首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholinergic signaling is crucial in cognitive processes, and degenerating cholinergic projections are a pathological hallmark in dementia. Use of cholinesterase inhibitors is currently the main treatment option to alleviate symptoms of Alzheimer's disease and has been postulated as a therapeutic strategy in acute brain damage (stroke and traumatic brain injury). However, the benefits of this treatment are still not clear. Importantly, cholinergic receptors are expressed both by neurons and by astrocytes and microglia, and binding of acetylcholine to the α7 nicotinic receptor in glial cells results in anti-inflammatory response. Similarly, the brain fine-tunes the peripheral immune response over the cholinergic anti-inflammatory axis. All of these processes are of importance for the outcome of acute and chronic neurological disease. Here, we summarize the main findings about the role of cholinergic signaling in brain disorders and provide insights into the complexity of molecular regulators of cholinergic responses, such as microRNAs and transfer RNA fragments, both of which may fine-tune the orchestra of cholinergic mRNAs. The available data suggest that these small noncoding RNA regulators may include promising biomarkers for predicting disease course and assessing treatment responses and might also serve as drug targets to attenuate signaling cascades during overwhelming inflammation and to ameliorate regenerative capacities of neuroinflammation.

  相似文献   

2.
The blood–brain barrier, formed by microvessel endothelial cells, is the restrictive barrier between the brain parenchyma and the circulating blood. Arachidonic acid (ARA; 5,8,11,14‐cis‐eicosatetraenoic acid) is a conditionally essential polyunsaturated fatty acid [20:4(n ? 6)] and is a major constituent of brain lipids. The current study examined the transport processes for ARA in confluent monolayers of human brain microvascular endothelial cells (HBMEC). Addition of radioactive ARA to the apical compartment of HBMEC cultured on Transwell® inserts resulted in rapid incorporation of radioactivity into the basolateral medium. Knock down of fatty acid transport proteins did not alter ARA passage into the basolateral medium as a result of the rapid generation of prostaglandin E2 (PGE2), an eicosanoid known to facilitate opening of the blood–brain barrier. Permeability following ARA or PGE2 exposure was confirmed by an increased movement of fluorescein‐labeled dextran from apical to basolateral medium. ARA‐mediated permeability was attenuated by specific cyclooxygenase‐2 inhibitors. EP3 and EP4 receptor antagonists attenuated the ARA‐mediated permeability of HBMEC. The results indicate that ARA increases permeability of HBMEC monolayers likely via increased production of PGE2 which acts upon EP3 and EP4 receptors to mediate permeability. These observations may explain the rapid influx of ARA into the brain previously observed upon plasma infusion with ARA.

  相似文献   


3.
Ethanol is a known neuromodulatory agent with reported actions at a range of neurotransmitter receptors. Here, we measured the effect of alcohol on metabolism of [3‐13C]pyruvate in the adult Guinea pig brain cortical tissue slice and compared the outcomes to those from a library of ligands active in the GABAergic system as well as studying the metabolic fate of [1,2‐13C]ethanol. Analyses of metabolic profile clusters suggest that the significant reductions in metabolism induced by ethanol (10, 30 and 60 mM) are via action at neurotransmitter receptors, particularly α4β3δ receptors, whereas very low concentrations of ethanol may produce metabolic responses owing to release of GABA via GABA transporter 1 (GAT1) and the subsequent interaction of this GABA with local α5‐ or α1‐containing GABA(A)R. There was no measureable metabolism of [1,2‐13C]ethanol with no significant incorporation of 13C from [1,2‐13C]ethanol into any measured metabolite above natural abundance, although there were measurable effects on total metabolite sizes similar to those seen with unlabelled ethanol.

  相似文献   


4.
Lower levels of the cognitively beneficial docosahexaenoic acid (DHA) are often observed in Alzheimer's disease (AD) brains. Brain DHA levels are regulated by the blood‐brain barrier (BBB) transport of plasma‐derived DHA, a process facilitated by fatty acid‐binding protein 5 (FABP5). This study reports a 42.1 ± 12.6% decrease in the BBB transport of 14C‐DHA in 8‐month‐old AD transgenic mice (APPswe,PSEN1?E9) relative to wild‐type mice, associated with a 34.5 ± 6.7% reduction in FABP5 expression in isolated brain capillaries of AD mice. Furthermore, short‐term spatial and recognition memory deficits were observed in AD mice on a 6‐month n‐3 fatty acid‐depleted diet, but not in AD mice on control diet. This intervention led to a dramatic reduction (41.5 ± 11.9%) of brain DHA levels in AD mice. This study demonstrates FABP5 deficiency and impaired DHA transport at the BBB are associated with increased vulnerability to cognitive deficits in mice fed an n‐3 fatty acid‐depleted diet, in line with our previous studies demonstrating a crucial role of FABP5 in BBB transport of DHA and cognitive function.

  相似文献   

5.
The mechanistic link of ketosis to neuroprotection under certain pathological conditions continues to be explored. We investigated whether chronic ketosis induced by ketogenic diet results in the partitioning of ketone bodies toward oxidative metabolism in brain. We hypothesized that diet‐induced ketosis results in increased shunting of ketone bodies toward citric acid cycle and amino acids with decreased carbon shunting from glucose. Rats were fed standard (STD) or ketogenic (KG) diets for 3.5 weeks and then infused with [U‐13C]glucose or [U‐13C]acetoacetate tracers. Concentrations and 13C‐labeling pattern of citric acid cycle intermediates and amino acids were analyzed from brain homogenates using stable isotopomer mass spectrometry analysis. The contribution of [U‐13C]glucose to acetyl‐CoA and amino acids decreased by ~ 30% in the KG group versus STD, whereas [U‐13C]acetoacetate contributions were more than two‐fold higher. The concentration of GABA remained constant across groups; however, the 13C labeling of GABA was markedly increased in the KG group infused with [U‐13C]acetoacetate compared to STD. This study reveals that there is a significant contribution of ketone bodies to oxidative metabolism and GABA in diet‐induced ketosis. We propose that this represents a fundamental mechanism of neuroprotection under pathological conditions.

  相似文献   


6.
Gaucher disease (GD), the most common lysosomal storage disorders, is caused by GBA gene mutations resulting in glycosphingolipids accumulations in various tissues, such as the brain. While suppressing glycosphingolipid accumulation is the central strategy for treating peripheral symptoms of GD, there is no effective treatment for the central nervous system symptoms. As glycosphingolipid biosynthesis starts from ceramide glycosylation by glucosylceramide synthase (GCS), inhibiting GCS in the brain is a promising strategy for neurological GD. Herein, we discovered T-036, a potent and brain-penetrant GCS inhibitor with a unique chemical structure and binding property. T-036 does not harbor an aliphatic amine moiety and has a noncompetitive inhibition mode to the substrates, unlike other known inhibitors. T-036 exhibited sufficient exposure and a significant reduction of glucosylsphingolipids in the plasma and brain of the GD mouse model. Therefore, T-036 could be a promising lead molecule for treating central nervous system symptoms of GD.

  相似文献   

7.
Learning is an essential biological process for survival since it facilitates behavioural plasticity in response to environmental changes. This process is mediated by a wide variety of genes, mostly expressed in the nervous system. Many studies have extensively explored the molecular and cellular mechanisms underlying learning and memory. This review will focus on the advances gained through the study of the nematode Caenorhabditis elegans. C. elegans provides an excellent system to study learning because of its genetic tractability, in addition to its invariant, compact nervous system (~300 neurons) that is well-characterised at the structural level. Importantly, despite its compact nature, the nematode nervous system possesses a high level of conservation with mammalian systems. These features allow the study of genes within specific sensory-, inter- and motor neurons, facilitating the interrogation of signalling pathways that mediate learning via defined neural circuits. This review will detail how learning and memory can be studied in C. elegans through behavioural paradigms that target distinct sensory modalities. We will also summarise recent studies describing mechanisms through which key molecular and cellular pathways are proposed to affect associative and non-associative forms of learning.

  相似文献   

8.
The cytoplasmic trafficking of docosahexaenoic acid (DHA ), a cognitively beneficial fatty acid, across the blood–brain barrier (BBB ) is governed by fatty acid‐binding protein 5 (FABP 5). Lower levels of brain DHA have been observed in Alzheimer's disease (AD ), which is associated with diminished BBB expression of FABP 5. Therefore, up‐regulating FABP 5 expression at the BBB may be a novel approach for enhancing BBB transport of DHA in AD . DHA supplementation has been shown to be beneficial in various mouse models of AD , and therefore, the aim of this study was to determine whether DHA has the potential to up‐regulate the BBB expression of FABP 5, thereby enhancing its own uptake into the brain. Treating human brain microvascular brain endothelial (hCMEC /D3) cells with the maximum tolerable concentration of DHA (12.5 μM) for 72 h resulted in a 1.4‐fold increase in FABP 5 protein expression. Associated with this was increased expression of fatty acid transport proteins 1 and 4. To study the impact of dietary DHA supplementation, 6‐ to 8‐week‐old C57BL /6 mice were fed with a control diet or a DHA ‐enriched diet for 21 days. Brain microvascular FABP 5 protein expression was up‐regulated 1.7‐fold in mice fed the DHA ‐enriched diet, and this was associated with increased brain DHA levels (1.3‐fold). Despite an increase in brain DHA levels, reduced BBB transport of 14C‐DHA was observed over a 1 min perfusion, possibly as a result of competitive binding to FABP 5 between dietary DHA and 14C‐DHA . This study has demonstrated that DHA can increase BBB expression of FABP 5, as well as fatty acid transporters, overall increasing brain DHA levels.

  相似文献   

9.
Treating central nervous system (CNS) diseases is complicated by the incapability of numerous therapeutics to cross the blood–brain barrier (BBB), mainly composed of brain endothelial cells (BECs). Genetically modifying BECs into protein factories that supply the CNS with recombinant proteins is a promising approach to overcome this hindrance, especially in genetic diseases, like Niemann Pick disease type C2 (NPC2), where both CNS and peripheral cells are affected. Here, we investigated the potential of the BEC-specific adeno-associated viral vector (AAV-BR1) encoding NPC2 for expression and secretion from primary BECs cultured in an in vitro BBB model with mixed glial cells, and in healthy BALB/c mice. Transduced primary BECs had significantly increased NPC2 gene expression and secreted NPC2 after viral transduction, which significantly reversed cholesterol deposition in NPC2 deficient fibroblasts. Mice receiving an intravenous injection with AAV-BR1-NCP2-eGFP were sacrificed 8 weeks later and examined for its biodistribution and transgene expression of eGFP and NPC2. AAV-BR1-NPC2-eGFP was distributed mainly to the brain and lightly to the heart and lung, but did not label other organs including the liver. eGFP expression was primarily found in BECs throughout the brain but occasionally also in neurons suggesting transport of the vector across the BBB, a phenomenon also confirmed in vitro. NPC2 gene expression was up-regulated in the brain, and recombinant NPC2 protein expression was observed in both transduced brain capillaries and neurons. Our findings show that AAV-BR1 transduction of BECs is possible and that it may denote a promising strategy for future treatment of NPC2.

  相似文献   


10.
Studies have verified that Fragile X mental retardation protein (FMRP), an RNA-binding protein, plays a potential role in the pathogenesis of formalin- and (RS)-3,5-dihydroxyphenylglycine-induced abnormal pain sensations. However, the role of FMRP in inflammatory pain has not been reported. Here, we showed an increase in FMRP expression in the spinal dorsal horn (SDH) in a rat model of inflammatory pain induced by complete Freund's adjuvant (CFA). Double immunofluorescence staining revealed that FMRP was mainly expressed in spinal neurons and colocalized with proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)]. After consecutive intrathecal injection of fragile X mental retardation 1 small interfering RNA for 3 days post-CFA injection, FMRP expression in the SDH was reduced, and CFA-induced hyperalgesia was decreased. In addition, the CFA-induced increase in spinal TNF-α and IL-6 production was significantly suppressed by intrathecal administration of fragile X mental retardation 1 small interfering RNA. Together, these results suggest that FMRP regulates TNF-α and IL-6 levels in the SDH and plays an important role in inflammatory pain.

  相似文献   

11.
12.
The basal forebrain cholinergic neurons (BFCN) provide the primary source of cholinergic innervation of the human cerebral cortex. They are involved in the cognitive processes of learning, memory, and attention. These neurons are differentially vulnerable in various neuropathologic entities that cause dementia. This review summarizes the relevance to BFCN of neuropathologic markers associated with dementias, including the plaques and tangles of Alzheimer's disease (AD), the Lewy bodies of diffuse Lewy body disease, the tauopathy of frontotemporal lobar degeneration (FTLD-TAU) and the TDP-43 proteinopathy of FTLD-TDP. Each of these proteinopathies has a different relationship to BFCN and their corticofugal axons. Available evidence points to early and substantial degeneration of the BFCN in AD and diffuse Lewy body disease. In AD, the major neurodegenerative correlate is accumulation of phosphotau in neurofibrillary tangles. However, these neurons are less vulnerable to the tauopathy of FTLD. An intriguing finding is that the intracellular tau of AD causes destruction of the BFCN, whereas that of FTLD does not. This observation has profound implications for exploring the impact of different species of tauopathy on neuronal survival. The proteinopathy of FTLD-TDP shows virtually no abnormal inclusions within the BFCN. Thus, the BFCN are highly vulnerable to the neurodegenerative effects of tauopathy in AD, resilient to the neurodegenerative effect of tauopathy in FTLD and apparently resistant to the emergence of proteinopathy in FTLD-TDP and perhaps also in Pick's disease. Investigations are beginning to shed light on the potential mechanisms of this differential vulnerability and their implications for therapeutic intervention.

  相似文献   

13.
Necroptosis-mediated cell death is an important mechanism in intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI). Our previous study has demonstrated that receptor-interacting protein 1 (RIP1) mediated necroptosis in SBI after ICH. However, further mechanisms, such as the roles of receptor-interacting protein 3 (RIP3), mixed lineage kinase domain-like protein (MLKL), and Ca2+/calmodulin-dependent protein kinase II (CaMK II), remain unclear. We hypothesized that RIP3, MLKL, and CaMK II might participate in necroptosis after ICH, including their phosphorylation. The ICH model was induced by autologous blood injection. First, we found the activation of necroptosis after ICH in brain tissues surrounding the hematoma (propidium iodide staining). Meanwhile, the phosphorylation and expression of RIP3, MLKL, and CaMK II were differently up-regulated (western blotting and immunofluorescent staining). The specific inhibitors could suppress RIP3, MLKL, and CaMK II (GSK'872 for RIP3, necrosulfonamide for MLKL, and KN-93 for CaMK II). We found the necroptosis surrounding the hematoma and the concrete interactions in RIP3-MLKL/RIP3-CaMK II also both decreased after the specific intervention (co-immunoprecipitation). Then we conducted the short-/long-term neurobehavioral tests, and the rats with specific inhibition mostly had better performance. We also found less blood–brain barrier (BBB) injury, and less neuron loss (Nissl staining) in intervention groups, which supported the neurobehavioral tests. Besides, oxidative stress and inflammation were also alleviated with intervention, which had significant less reactive oxygen species (ROS), tumor necrosis factor (TNF)-α, lactate dehydrogenase (LDH), Iba1, and GFAP surrounding the hematoma. These results confirmed that RIP3-phosphorylated MLKL and CaMK II participate in ICH-induced necroptosis and could provide potential targets for the treatment of ICH patients.

  相似文献   


14.
We characterized the ionic currents underlying the cellular excitability and the Ca2+‐channel subtypes involved in action potential (AP) firing of rat adrenal chromaffin cells (RCCs) preserved in their natural environment, the adrenal gland slices, through the perforated patch‐clamp recording technique. RCCs prepared from adrenal slices exhibit a resting potential of ?54 mV, firing spontaneous APs (2–3 spikes/s) generated by the opening of Na+ and Ca2+‐channels, and terminated by the activation of voltage and Ca2+‐activated K+‐channels (BK). Ca2+ influx via L‐type Ca2+‐channels is involved in reaching threshold potential for AP firing, and is responsible for activation of BK‐channels contributing to AP‐repolarization and afterhyperpolarization, whereas P/Q‐type Ca2+‐channels are involved only in the repolarization phase. BK‐channels carry total outward current during AP‐repolarization. Blockade of L‐type Ca2+‐channels reduces BK‐current ~60%, whereas blockade of N‐ or P/Q‐type produces little effect. This study demonstrates that Ca2+ influx through L‐type Ca2+‐channels plays a key role in modulating the threshold potential from RCCs in situ.

  相似文献   


15.
This editorial highlights a study by Rodriguez, Sanchez‐Moran et al. (2019) in the current issue of the Journal of Neurochemistry, in which the authors describe a microcephalic boy carrying the novel heterozygous de novo missense mutation c.560A> G; p.Asp187Gly in Cdh1/Fzr1 encoding the APC/C E3‐ubiquitin ligase cofactor CDH1. A functional characterization of mutant APC/CCDH1 confirms an aberrant division of neural progenitor cells, a condition known to determine the mouse brain cortex size. These data suggest that APC/CCDH1 may contribute to the regulation of the human brain size.

  相似文献   


16.
The anterior piriform cortex (APC) is activated by, and is the brain area most sensitive to, essential (indispensable) amino acid (IAA) deficiency. The APC is required for the rapid (20 min) behavioral rejection of IAA deficient diets and increased foraging, both crucial adaptive functions supporting IAA homeostasis in omnivores. The biochemical mechanisms signaling IAA deficiency in the APC block initiation of translation in protein synthesis via uncharged tRNA and the general amino acid control kinase, general control nonderepressing kinase 2. Yet, how inhibition of protein synthesis activates the APC is unknown. The neuronal K+Cl? cotransporter, neural potassium chloride co‐transporter (KCC2), and GABAA receptors are essential inhibitory elements in the APC with short plasmalemmal half‐lives that maintain control in this highly excitable circuitry. After a single IAA deficient meal both proteins were reduced (vs. basal diet controls) in western blots of APC (but not neocortex or cerebellum) and in immunohistochemistry of APC. Furthermore, electrophysiological analyses support loss of inhibitory elements such as the GABAA receptor in this model. As the crucial inhibitory function of the GABAA receptor depends on KCC2 and the Cl? transmembrane gradient it establishes, these results suggest that loss of such inhibitory elements contributes to disinhibition of the APC in IAA deficiency.

  相似文献   


17.
Fructose reacts spontaneously with proteins in the brain to form advanced glycation end products (AGE) that may elicit neuroinflammation and cause brain pathology, including Alzheimer's disease. We investigated whether fructose is eliminated by oxidative metabolism in neocortex. Injection of [14C]fructose or its AGE‐prone metabolite [14C]glyceraldehyde into rat neocortex in vivo led to formation of 14C‐labeled alanine, glutamate, aspartate, GABA, and glutamine. In isolated neocortical nerve terminals, [14C]fructose‐labeled glutamate, GABA, and aspartate, indicating uptake of fructose into nerve terminals and oxidative fructose metabolism in these structures. This was supported by high expression of hexokinase 1, which channels fructose into glycolysis, and whose activity was similar with fructose or glucose as substrates. By contrast, the fructose‐specific ketohexokinase was weakly expressed. The fructose transporter Glut5 was expressed at only 4% of the level of neuronal glucose transporter Glut3, suggesting transport across plasma membranes of brain cells as the limiting factor in removal of extracellular fructose. The genes encoding aldose reductase and sorbitol dehydrogenase, enzymes of the polyol pathway that forms glucose from fructose, were expressed in rat neocortex. These results point to fructose being transported into neocortical cells, including nerve terminals, and that it is metabolized and thereby detoxified primarily through hexokinase activity.

  相似文献   


18.
Depression is one of the most debilitating neuropsychiatric disorders. Most of the current antidepressants have long remission time and low recovery rate. This study explores the impact of ketamine on neuronal and astroglial metabolic activity in prefrontal cortex in a social defeat (SD) model of depression. C57BL/6 mice were subjected to a social defeat paradigm for 5 min a day for 10 consecutive days. Ketamine (10 mg/kg, intraperitoneal) was administered to mice for two consecutive days following the last defeat stress. Mice were infused with [1,6‐13C2]glucose or [2‐13C]acetate to assess neuronal and astroglial metabolic activity, respectively, together with proton‐observed carbon‐edited nuclear magnetic resonance spectroscopy in prefrontal cortex tissue extract. The 13C labeling of amino acids from glucose and acetate was decreased in SD mice. Ketamine treatment in SD mice restored sucrose preference, social interaction and immobility time to control values. Acute subanesthetic ketamine restored the 13C labeling of brain amino acids from glucose as well as acetate in SD mice to the respective control values, suggesting that rates of neuronal and astroglial tricarboxylic acid (TCA) cycle and neurotransmitter cycling were re‐established to normal levels. The finding of improved energy metabolism in SD mice suggests that fast anti‐depressant action of ketamine is linked with improved neurotransmitter cycling.

  相似文献   

19.
A false‐colored and merged image of fresh, ex vivo rat kidney acquired using an excitation‐scanning hyperspectral imaging system. The spectral image was acquired using excitation wavelengths from 360 to 550 nm. Colors represent principal components extracted from a spectral image cube featuring no added labels or markers. Further details can be found in the article by Peter F. Favreau, Joshua A. Deal, Bradley Harris, et al. ( e201900183 ).

  相似文献   


20.
The aim of the present report was to analyze the involvement of glutamate neurotoxicity in retinal ganglion cell loss and optic nerve damage induced by experimental optic neuritis. For this purpose, the authors used an optic neuritis model induced by immunisation with myelin oligodendrocyte glycoprotein (AON). The authors describe a correlation in the timing of retinal ganglion cell (RGC) loss with alterations in the optic nerve actin cytoskeleton dynamic, and visual dysfunction. In addition, they show that an intravitreal injection of glutamate mimics, and an NMDA receptor antagonist avoids the effect of pre-clinical AON on visual functions and RGC number, as well as on optic nerve actin cytoskeleton. Taken together, their results support that avoiding glutamate neurotoxicity could become a new therapeutic approach for optic neuritis treatment.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号