首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurons in the central nervous system (CNS) have limited capacity for axonal regeneration after trauma and neurological disorders due to an endogenous nonpermissive environment for axon regrowth in the CNS. Lateral olfactory tract usher substance (LOTUS) contributes to axonal tract formation in the developing brain and axonal regeneration in the adult brain as an endogenous Nogo receptor-1 (NgR1) antagonist. However, how LOTUS expression is regulated remains unclarified. This study examined molecular mechanism of regulation in LOTUS expression and found that brain-derived neurotrophic factor (BDNF) increased LOTUS expression in cultured hippocampal neurons. Exogenous application of BDNF increased LOTUS expression at both mRNA and protein levels in a dose-dependent manner. We also found that pharmacological inhibition with K252a and gene knockdown by siRNA of tropomyosin-related kinase B (TrkB), BDNF receptor suppressed BDNF-induced increase in LOTUS expression. Further pharmacological analysis of the TrkB signaling pathway revealed that BDNF increased LOTUS expression through mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) cascades, but not phospholipase C-γ (PLCγ) cascade. Additionally, treatment with c-AMP response element binding protein (CREB) inhibitor partially suppressed BDNF-induced LOTUS expression. Finally, neurite outgrowth assay in cultured hippocampal neurons revealed that BDNF treatment-induced antagonism for NgR1 by up-regulating LOTUS expression. These findings suggest that BDNF may acts as a positive regulator of LOTUS expression through the TrkB signaling, thereby inducing an antagonistic action for NgR1 function by up-regulating LOTUS expression. Also, BDNF may synergistically affect axon regrowth through the upregulation of LOTUS expression.

  相似文献   


2.
Studies have verified that Fragile X mental retardation protein (FMRP), an RNA-binding protein, plays a potential role in the pathogenesis of formalin- and (RS)-3,5-dihydroxyphenylglycine-induced abnormal pain sensations. However, the role of FMRP in inflammatory pain has not been reported. Here, we showed an increase in FMRP expression in the spinal dorsal horn (SDH) in a rat model of inflammatory pain induced by complete Freund's adjuvant (CFA). Double immunofluorescence staining revealed that FMRP was mainly expressed in spinal neurons and colocalized with proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)]. After consecutive intrathecal injection of fragile X mental retardation 1 small interfering RNA for 3 days post-CFA injection, FMRP expression in the SDH was reduced, and CFA-induced hyperalgesia was decreased. In addition, the CFA-induced increase in spinal TNF-α and IL-6 production was significantly suppressed by intrathecal administration of fragile X mental retardation 1 small interfering RNA. Together, these results suggest that FMRP regulates TNF-α and IL-6 levels in the SDH and plays an important role in inflammatory pain.

  相似文献   

3.
Gaucher disease (GD), the most common lysosomal storage disorders, is caused by GBA gene mutations resulting in glycosphingolipids accumulations in various tissues, such as the brain. While suppressing glycosphingolipid accumulation is the central strategy for treating peripheral symptoms of GD, there is no effective treatment for the central nervous system symptoms. As glycosphingolipid biosynthesis starts from ceramide glycosylation by glucosylceramide synthase (GCS), inhibiting GCS in the brain is a promising strategy for neurological GD. Herein, we discovered T-036, a potent and brain-penetrant GCS inhibitor with a unique chemical structure and binding property. T-036 does not harbor an aliphatic amine moiety and has a noncompetitive inhibition mode to the substrates, unlike other known inhibitors. T-036 exhibited sufficient exposure and a significant reduction of glucosylsphingolipids in the plasma and brain of the GD mouse model. Therefore, T-036 could be a promising lead molecule for treating central nervous system symptoms of GD.

  相似文献   

4.
The aim of the present report was to analyze the involvement of glutamate neurotoxicity in retinal ganglion cell loss and optic nerve damage induced by experimental optic neuritis. For this purpose, the authors used an optic neuritis model induced by immunisation with myelin oligodendrocyte glycoprotein (AON). The authors describe a correlation in the timing of retinal ganglion cell (RGC) loss with alterations in the optic nerve actin cytoskeleton dynamic, and visual dysfunction. In addition, they show that an intravitreal injection of glutamate mimics, and an NMDA receptor antagonist avoids the effect of pre-clinical AON on visual functions and RGC number, as well as on optic nerve actin cytoskeleton. Taken together, their results support that avoiding glutamate neurotoxicity could become a new therapeutic approach for optic neuritis treatment.

  相似文献   


5.
Secondary neuronal death is a serious stroke complication. This process is facilitated by the conversion of glial cells to the reactive pro‐inflammatory phenotype that induces neurodegeneration. Therefore, regulation of glial activation is a compelling strategy to reduce brain damage after stroke. However, drugs have difficulties to access the CNS , and to specifically target glial cells. In the present work, we explored the use core‐shell polyamidoamine tecto‐dendrimer (G5G2.5 PAMAM ) and studied its ability to target distinct populations of stroke‐activated glial cells. We found that G5G2.5 tecto‐dendrimer is actively engulfed by primary glial cells in a time‐ and dose‐dependent manner showing high cellular selectivity and lysosomal localization. In addition, oxygen‐glucose deprivation or lipopolysaccharides exposure in vitro and brain ischemia in vivo increase glial G5G2.5 uptake; not being incorporated by neurons or other cell types. We conclude that G5G2.5 tecto‐dendrimer is a highly suitable carrier for targeted drug delivery to reactive glial cells in vitro and in vivo after brain ischemia.

  相似文献   

6.
The formation of neurotoxic prion protein (PrP) oligomers is thought to be a key step in the development of prion diseases. Recently, it was determined that the sonication and shaking of recombinant PrP can convert PrP monomers into β‐state oligomers. Herein, we demonstrate that β‐state oligomeric PrP can be generated through protein misfolding cyclic amplification from recombinant full‐length hamster, human, rabbit, and mutated rabbit PrP, and that these oligomers can be used for subsequent research into the mechanisms of PrP‐induced neurotoxicity. We have characterized protein misfolding cyclic amplification‐induced monomer‐to‐oligomer conversion of PrP from three species using western blotting, circular dichroism, size‐exclusion chromatography, and resistance to proteinase K (PK) digestion. We have further shown that all of the resulting β‐oligomers are toxic to primary mouse cortical neurons independent of the presence of PrPC in the neurons, whereas the corresponding monomeric PrP were not toxic. In addition, we found that this toxicity is the result of oligomer‐induced apoptosis via regulation of Bcl‐2, Bax, and caspase‐3 in both wild‐type and PrP?/? cortical neurons. It is our hope that these results may contribute to our understanding of prion transformation within the brain.

  相似文献   


7.
This review explores the evolving landscape of G-protein-coupled receptor (GPCR)-based genetically encoded fluorescent indicators (GEFIs), with a focus on their development, structural components, engineering strategies, and applications. We highlight the unique features of this indicator class, emphasizing the importance of both the sensing domain (GPCR structure and activation mechanism) and the reporting domain (circularly permuted fluorescent protein (cpFP) structure and fluorescence modulation). Further, we discuss indicator engineering approaches, including the selection of suitable cpFPs and expression systems. Additionally, we showcase the diversity and flexibility of their application by presenting a summary of studies where such indicators were used. Along with all the advantages, we also focus on the current limitations as well as common misconceptions that arise when using these indicators. Finally, we discuss future directions in indicator engineering, including strategies for screening with increased throughput, optimization of the ligand-binding properties, structural insights, and spectral diversity.

  相似文献   


8.
Treating central nervous system (CNS) diseases is complicated by the incapability of numerous therapeutics to cross the blood–brain barrier (BBB), mainly composed of brain endothelial cells (BECs). Genetically modifying BECs into protein factories that supply the CNS with recombinant proteins is a promising approach to overcome this hindrance, especially in genetic diseases, like Niemann Pick disease type C2 (NPC2), where both CNS and peripheral cells are affected. Here, we investigated the potential of the BEC-specific adeno-associated viral vector (AAV-BR1) encoding NPC2 for expression and secretion from primary BECs cultured in an in vitro BBB model with mixed glial cells, and in healthy BALB/c mice. Transduced primary BECs had significantly increased NPC2 gene expression and secreted NPC2 after viral transduction, which significantly reversed cholesterol deposition in NPC2 deficient fibroblasts. Mice receiving an intravenous injection with AAV-BR1-NCP2-eGFP were sacrificed 8 weeks later and examined for its biodistribution and transgene expression of eGFP and NPC2. AAV-BR1-NPC2-eGFP was distributed mainly to the brain and lightly to the heart and lung, but did not label other organs including the liver. eGFP expression was primarily found in BECs throughout the brain but occasionally also in neurons suggesting transport of the vector across the BBB, a phenomenon also confirmed in vitro. NPC2 gene expression was up-regulated in the brain, and recombinant NPC2 protein expression was observed in both transduced brain capillaries and neurons. Our findings show that AAV-BR1 transduction of BECs is possible and that it may denote a promising strategy for future treatment of NPC2.

  相似文献   


9.
Peripherin is a type III intermediate filament protein, the expression of which is associated with the acquisition and maintenance of a terminally differentiated neuronal phenotype. Peripherin up‐regulation occurs during acute neuronal injury and in degenerating motor neurons of amyotrophic lateral sclerosis. The functional role(s) of peripherin during normal, injurious, and disease conditions remains unknown, but may be related to differential expression of spliced isoforms. To better understand peripherin function, we performed a yeast two‐hybrid screen on a mouse brain cDNA library using an assembly incompetent peripherin isoform, Per‐61, as bait. We identified new peripherin interactors with roles in vesicular trafficking, signal transduction, DNA/RNA processing, protein folding, and mitochondrial metabolism. We focused on the interaction of Per‐61 and the constitutive isoform, Per‐58, with SNAP25 interacting protein 30 (SIP30), a neuronal protein involved in SNAP receptor‐dependent exocytosis. We found that peripherin and SIP30 interacted through coiled‐coil domains and colocalized in cytoplasmic aggregates in SW13vim(?) cells. Interestingly, Per‐61 and Per‐58 differentially altered the subcellular distribution of SIP30 and SNAP25 in primary motor neurons. Our findings suggest a novel role of peripherin in vesicle trafficking.

  相似文献   


10.
Metabotropic glutamate receptor 5 (mGluR5) regulates excitatory post‐synaptic signaling in the central nervous system (CNS) and is implicated in various CNS disorders. Protein kinase A (PKA) signaling is known to play a critical role in neuropsychiatric disorders such as Parkinson's disease, schizophrenia, and addiction. Dopamine signaling is known to modulate the properties of mGluR5 in a cAMP‐ and PKA‐dependent manner, suggesting that mGluR5 may be a direct target for PKA. Our study identifies mGluR5 at Ser870 as a direct substrate for PKA phosphorylation and demonstrates that this phosphorylation plays a critical role in the PKA‐mediated modulation of mGluR5 functions such as extracellular signal‐regulated kinase phosphorylation and intracellular Ca2+ oscillations. The identification of the molecular mechanism by which PKA signaling modulates mGluR5‐mediated cellular responses contributes to the understanding of the interaction between dopaminergic and glutamatergic neuronal signaling.

  相似文献   


11.
Chronically activated microglia contribute to the development of neurodegenerative diseases such as Alzheimer's disease (AD ) by the release of pro‐inflammatory mediators that compromise neuronal function and structure. Modulating microglia functions could be instrumental to interfere with disease pathogenesis. Previous studies have shown anti‐inflammatory effects of acetylcholine (AC h) or norepinephrine (NE ), which mainly activates the β‐receptors on microglial cells. Non‐invasive vagus nerve stimulation (nVNS ) is used in treatment of drug‐resistant depression, which is a risk factor for developing AD . The vagus nerve projects to the brainstem's locus coeruleus from which noradrenergic fibers reach to the Nucleus Basalis of Meynert (NBM ) and widely throughout the brain. Pilot studies showed first signs of cognitive‐enhancing effects of nVNS in AD patients. In this study, the effects of nVNS on mouse microglia cell morphology were analyzed over a period of 280 min by 2‐photon laser scanning in vivo microscopy. Total branch length, average branch order and number of branches, which are commonly used indicators for the microglial activation state were determined and compared between young and old wild‐type and amyloid precursor protein/presenilin‐1 (APP/PS1) transgenic mice. Overall, these experiments show strong morphological changes in microglia, from a neurodestructive to a neuroprotective phenotype, following a brief nVNS in aged animals, especially in APP/PS 1 animals, whereas microglia from young animals were morphologically unaffected.

  相似文献   

12.
Proper neuronal function requires essential biological cargoes to be packaged within membranous vesicles and transported, intracellularly, through the extensive outgrowth of axonal and dendritic fibers. The precise spatiotemporal movement of these cargoes is vital for neuronal survival and, thus, is highly regulated. In this study we test how the axonal movement of a neuropeptide‐containing dense‐core vesicle (DCV ) responds to alcohol stressors. We found that ethanol induces a strong anterograde bias in vesicle movement. Low doses of ethanol stimulate the anterograde movement of neuropeptide‐DCV while high doses inhibit bi‐directional movement. This process required the presence of functional kinesin‐1 motors as reduction in kinesin prevented the ethanol‐induced stimulation of the anterograde movement of neuropeptide‐DCV . Furthermore, expression of inactive glycogen synthase kinase 3 (GSK ‐3β) also prevented ethanol‐induced stimulation of neuropeptide‐DCV movement, similar to pharmacological inhibition of GSK ‐3β with lithium. Conversely, inhibition of PI 3K/AKT signaling with wortmannin led to a partial prevention of ethanol‐stimulated transport of neuropeptide‐DCV . Taken together, we conclude that GSK ‐3β signaling mediates the stimulatory effects of ethanol. Therefore, our study provides new insight into the physiological response of the axonal movement of neuropeptide‐DCV to exogenous stressors.

Cover Image for this Issue: doi: 10.1111/jnc.14165 .
  相似文献   

13.
Mature brain‐derived neurotrophic factor (mBDNF) plays a vital role in the nervous system, whereas proBDNF elicits neurodegeneration and neuronal apoptosis. Although current enzyme‐linked immunosorbent assay (ELISA) has been widely used to measure BDNF levels, it cannot differentiate mBDNF from proBDNF. As the function of proBDNF differs from mBDNF, it is necessary to establish an ELISA assay specific for the detection of mBDNF. Therefore, we aimed to establish a new mBDNF‐specific sandwich ELISA. In this study, we have screened and found a combination of antibodies for a sandwich ELISA. A monoclonal antibody and sheep anti‐BDNF were chosen as capture and detection antibody for sandwich ELISA respectively. The new ELISA showed no cross‐reactivity to human recombinant NT‐3, NT‐4, nerve growth factor and negligible cross‐reactivity (0.99–4.99%) for proBDNF compared to commercial ELISA kits (33.18–91.09%). The application of the new mBDNF ELISA was shown through the measurement of mBDNF levels in different brain regions of rats and in the brain of β‐site amyloid precursor protein cleaving enzyme 1 (BACE1)?/? and WT mice and compared to western blot. Overall, this new ELISA will be useful for the measurement of mBDNF levels with high specificity.

  相似文献   


14.
Protein aggregation is a common feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. How protein aggregates are formed and contribute to neurodegeneration, however, is not clear. Mutation of Ubiquilin 2 (UBQLN2) has recently been linked to ALS and frontotemporal lobar degeneration. Therefore, we examined the effect of ALS‐linked UBQLN2 mutation on endoplasmic reticulum‐associated protein degradation (ERAD). Compared to its wild‐type counterpart, mutated UBQLN2 caused greater accumulation of the ERAD substrate Hong Kong variant of α‐1‐antitrypsin, although ERAD was disturbed by both UBQLN2 over‐expression and knockdown. Also, UBQLN2 interacted with ubiquitin regulatory X domain‐containing protein 8 (UBXD8) in vitro and in vivo, and this interaction was impaired by pathogenic mutation of UBQLN2. As UBXD8 is an endoplasmic membrane protein involved in the translocation of ubiquitinated ERAD substrates, UBQLN2 likely cooperates with UBXD8 to transport defective proteins from the endoplasmic reticulum to the cytosol for degradation, and this cell‐protective function is disturbed by pathogenic mutation of UBQLN2.

  相似文献   


15.
16.
17.
Changes in the homeostasis of tumor necrosis factor α (TNFα) have been demonstrated in patients and experimental models of amyotrophic lateral sclerosis (ALS). However, the contribution of TNFα to the development of ALS is still debated. TNFα is expressed by glia and neurons and acts through the membrane receptors TNFR1 and TNFR2, which may have opposite effects in neurodegeneration. We investigated the role of TNFα and its receptors in the selective motor neuron death in ALS in vitro and in vivo. TNFR2 expressed by astrocytes and neurons, but not TNFR1, was implicated in motor neuron loss in primary SOD1‐G93A co‐cultures. Deleting TNFR2 from SOD1‐G93A mice, there was partial but significant protection of spinal motor neurons, sciatic nerves, and tibialis muscles. However, no improvement of motor impairment or survival was observed. Since the sciatic nerves of SOD1‐G93A/TNFR2?/? mice showed high phospho‐TAR DNA‐binding protein 43 (TDP‐43) accumulation and low levels of acetyl‐tubulin, two indices of axonal dysfunction, the lack of symptom improvement in these mice might be due to impaired function of rescued motor neurons. These results indicate the interaction between TNFR2 and membrane‐bound TNFα as an innovative pathway involved in motor neuron death. Nevertheless, its inhibition is not sufficient to stop disease progression in ALS mice, underlining the complexity of this pathology.

  相似文献   


18.
HIV entry into the CNS is an early event after peripheral infection, resulting in neurologic dysfunction in a significant number of individuals despite successful anti‐retroviral therapy. The mechanisms by which HIV mediates CNS dysfunction are not well understood. Our group recently demonstrated that HIV infection of astrocytes results in survival of HIV infected cells and apoptosis of surrounding uninfected astrocytes by the transmission of toxic intracellular signals through gap junctions. In the current report, we characterize the intracellular signaling responsible for this bystander apoptosis. Here, we demonstrate that HIV infection of astrocytes results in release of cytochrome C from the mitochondria into the cytoplasm, and dysregulation of inositol trisphosphate/intracellular calcium that leads to toxicity to neighboring uninfected astrocytes. Blocking these dysregulated pathways results in protection from bystander apoptosis. These secondary messengers that are toxic in uninfected cells are not toxic in HIV infected cells, suggesting that HIV protects these cells from apoptosis. Thus, our data provide novel mechanisms of HIV mediated toxicity and generation of HIV reservoirs. Our findings provide new potential therapeutic targets to reduce the CNS damage resulting from HIV infection and to eradicate the generation of viral reservoirs.

  相似文献   


19.
Psychostimulants are widely abused drugs that may cause addiction in vulnerable individuals. While the reward circuitry of the brain is involved in addiction establishment, various pathways in the brain may provide protection at the molecular level that limits the acute and chronic effects of drugs. These targets may be used for strategies designed to prevent and treat addiction. Swiprosin-1/EF hand domain 2 (EFhd2) is a Ca2+-binding cytoskeletal adaptor protein involved in sensation-seeking behaviour, anxiety and alcohol addiction. Here, we tested how EFhd2 contributes to the physiological and behavioural effects of the psychostimulant drugs methamphetamine (METH) and cocaine. An in vivo microdialysis study in EFhd2 knockout mice revealed that EFhd2 controls METH- and cocaine-induced changes in extracellular dopamine, serotonin and noradrenaline levels through different mechanisms in the nucleus accumbens and prefrontal cortex. Electrophysiological recordings in a slice preparation showed that a lack of EFhd2 increases dopaminergic neuronal activity in the ventral tegmental area and increases the sensitivity of neurons to stimulation. We report a role of EFhd2 in METH-induced locomotor activation and in the conditioned locomotor effects. No role, however, was observed in the establishment of METH- or cocaine-induced conditioned place preference. These findings may suggest that EFhd2 modulates the activity of the dopaminergic system and the neurochemical effects of METH and cocaine, which translate into a modulation of the behavioural effects of these drugs at the level of the acute and conditioned locomotor activity.

  相似文献   


20.
The discoveries of mutations in SNCA were seminal findings that resulted in the knowledge that α‐synuclein (αS) is the major component of Parkinson's disease‐associated Lewy bodies. Since the pathologic roles of these protein inclusions and SNCA mutations are not completely established, we characterized the aggregation properties of the recently identified SNCA mutations, H50Q and G51D, to provide novel insights. The properties of recombinant H50Q, G51D, and wild‐type αS to polymerize and aggregate into amyloid were studied using (trans,trans)‐1‐bromo‐2,5‐bis‐(4‐hydroxy)styrylbenzene fluorometry, sedimentation analyses, electron microscopy, and atomic force microscopy. These studies showed that the H50Q mutation increases the rate of αS aggregation, whereas the G51D mutation has the opposite effect. However, H50Q and G51D αS could still be similarly induced to form intracellular aggregates from the exposure to exogenous amyloidogenic seeds under conditions that promote their cellular entry. Both mutant αS proteins, but especially G51D, promoted cellular toxicity under cellular stress conditions. These findings reveal that the novel pathogenic SNCA mutations, H50Q and G51D, have divergent effects on aggregation properties relative to the wild‐type protein, with G51D αS demonstrating reduced aggregation despite presenting with earlier disease onset, suggesting that these mutants promote different mechanisms of αS pathogenesis.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号