGS) and spatial distribution of the morphs within four populations from two regions that differ in degree of habitat fragmentation. We studied the contributions made by sexual reproduction and clonal propagation and compared the SGS patterns between pin and thrum morph types. Clonal growth was very restricted to a few individuals and to short distances. One population showed a non-random spatial distribution of the morphs. Pin and thrum individuals differed in SGS patterns at a small scale, suggesting intrapin biparental inbreeding, also related to high plant densities. This may be explained by partial self-compatibility of the pin morph combined with restricted seed dispersal and pollinator behaviour. There is an indication of more pronounced SGS when populations occur in highly fragmented habitats. From our findings, we may hypothesize disruption of the gene flow processes if these large populations evolve into patchworks of small remnants, but also a possible risk for long-term population survival if higher intrapin biparental inbreeding leads to inbreeding depression. Our study emphasizes the need for investigating the interactions between the heterostylous breeding system, population demographic and genetic structure for understanding population dynamics in fragmented habitats and for developing sustainable conservation strategies.  相似文献   

10.
Dispersal is of prime importance for many evolutionary processes and has been studied for decades. The reproductive consequences of dispersal have proven difficult to study, simply because it is difficult to keep track of dispersing individuals. In most previous studies evaluating the fitness effects of dispersal, immigrants at a study locality have been lumped into one category and compared to philopatric individuals. This is unfortunate, because there are reasons to believe that immigrants with long and short dispersal distances may differ substantially in reproductive success. In the present study, we used a combination of capture-recapturing and multilocus microsatellite genotyping to categorize great reed warblers at our Swedish study site as philopatric individuals or short- or long-distance dispersing immigrants. We then performed novel comparisons of lifetime reproductive success (LRS) and survival rates of these three dispersal categories. The birds belonged to cohorts 1987-1996, and data for their LRS were gathered between 1988 and 2003. The analyses showed that philopatric males attracted more females, produced more fledglings and recruits throughout their lives, and survived better than immigrants. Among the immigrant males, those categorized as long-distance dispersers had lowest LRS and survival probability. Models that included covariates of potential importance showed that the difference in LRS between dispersal categories was partly caused by corresponding variation in number of breeding years at our study site. These results indicate that short- and, in particular, long-distance dispersers were of poor phenotypic quality, but it may also be proposed that immigrants attracted few females because they were poorly adapted to the local social environment. In females, the number of local recruits corrected for the number of breeding years (as well as for number of fledglings) differed between dispersal categories in a pattern that suggests an intermediate optimal dispersal distance. Short-distance dispersers recruited more offspring per year (and per fledgling) than both philopatric individuals and long-distance dispersers. Data suggest that the low LRS of philopatric females was related to costs of inbreeding. The low LRS of long-distance dispersing females may have resulted from their offspring being especially prone to disperse outside the study area, but also other potential explanations exist, such as local maladaptation. Our study highlights the importance of separating immigrant birds on the basis of their genetic similarity to the local study population when analyzing variation in LRS and inferring realized gene flow.  相似文献   

11.
Six microsatellite loci were used to compare the mating system and gene flow in two consecutive years of a natural, unlogged population of Symphonia globulifera in a 500 ha experimental plot in the Brazilian Amazon (Flona Tapajós). The species had a low density of reproductive trees per hectare (   d = 0.46  trees/ha). We analyzed 205 trees and 261 and 487 open-pollinated seeds from 26 and 30 mother-trees in the years 2002 and 2003, respectively. A significant spatial genetic structure was detected for the adult trees for distances up to 100 m. We observed only small interannual differences in multilocus outcrossing rate (     ,     ), biparental inbreeding (     ,     ), and paternity correlation (     ,     ). The number of pollen donors contributing to mating of each tree in both years was estimated to be low (     ). Using TwoGener analysis to calculate the density of reproductive trees and the distance of pollen dispersal for normal and exponential models, the lowest error was detected for exponential model. For this model, the estimated density of reproductive trees was lower in 2002 (     trees/ha) than 2003 (     trees/ha), resulting in a higher distance of pollen dispersal in 2002 (     m) than 2003 (     m), although these changes did not affect the outcrossing and correlated mating rates.  相似文献   

12.
13.
    
Inbreeding is a potent evolutionary force shaping the distribution of genetic variation within and among populations of plants and animals. Yet, our understanding of the forces shaping the expression and evolution of nonrandom mating in general, and inbreeding in particular, remains remarkably incomplete. Most research on plant mating systems focuses on self-fertilization and its consequences for automatic selection, inbreeding depression, purging, and reproductive assurance, whereas studies of animal mating systems have often assumed that inbreeding is rare, and that natural selection favors traits that promote outbreeding. Given that many sessile and sedentary marine invertebrates and marine macroalgae share key life history features with seed plants (e.g., low mobility, modular construction, and the release of gametes into the environment), their mating systems may be similar. Here, we show that published estimates of inbreeding coefficients (FIS) for sessile and sedentary marine organisms are similar and at least as high as noted in terrestrial seed plants. We also found that variation in FIS within invertebrates is related to the potential to self-fertilize, disperse, and choose mates. The similarity of FIS for these organismal groups suggests that inbreeding could play a larger role in the evolution of sessile and sedentary marine organisms than is currently recognized. Specifically, associations between traits of marine invertebrates and FIS suggest that inbreeding could drive evolutionary transitions between hermaphroditism and separate sexes, direct development and multiphasic life cycles, and external and internal fertilization.  相似文献   

14.
Natal philopatry in passerine birds: genetic or ecological influences?   总被引:3,自引:1,他引:3  
The degree of natal philopatry (the likelihood that individualsbreed at or near their place of origin) can influence the extentof inbreeding in animal populations. Passerine birds have beencited as typically showing high natal philopatry, and natalphilopatry has been proposed as an adaptation to promote optimalinbreeding. A review of published and unpublished studies ofpasserines showed that natal philopatry was typically low, somaintaining a high level of inbreeding appears relatively unimportantfor such birds. Rather, natal philopatry appeared to be morestrongly influenced by ecological factors. Migratory passerineexhibited low natal philopatry compared to resident passerines,as predicted if dispersal costs for young birds are an importantdeterminant of natal philopatry. The erroneous view that natalphilopatry for passerines is generally high has resulted froma reporting bias toward resident species that have sufficientnatal philopatry to study. Natal philopatry was found to beevolutionarily labile; populations of the same species and pairsof closely related species that differed in their degree ofisolation differed considerably in their degree of philopatry.Future studies of natal philopatry should consider both theecological factors that could affect dispersal costs and thereporting biases that influence which data on philopatry tendto be reported.  相似文献   

15.
Although the dispersal of animals is influenced by a variety of factors, few studies have used a condition-dependent approach to assess it. The mechanisms underlying dispersal are thus poorly known in many species, especially in large mammals. We used 10 microsatellite loci to examine population density effects on sex-specific dispersal behavior in the American black bear, Ursus americanus. We tested whether dispersal increases with population density in both sexes. Fine-scale genetic structure was investigated in each of four sampling areas using Mantel tests and spatial autocorrelation analyses. Our results revealed male-biased dispersal pattern in low-density areas. As population density increased, females appeared to exhibit philopatry at smaller scales. Fine-scale genetic structure for males at higher densities may indicate reduced dispersal distances and delayed dispersal by subadults.  相似文献   

16.
We examined differences in pollen dispersal efficiency between 2 years in terms of both spatial dispersal range and genetic relatedness of pollen in a tropical emergent tree, Dipterocarpus tempehes. The species was pollinated by the giant honeybee (Apis dorsata) in a year of intensive community-level mass-flowering or general flowering (1996), but by several species of moths in a year of less-intensive general flowering (1998). We carried out paternity analysis based on six DNA microsatellite markers on a total of 277 mature trees forming four spatially distinct subpopulations in a 70 ha area, and 147 and 188 2-year-old seedlings originating from seeds produced in 1996 and 1998 (cohorts 96 and 98, respectively). Outcrossing rates (0.93 and 0.96 for cohorts 96 and 98, respectively) did not differ between years. Mean dispersal distances (222 and 192 m) were not significantly different between the 2 years but marginally more biased to long distance in 1996. The mean relatedness among cross-pollinated seedlings sharing the same mothers in cohort 96 was lower than that in cohort 98. This can be attributed to the two facts that the proportion of intersubpopulations pollen flow among cross-pollination events was marginally higher in cohort 96 (44%) than in cohort 98 (33%), and that mature trees within the same subpopulations are genetically more related to each other than those between different subpopulations. We conclude that D. tempehes maintained effective pollen dispersal in terms of outcrossing rate and pollen dispersal distance in spite of the large difference in foraging characteristics between two types of pollinators. In terms of pollen relatedness, however, a slight difference was suggested between years in the level of biparental inbreeding.  相似文献   

17.
Even though parasitic flatworms are one of the most species‐rich groups of hermaphroditic organisms, we know virtually nothing of their mating systems (selfing or kin‐mating rates) in nature. Hence, we lack an understanding of the role of inbreeding in parasite evolution. The natural mating systems of parasitic flatworms have remained elusive due to the inherent difficulty in generating progeny‐array data in many parasite systems. New developments in pedigree reconstruction allow direct inference of realized selfing rates in nature by simply using a sample of genotyped individuals. We built upon this advancement by utilizing the closed mating systems, that is, individual hosts, of endoparasites. In particular, we created a novel means to use pedigree reconstruction data to estimate potential kin‐mating rates. With data from natural populations of a tapeworm, we demonstrated how our newly developed methods can be used to test for cosibling transmission and inbreeding depression. We then showed how independent estimates of the two mating system components, selfing and kin‐mating rates, account for the observed levels of inbreeding in the populations. Thus, our results suggest that these natural parasite populations are in inbreeding equilibrium. Pedigree reconstruction analyses along with the new companion methods we developed will be broadly applicable across a myriad of parasite species. As such, we foresee that a new frontier will emerge wherein the diverse life histories of flatworm parasites could be utilized in comparative evolutionary studies to broadly address ecological factors or life history traits that drive mating systems and hence inbreeding in natural populations.  相似文献   

18.
19.
海洋沉积物中重金属对底栖无脊椎动物的生物有效性   总被引:1,自引:0,他引:1  
汪飞  黄小平 《生态学杂志》2012,31(1):207-214
海洋沉积物是重金属的重要贮库,而海洋底栖无脊椎动物主要从沉积物中摄取重金属,这些被摄取的重金属能够通过食物链进行传递,进而影响到人类健康。本文总结了近些年来在海洋沉积物中重金属对底栖无脊椎动物生物有效性方面的研究进展,包括海洋底栖无脊椎动物对重金属的吸收途径、沉积物地球化学性质和底栖无脊椎动物生理等生物因素对沉积物中重金属生物有效性的影响。在此基础上,展望了未来研究重点,主要包括近海富营养化对沉积物中重金属生物有效性的影响,海洋底栖无脊椎动物消化道中的物理消化过程对沉积物中重金属生物有效性的影响,海洋底栖无脊椎动物整个生活史过程中沉积物中重金属生物有效性的变化等。  相似文献   

20.
Crepidula convexa, a calyptreid gastropod with direct embryonic development, changes sex from male to female in the course of its lifetime (protandry). Under sex-allocation theory, male reproductive success should be independent from age and size (a proxy used for age). However, this may be counterbalanced by female cryptic choice or gregarious behaviour. Eleven polymorphic microsatellite loci were thus developed to examine paternity of embryos and larvae. This set of loci appears suitable to carry out paternity analyses due to the high exclusion probability of unrelated males given the maternal genotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号