首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Réunion grey white‐eye (Zosterops borbonicus), a small passerine endemic to the island of Réunion (Mascarene archipelago), constitutes an extraordinary case of phenotypic variation within a bird species, with conspicuous plumage colour differentiation at a microgeographical scale. To understand whether natural selection could explain such variability, we compared patterns of variation in morphological and plumage colour traits within and among populations. To quantify morphological variation, we used measurements obtained by Frank Gill in the 1960s from 239 individuals collected in 60 localities distributed over the entire island of Réunion. To quantify colour variation, we measured the reflectance spectra of plumage patches of 50 males from a subset of Gill's specimens belonging to the five recognized plumage colour variants and used a visual model to project these colours in an avian‐appropriate, tetrachromatic, colour space. We found that variants occupy different regions of the avian colour space and that between‐variant differences for most plumage patches could be discriminated by the birds. Differences in morphology were also detected, but these were, in general, smaller than colour differences. Overall, we found that variation in both plumage colour and morphology among variants is greater than would be expected if genetic drift alone was responsible for phenotypic divergence. As the plumage colour variants correspond to four geographical forms, our results suggest that phenotypic evolution in the Réunion grey white‐eye is at least partly explained by divergent selection in different habitats or regions. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 459–473.  相似文献   

2.
Abstract The traditional explanation for interspecific plumage colour variation in birds is that colour differences between species are adaptations to minimize the risk of hybridization. Under this explanation, colour differences between closely related species of birds represent reproductive character displacement. An alternative explanation is that interspecific variation in plumage colour is an adaptive response to variation in light environments across habitats. Under this explanation, differences in colour between closely related species are a product of selection on signal efficiency. We use a comparative approach to examine these two hypotheses, testing the effects of sympatry and habitat use, respectively, on divergence in male plumage colour. Contrary to the prediction of the Species Isolation Hypothesis, we find no evidence that sympatric pairs of species are consistently more divergent in coloration than are allopatric pairs of species. However, in agreement with the Light Environment Hypothesis, we find significant associations between plumage coloration and habitat use. All of these results remain qualitatively unchanged irrespective of the statistical methodology used to compare reflectance spectra, the body regions used in the analyses, or the exclusion of areas of plumage not used in sexual displays. Our results suggest that, in general, interspecific variation in plumage colour among birds is more strongly influenced by the signalling environment than by the risk of hybridization.  相似文献   

3.
Plumage colour variation exists among Gyrfalcons throughout their Arctic and sub‐Arctic circumpolar distribution, ranging from white through silver and grey to almost black. Although different colour variants coexist within many populations, a few geographical regions, such as northern Greenland, possess a single variant, suggesting that local environments may influence plumage colour variation. In central‐west Greenland (66.5–67.5°N), where multiple colour variants exist, white male Gyrfalcons fathered significantly earlier clutches than grey males. No significant association was observed between female colour and lay date. However, significantly more offspring were produced by both male and female white Gyrfalcons than by grey variants when controlling for lay date, and silver Gyrfalcons produced an intermediate number of offspring for both sexes. This pattern was further supported by breeding plumage colour pairings. Grey females paired with grey males nested significantly later in the season and produced fewer offspring than those paired with white males, whereas no difference in lay date or offspring number was found between white males paired with white or with grey females. The difference in the number of offspring produced at each nest‐site was also inversely correlated with the distance to the nearest neighbouring nest, and grey males nested in closer proximity to other nests compared with white and silver colour variants. These results suggest that factors associated with territory occupancy and timing of breeding may regulate reproductive success differently between colour variants, with directional selection favouring light‐coloured Gyrfalcons and resulting in earlier lay date and a high frequency of white plumage colour variants in this population. Although gene flow exists between our study population and those further north (>75°N), white Gyrfalcons prevail where the breeding season duration is even shorter, suggesting that nesting chronology in combination with genetic drift may play an important role in influencing plumage colour polymorphism among Gyrfalcon populations.  相似文献   

4.
Animal coloration is key in natural and sexual selection, playing significant roles in intra- and interspecific communication because of its linkage to individual behaviour, genetics and physiology. Simple animal traits such as the area or the colour intensity of homogeneous patches have been profusely studied. More complex patterns are widespread in nature, but they escape our understanding because their variation is difficult to capture effectively by standard, simple measures. Here, we used fractal geometry to quantify inter-individual variation in the expression of a complex plumage trait, the heterogeneous black bib of the red-legged partridge (Alectoris rufa). We show that a higher bib fractal dimension (FD) predicted better individual body condition, as well as immune responsiveness, which is condition-dependent in our study species. Moreover, when food intake was experimentally reduced during moult as a means to reduce body condition, the bib''s FD significantly decreased. Fractal geometry therefore provides new opportunities for the study of complex animal colour patterns and their roles in animal communication.  相似文献   

5.
Yearling birds generally display duller colours than adults. This may be due to selection favouring birds with more intensely coloured plumage or to an increase in colour after the first complete moult. Most research to date on the topic has been carried out on species with structural plumage coloration or with carotenoid‐based coloration that is produced by the unmodified deposition of pigments. However, no study has been carried out on species whose carotenoids are metabolically modified before deposition. In this study, we assess age‐related changes in the carotenoid‐based coloration of European Serins, a species that metabolically processes carotenoids before they can be deposited into feathers. Birds were captured over consecutive years and we carried out both cross‐sectional and longitudinal analysis. Adults had significantly greater values of lightness and chroma than yearling birds. However, there were no changes in plumage colour when analysing the same individuals captured in subsequent seasons. Plumage lightness and chroma of adult males after moult were related to body mass, suggesting a role of body condition on plumage coloration. Our results suggest that changes in plumage coloration with age in European Serins are due to a selection process that favours more intensely coloured individuals.  相似文献   

6.
ISMAEL GALVÁN 《Ibis》2010,152(2):359-367
The evolution of multiple signals can be explained because they enhance the perception of a general message by recipients. Plumage coloration frequently acts as a condition‐dependent signal, so that species displaying different colour patches have the potential to transmit information on condition through a multiple signalling system. The Great Tit Parus major exhibits plumage colour patches generated by the main types of colour production, some of which, particularly those based on melanins and carotenoids, are known to be related to body condition. However, the colour expressions of all of the different colour types have never been investigated simultaneously to determine whether they function as multiple signals of condition. In addition, visual perception models have never been applied to a multiple signalling system in a wild population of birds. Here I present information that links body condition with the colour expression of almost all of the different plumage patches of male Great Tits captured during the winter. Birds in better condition had greater reflectance values at short wavelengths in all plumage patches, and this was especially so in the white (i.e. structural) colour of the cheeks. Plumage colour characteristics were calculated by means of avian visual models, suggesting that Great Tits have the capacity to perceive information contained in the plumage coloration of conspecifics. These results show that short‐wavelength reflectance has great potential to transmit biologically significant information on the body condition of birds, even in achromatic plumage patches.  相似文献   

7.
Animals display incredibly diverse colour patterns, a testament to evolution's endless innovation in shaping life. In many species, the interplay between males and females in the pursuit of mates has driven the evolution of a myriad of colour forms, from the flashy peacock tail feathers to the tiniest colour markings in damselflies. In others, colour provides crypsis by allowing to blend into the background and to escape the eyes of predators. While the obvious benefits of this dazzling diversity for reproduction and survival seem straightforward, its maintenance is not. Theory predicts that genetic drift and various forms of selection reduce variation over time, making the persistence of colour variants over generations a puzzle. In this issue of Molecular Ecology, Lindtke et al. ( 2017 ) study the cryptic colour morphs of Timema cristinae walking sticks to shed light on the genetic architecture and mechanisms that allow colour polymorphism maintenance over long timescales. By combining genome‐wide data with phenotyping information from natural populations, they were able to map the green and melanistic colour to one genomic region with highly reduced effective recombination rate between two main chromosomal variants, consistent with an inversion polymorphism. These two main chromosomal variants showed geographically widespread heterozygote excess, and genomic signatures consistent with long‐term balancing selection. A younger chromosomal variant was detected for the third morph, the green‐striped colour morphs, in the same genomic regions as the melanistic and the green‐unstriped morphs. Together, these results suggest that the genetic architecture of cryptic T. cristinae morphs is caused by nonrecombining genomic blocks that have been maintained over extended time periods by balancing selection making this study one of the few available empirical examples documenting that balancing selection of various forms may play an important role in maintaining adaptive genetic variation in nature.  相似文献   

8.
Colour phenotypes are often involved in communication and are thus under selection by species interactions. However, selection may also act on colour through correlated traits or alternative functions of biochemical pigments. Such forms of selection are instrumental in maintaining petal colour diversity in plants. Pollen colour also varies markedly, but the maintenance of this variation is little understood. In Campanula americana, pollen ranges from white to dark purple, with darker morphs garnering more pollinator visits and exhibiting elevated pollen performance under heat stress. Here, we generate an F2 population segregating for pollen colour and measure correlations with floral traits, pollen attributes and plant‐level traits related to fitness. We determine the pigment biochemistry of colour variants and evaluate maternal and paternal fitness of light and dark morphs by crossing within and between morphs. Pollen colour was largely uncorrelated with floral traits (petal colour, size, nectar traits) suggesting it can evolve independently. Darker pollen grains were larger and had higher anthocyanin content (cyanidin and peonidin) which may explain why they outperform light pollen under heat stress. Overall, pollen‐related fitness metrics were greater for dark pollen, and dark pollen sires generated seeds with higher germination potential. Conversely, light pollen plants produce 61% more flowers than dark, and 18% more seeds per fruit, suggesting a seed production advantage. Results indicate that light and dark morphs may achieve fitness through different means—dark morphs appear to have a pollen advantage whereas light morphs have an ovule advantage—helping to explain the maintenance of pollen colour variation.  相似文献   

9.
Condition-dependence is a central but contentious tenet of evolutionary theories on the maintenance of ornamental traits, and this is particularly true for structural plumage colour. By providing diets of different nutritional quality to moulting male and female blue tits, we experimentally manipulated general condition within the natural range, avoiding deprivation or stressful treatments. We measured reflectance of the structural-coloured UV/blue crown, a sexually selected trait in males, and the white cheek, a nonpigmented structural colour, directly after moult and again during the following spring mating season. We employed a variety of colour indices, based on spectral shape and avian visual models but, despite significant variation in condition and coloration, found no evidence for condition-dependence of UV/blue or white plumage colour during either season. These and previously published results suggest that structural colour might be sensitive to stress, rather than reduced body condition, during moult.  相似文献   

10.
Body size and coloration may contribute to variation in performance and fitness among individuals; for example, by influencing vulnerability to predators. Yet, the combined effect of size and colour pattern on susceptibility to visual predators has received little attention, particularly in camouflaged prey. In the colour polymorphic pygmy grasshopper Tetrix subulata (Linnaeus, 1758), females are larger than males, although there is a size overlap between sexes. In the present study, we investigated how body size and colour morph influenced detection of these grasshoppers, and whether differences in protective value among morphs change with size. We conducted a computer‐based experiment and compared how human ‘predators’ detected images of large, intermediate or small grasshoppers belonging to black, grey or striped colour morphs when embedded in photographs of natural grasshopper habitats. We found that time to detection increased with decreasing size, that differences in time to detection of the black, grey and striped morphs depended differently on body size, and that no single morph provided superior or inferior protection in all three size classes. By comparing morph frequencies in samples of male and female grasshoppers from natural populations, we also examined whether the joint effects of size and colour morph on detection could explain evolutionary dynamics in the wild. Morph frequency differences between sexes were largely in accordance with expectations from the results of the detection experiment. The results of the present study demonstrate that body size and colour morph can interactively influence detection of camouflaged prey. This may contribute to the morph frequency differences between male and female pygmy grasshoppers in the wild. Such interactive effects may also influence the dynamics of colour polymorphisms, and contribute to the evolution of ontogenetic colour change and sexual dichromatism. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 112–122.  相似文献   

11.
Niecke M  Rothlaender S  Roulin A 《Oecologia》2003,137(1):153-158
Melanin-based variation in colour patterns is under strong genetic control and not, or weakly, sensitive to the environment and body condition. Current signalling theory predicts that such traits may not signal honestly phenotypic quality because their production does not entail a significant fitness cost. However, recent studies revealed that in several bird species melanin-based traits covary with phenotypic attributes. In a first move to understand whether such covariations have a physiological basis, we quantified concentrations of five chemical elements in two pigmented plumage traits in the barn owl (Tyto alba). This bird shows continuous variation from immaculate to heavily marked with black spots (plumage spottiness) and from dark reddish-brown to white (plumage coloration), two traits that signal various aspects of individual quality. These two traits are sexually dimorphic with females being spottier and darker coloured than males. We found an enhancement in calcium and zinc concentration within black spots compared with the unspotted feather parts. The degree to which birds were spotted was positively correlated with calcium concentration within spots, whereas the unspotted feather parts of darker reddish-brown birds were more concentrated in zinc. This suggests that two different pigments are responsible for plumage spottiness and plumage coloration. We discuss the implications of our results in light of recent experimental field studies showing that female spottiness signals offspring humoral response towards an artificially administrated antigen, parasite resistance and fluctuating asymmetry of wing feathers.An erratum to this article can be found at  相似文献   

12.
13.
The presence of conspecifics can strongly modulate the quality of a breeding site. Both positive and negative effects of conspecifics can act on the same individuals, with the final balance between its costs and benefits depending on individual characteristics. A particular case of inter-individual variation found in many avian species is chromatic variability. Among birds, plumage coloration can co-vary with morphology, physiology and behavior as well as with age. These relationships suggest that cost-benefit balances of conspecific presence may be different for individuals with different colorations. We investigated whether inter-individual variability affects population regulation and expansion processes by analyzing potential differences in density-dependent productivity and settlement patterns in relation to plumage coloration in a population of a long-lived avian species recently undergoing a notable increase in numbers and distribution range. Our results show strong variation in the effect of density on productivity of breeding pairs depending on plumage coloration of their members. Productivity of dark birds decreased along the breeding density gradient while that of lighter breeders remained unchanged with conspecific density. In a similar way, our results showed an uneven occupation of localities by individuals with different plumage coloration in relation to local densities, with the breeding of lighter harriers more aggregated than that of dark-brown ones. At a population scale, darker birds had higher probability of colonization of the most isolated, empty sites. Explanations for species range expansion and population regulation usually make the inferred assumption that species traits are similar among individuals. However, in most species, there could be individual variation in niche requirements or dispersal propensities among individuals with different traits. Our results contribute to the growing appreciation that the individual traits, but not the average trait at the level of species, are important during population regulation and expansion processes.  相似文献   

14.
Mate choice has important evolutionary consequences because it influences assortative mating and the level of genetic variation maintained within populations. In species with genetically determined polymorphisms, nonrandom mate choice may affect the evolutionary stability and maintenance (or loss) of alternative phenotypes. We examined the mating pattern in the colour polymorphic Gouldian finch (Erythrura gouldiae), and the role of mate choice, both female and male, in maintaining the three discrete head colours (black, red and yellow). In both large captive and wild populations, Gouldian finches paired assortatively with respect to head colour. In mate choice trials, females showed a strong preference for mates with the most elaborate sexually dimorphic traits (i.e. more chromatic UV/blue plumage and longer pin-tail feathers), but did not discriminate assortatively. Unexpectedly, however, males were particularly choosy, associating and pairing only with females of their own morph-type. Although female mate choice is generally invoked as the major selective force maintaining conspicuous male colouration in sexually dichromatic species, and is typically thought to drive nonrandom mating, these findings suggest that mutual mate choice and male mate choice in particular, are an important yet neglected component of selection.  相似文献   

15.
Recently diverged taxa showing marked phenotypic and ecological diversity provide optimal systems to understand the genetic processes underlying speciation. We used genome‐wide markers to investigate the diversification of the Reunion grey white‐eye (Zosterops borbonicus) on the small volcanic island of Reunion (Mascarene archipelago), where this species complex exhibits four geographical forms that are parapatrically distributed across the island and differ strikingly in plumage colour. One form restricted to the highlands is separated by a steep ecological gradient from three distinct lowland forms which meet at narrow hybrid zones that are not associated with environmental variables. Analyses of genomic variation based on single nucleotide polymorphism data from genotyping‐by‐sequencing and pooled RAD‐seq approaches show that signatures of selection associated with elevation can be found at multiple regions across the genome, whereas most loci associated with the lowland forms are located on the Z sex chromosome. We identified TYRP1, a Z‐linked colour gene, as a likely candidate locus underlying colour variation among lowland forms. Tests of demographic models revealed that highland and lowland forms diverged in the presence of gene flow, and divergence has progressed as gene flow was restricted by selection at loci across the genome. This system holds promise for investigating how adaptation and reproductive isolation shape the genomic landscape of divergence at multiple stages of the speciation process.  相似文献   

16.
The hypothesis that ornaments can honestly signal quality only if their expression is condition-dependent has dominated the study of the evolution and function of colour traits. Much less interest has been devoted to the adaptive function of colour traits for which the expression is not, or is to a low extent, sensitive to body condition and the environment in which individuals live. The aim of the present paper is to review the current theoretical and empirical knowledge of the evolution, maintenance and adaptive function of colour plumage traits for which the expression is mainly under genetic control. The finding that in many bird species the inheritance of colour morphs follows the laws of Mendel indicates that genetic colour polymorphism is frequent. Polymorphism may have evolved or be maintained because each colour morph facilitates the exploitation of alternative ecological niches as suggested by the observation that individuals are not randomly distributed among habitats with respect to coloration. Consistent with the hypothesis that different colour morphs are linked to alternative strategies is the finding that in a majority of species polymorphism is associated with reproductive parameters, and behavioural, life-history and physiological traits. Experimental studies showed that such covariations can have a genetic basis. These observations suggest that colour polymorphism has an adaptive function. Aviary and field experiments demonstrated that colour polymorphism is used as a criterion in mate-choice decisions and dominance interactions confirming the claim that conspecifics assess each other's colour morphs. The factors favouring the evolution and maintenance of genetic variation in coloration are reviewed, but empirical data are virtually lacking to assess their importance. Although current theory predicts that only condition-dependent traits can signal quality, the present review shows that genetically inherited morphs can reveal the same qualities. The study of genetic colour polymorphism will provide important and original insights on the adaptive function of conspicuous traits.  相似文献   

17.
Variation in coloration with a strong underlying genetic basis is frequently found in birds, insects, anurans, molluscs and plants. Although such a variation can be large, little is known about its functional value. Correlative data, however, can help suggest testable hypotheses about potential covariation between reproductive parameters and a colour polymorphism displayed by individuals belonging to a single population. In this context, we studied two Swiss populations of tawny owls Strix aluco , a polymorphic species that varies in coloration from reddish-brown to grey. Observations in the first population showed that although greyer females had shorter tarsi, they produced heavier offspring in two of three years. Pairing with respect to plumage coloration was not significantly disassortative, indicating that these correlations were probably not inflated by plumage coloration of the mate. In the second population, where breeding females had been monitored for 14 years, the proportion of all breeding females that were reddish-brown was greater in years when the breeding density was lower. Capture-recapture analyses show that the latter result is explained by the fact that greyish females bred less often than reddish-brown females, although their survival probability was similar. The number of greyer breeding females was greater when spring/summer temperatures were lower. When combined, the results from the two populations lend support to the hypothesis that grey females do not breed every year, but produce offspring of higher quality. Whatever the mechanism underlying the correlations reported in this study, colour polymorphism in female tawny owls appears to reflect some components of individual quality.  相似文献   

18.
Data from a diversity of sources are consistent with the hypothesis that the Grand Cayman anole, Anolis conspersus, is descended directly from Anolis grahami of Jamaica. Although the two species have remained morphologically similar, coloration in A. conspersus has changed considerably from that of its ancestor. The most dramatic difference is seen in dewlap colour, where A. conspersus has evolved a blue and highly UV-reflective dewlap from the ancestral orange-and-yellow colour state. In addition, variation in normal (non-metachrosis) dorsum coloration in A. grahami populations is limited to shades of green (olive, emerald, teal), whereas in A. conspersus dorsum coloration varies from green to blue and to brown. This increased colour variation occurs despite Grand Cayman being a small, relatively featureless island only 35 km in length. Results of this study suggest that ambient light differences associated with precipitation-related vegetation structure may have played an important role in the evolution of A. conspersus body colour variation. Evidence is presented to show how geological, ecological, and physiological factors could have interacted to select for a short wavelength-reflective dewlap from a long wavelength-reflective precursor following the colonization of Grand Cayman from Jamaica by A. grahami between 2 and 3 Mya.  相似文献   

19.
In several colour polymorphic species, morphs differ in thermoregulation either because dark and pale surfaces absorb solar radiation to a different extent and/or because morphs differ in key metabolic processes. Morph-specific thermoregulation may potentially account for the observation that differently coloured individuals are frequently not randomly distributed among habitats, and differ in many respects, including behaviour, morphology, survival and reproductive success. In a wild population of the colour polymorphic tawny owl Strix aluco, a recent cross-fostering experiment showed that offspring raised and born from red mothers were heavier than those from grey mothers. In the present study, we tested in the same individuals whether these morph-specific offspring growth patterns were associated with a difference in metabolic rate between offspring of red and grey mothers. For this purpose, we measured nestling oxygen consumption under two different temperatures (laboratory measurements: 4 and 20°C), and examined the relationships between these data sets and the colour morph of foster and biological mothers. After controlling for nestling body mass, oxygen consumption at 20°C was greater in foster offspring raised by grey foster mothers. No relationship was found between nestling oxygen consumption and coloration of their biological mother. Therefore, our study indicates that in our experiment offspring raised by grey foster mothers showed not only a lower body mass than offspring raised by red foster mothers, but also consumed more oxygen under warm temperature. This further indicates that rearing conditions in nests of grey mothers were more stressful than in nests of red mothers.  相似文献   

20.
Littorina saxatilis Olivi (1792), the rough winkle, is highly polymorphic in shell colour. Shell colour frequencies were studied at six locations in south-western Wales, U.K., each at a geological contact between red sandstone and grey limestone or volcanic rock. At each site shell colour frequencies were determined in samples from the contact zone and on red or grey rock on either side. Highly significant associations were found between shell colour frequencies and substrate colour. Grey shells were always more common on grey rock than on red rock, and brown shells were usually more common on red than on grey rock, suggesting selection for cryptic colouration. Shell colour frequency differences were also found between replicate samples taken only 5 m apart from the same kind of rock, and between samples from the same kind of rock at the six study sites. These latter differences suggest that selection for camouflage is not the only factor involved in maintaining shell colour polymorphism in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号