首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Mediterranean cabrilla sea bass Serranus cabrilla exhibits two colour morphs (red and yellow) that appear to be depth segregated, with yellow individuals found below 20 m and red ones found above 20 m. Morphology and otolith analyses show that yellow fish are larger and older. There were similar allelic frequencies between colour morphs, but significant differences in the genotypic frequencies with an increase of excess of heterozygotes in yellow specimens. It is proposed that the yellow fish are older and develop from younger red fish that have migrated to deeper water.  相似文献   

2.
Genetically based variation in coloration occurs in populations of many organisms belonging to various taxa, including birds, mammals, frogs, molluscs, insects and plants. Colour polymorphism has evolved in raptors more often than in any other group of birds, suggesting that predator–prey relationships was a driving evolutionary force. Individuals displaying a new invading colour morph may enjoy an initial foraging advantage because prey have difficulties in learning the colour of a rare morph (apostatic selection), or because morphs provide alternative foraging benefits allowing differently coloured individuals to exploit distinct food niches (disruptive selection). Plumage polymorphism should therefore have evolved in species that prey upon animals having the physiological ability to distinguish between differently coloured predators but also to flee once a predator has been detected. From this assumption, we can predict that closely related polymorphic and monomorphic species prey upon different animals. They may also differ in morphology, because foraging upon different prey may require different foraging modes, and in turn different morphological structures. We tested these two predictions in a comparative study of raptors. As expected, polymorphic and monomorphic species had a different diet, and there was a difference in wing length between polymorphic and monomorphic species within two genera ( Buteo and Accipiter ). Across all raptors for which phylogenetic relationships are known, polymorphic species preyed more often upon mammals than did monomorphic ones. These two types of raptor did not differ in the frequency of birds, insects and reptiles in their diets. We discuss these results in the light of the hypothesis that predator–prey relationships played a role in the evolution of colour polymorphism. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 81 , 565–578.  相似文献   

3.
Symbiotic relationships have contributed greatly to the evolution and maintenance of biological diversity. On the Great Barrier Reef, species of obligate coral-dwelling fishes (genus Gobiodon) coexist by selectively recruiting to colonies of Acropora nasuta that differ in branch-tip colour. In this study, we investigate genetic variability among sympatric populations of two colour morphs of A. nasuta ('blue-tip' and 'brown-tip') living in symbiosis with two fish species, Gobiodon histrio and G. quinquestrigatus, respectively, to determine whether gobies are selecting between intraspecific colour polymorphisms or cryptic coral species. We also examine genetic differentiation among coral populations containing both these colour morphs that are separated by metres between local sites, tens of kilometres across the continental shelf and hundreds of kilometres along the Great Barrier Reef. We use three nuclear DNA loci, two of which we present here for the first time for Acropora. No significant genetic differentiation was detected between sympatric colour morphs at these three loci. Hence, symbiotic gobies are selecting among colour morphs of A. nasuta, rather than cryptic species. Significant genetic geographical structuring was observed among populations, independent of colour, at regional (i.e. latitudinal separation by < 500 km) and cross-shelf (< 50 km) scales, alongside relative homogeneity between local populations on within reef scales (< 5 km). This contrasts with the reported absence of large-scale genetic structuring in A. valida, which is a member of the same species group as A. nasuta. Apparent differences in biogeographical structuring between species within the A. nasuta group emphasize the need for comparative sampling across both spatial (i.e. within reefs, between reefs and between regions) and taxonomic scales (i.e. within and between closely related species).  相似文献   

4.
Birds display a rainbow of eye colours, but this trait has been little studied compared with plumage coloration. Avian eye colour variation occurs at all phylogenetic scales: it can be conserved throughout whole families or vary within one species, yet the evolutionary importance of this eye colour variation is under-studied. Here, we summarize knowledge of the causes of eye colour variation at three primary levels: mechanistic, genetic and evolutionary. Mechanistically, we show that avian iris pigments include melanin and carotenoids, which also play major roles in plumage colour, as well as purines and pteridines, which are often found as pigments in non-avian taxa. Genetically, we survey classical breeding studies and recent genomic work on domestic birds that have identified potential ‘eye colour genes’, including one associated with pteridine pigmentation in pigeons. Finally, from an evolutionary standpoint, we present and discuss several hypotheses explaining the adaptive significance of eye colour variation. Many of these hypotheses suggest that bird eye colour plays an important role in intraspecific signalling, particularly as an indicator of age or mate quality, although the importance of eye colour may differ between species and few evolutionary hypotheses have been directly tested. We suggest that future studies of avian eye colour should consider all three levels, including broad-scale iris pigment analyses across bird species, genome sequencing studies to identify loci associated with eye colour variation, and behavioural experiments and comparative phylogenetic analyses to test adaptive hypotheses. By examining these proximate and ultimate causes of eye colour variation in birds, we hope that our review will encourage future research to understand the ecological and evolutionary significance of this striking avian trait.  相似文献   

5.
Some of the diversity of lacustrine cichlid fishes has been ascribed to sympatric divergence, whereas diversification in rivers is generally driven by vicariance and geographic isolation. In the riverine Pseudocrenilabrus philander species complex, several morphologically highly distinct populations are restricted to particular river systems, sinkholes and springs in southern Africa. One of these populations consists of a prevalent yellow morph in sympatry with a less frequent blue morph, and no individuals bear intermediate phenotypes. Genetic variation in microsatellites and AFLP markers was very low in both morphs and one single mtDNA haplotype was fixed in all samples, indicating a very young evolutionary age and small effective population size. Nevertheless, the nuclear markers detected low but significant differentiation between the two morphs. The data suggest recent and perhaps sympatric divergence in the riverine habitat.  相似文献   

6.
Individuals of pygmy grasshoppers ( Tetrix subulata [L.] Orthoptera: Tetrigidae) exhibit genetically coded discontinuous variation in colour pattern. To determine whether reproductive performance is likely to be affected by colour pattern, this study investigated variation in body size and reproductive life-history characteristics among individuals belonging to five different colour morphs. The proportion of reproductive females (i.e. females with eggs) declined significantly as the season progressed (from 100% in mid-May to 40% in mid-June), but no such seasonal trend was apparent for body size, clutch size or egg size. Colour morphs differed significantly in body size, and these size differences accounted for most of the variation in clutch size and egg size. Colour morphs also differed in the regression of egg size on clutch size, suggesting that trade-offs between number and size of offspring might vary among morphs. Finally, I found a negative relationship across colour morphs between the proportion of females with eggs and average clutch size. This suggests that individuals belonging to certain colour morphs produce a relatively large number of clutches per unit time, at the expense of fewer offspring in each clutch, compared to other morphs. Collectively, my results indicate that different colour morphs of T. subulata may have different reproductive strategies. These differences may reflect variation in thermoregulatory capacity or differences in probability of survival induced by visual predators.  相似文献   

7.
In socially monogamous species, individuals can use extra‐pair paternity and offspring sex allocation as adaptive strategies to ameliorate costs of genetic incompatibility with their partner. Previous studies on domesticated Gouldian finches (Erythrura gouldiae) demonstrated a genetic incompatibility between head colour morphs, the effects of which are more severe in female offspring. Domesticated females use differential sex allocation, and extra‐pair paternity with males of compatible head colour, to reduce fitness costs associated with incompatibility in mixed‐morph pairings. However, laboratory studies are an oversimplification of the complex ecological factors experienced in the wild and may only reflect the biology of a domesticated species. This study aimed to examine the patterns of parentage and sex ratio bias with respect to colour pairing combinations in a wild population of the Gouldian finch. We utilized a novel PCR assay that allowed us to genotype the morph of offspring before the morph phenotype develops and to explore bias in morph paternity and selection at the nest. Contrary to previous findings in the laboratory, we found no effect of pairing combinations on patterns of extra‐pair paternity, offspring sex ratio or selection on morphs in nestlings. In the wild, the effect of morph incompatibility is likely much smaller, or absent, than was observed in the domesticated birds. Furthermore, the previously studied domesticated population is genetically differentiated from the wild population, consistent with the effects of domestication. It is possible that the domestication process fostered the emergence (or enhancement) of incompatibility between colour morphs previously demonstrated in the laboratory.  相似文献   

8.
Understanding the ultimate causes for the presence of polymorphisms within populations requires knowledge of how the expression of discrete morphs is regulated. In the present study, we explored the determination mechanism of a colour dimorphism in larvae of the butterfly Pararge xiphia (Satyrinae: Nymphalidae) with the ultimate aim of understanding its potential adaptive value. Last-instar larvae of P. xiphia develop into either a green or a brown morph, although all individuals are invariably green during the preceding three instars. A series of laboratory experiments reveal that morph development is strongly environmentally dependent and not the result of alternative alleles at one locus. Photoperiod, temperature, and in particular larval density, all influenced morph determination. The strong effect of a high larval density in inducing the brown morph parallels other known cases of density-dependent melanization in Lepidopteran larvae. Because melanization is often correlated with increased immune function, this type of determination mechanism is expected to be adaptive. However, the ecology and behaviour of P. xiphia larvae suggests that increased camouflage under high-density conditions may be an additional adaptive explanation. We conclude that the colour dimorphism of P. xiphia larvae is determined by a developmental threshold that is influenced both by heredity and by environmental conditions, and that selection for increased immune function and camouflage under high-density conditions may be responsible for maintaining the dimorphism.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 256–266.  相似文献   

9.
The underlying basis of genetic variation in quantitative traits, in terms of the number of causal variants and the size of their effects, is largely unknown in natural populations. The expectation is that complex quantitative trait variation is attributable to many, possibly interacting, causal variants, whose effects may depend upon the sex, age and the environment in which they are expressed. A recently developed methodology in animal breeding derives a value of relatedness among individuals from high‐density genomic marker data, to estimate additive genetic variance within livestock populations. Here, we adapt and test the effectiveness of these methods to partition genetic variation for complex traits across genomic regions within ecological study populations where individuals have varying degrees of relatedness. We then apply this approach for the first time to a natural population and demonstrate that genetic variation in wing length in the great tit (Parus major) reflects contributions from multiple genomic regions. We show that a polygenic additive mode of gene action best describes the patterns observed, and we find no evidence of dosage compensation for the sex chromosome. Our results suggest that most of the genomic regions that influence wing length have the same effects in both sexes. We found a limited amount of genetic variance in males that is attributed to regions that have no effects in females, which could facilitate the sexual dimorphism observed for this trait. Although this exploratory work focuses on one complex trait, the methodology is generally applicable to any trait for any laboratory or wild population, paving the way for investigating sex‐, age‐ and environment‐specific genetic effects and thus the underlying genetic architecture of phenotype in biological study systems.  相似文献   

10.
The hypothesis that ornaments can honestly signal quality only if their expression is condition-dependent has dominated the study of the evolution and function of colour traits. Much less interest has been devoted to the adaptive function of colour traits for which the expression is not, or is to a low extent, sensitive to body condition and the environment in which individuals live. The aim of the present paper is to review the current theoretical and empirical knowledge of the evolution, maintenance and adaptive function of colour plumage traits for which the expression is mainly under genetic control. The finding that in many bird species the inheritance of colour morphs follows the laws of Mendel indicates that genetic colour polymorphism is frequent. Polymorphism may have evolved or be maintained because each colour morph facilitates the exploitation of alternative ecological niches as suggested by the observation that individuals are not randomly distributed among habitats with respect to coloration. Consistent with the hypothesis that different colour morphs are linked to alternative strategies is the finding that in a majority of species polymorphism is associated with reproductive parameters, and behavioural, life-history and physiological traits. Experimental studies showed that such covariations can have a genetic basis. These observations suggest that colour polymorphism has an adaptive function. Aviary and field experiments demonstrated that colour polymorphism is used as a criterion in mate-choice decisions and dominance interactions confirming the claim that conspecifics assess each other's colour morphs. The factors favouring the evolution and maintenance of genetic variation in coloration are reviewed, but empirical data are virtually lacking to assess their importance. Although current theory predicts that only condition-dependent traits can signal quality, the present review shows that genetically inherited morphs can reveal the same qualities. The study of genetic colour polymorphism will provide important and original insights on the adaptive function of conspicuous traits.  相似文献   

11.
Detectability of different colour morphs under varying light conditions has been proposed as an important driver in the maintenance of colour polymorphism via disruptive selection. To date, no studies have tested whether different morphs have selective advantages under differing light conditions. We tested this hypothesis in the black sparrowhawk, a polymorphic raptor exhibiting a discrete white and dark morph, and found that prey provisioning rates differ between the morphs depending on light condition. Dark morphs delivered more prey in lower light conditions, while white morphs provided more prey in brighter conditions. We found support for the role of breeding season light level in explaining the clinal pattern of variation in morph ratio across the species range throughout South Africa. Our results provide the first empirical evidence supporting the hypothesis that polymorphism in a species, and the spatial structuring of morphs across its distribution, may be driven by differential selective advantage via improved crypsis, under varying light conditions.  相似文献   

12.
Understanding how reproductive barriers evolve during speciation remains an important question in evolution. Divergence in mating preferences may be a common first step in this process. The striking colour pattern diversity of strawberry dart frog (Dendrobates pumilio) populations has likely been shaped by sexual selection. Previous laboratory studies have shown that females attend to male coloration and prefer to court with males of their own colour, suggesting that divergent morphs may be reproductively isolated. To test this hypothesis, we used molecular data to estimate pedigree relationships from a polymorphic population. Whereas in the laboratory both red and yellow females preferred to court with males of their own phenotype, our pedigree shows a pattern of assortative mating only for red females. In the wild, yellow females appear to be less choosy about their mates, perhaps because they incur higher costs associated with searching than females of the more common red phenotype. We also used our pedigree to investigate the genetic basis for colour-pattern variation. The phenotype frequencies we observed were consistent with those expected if dorsal background coloration is controlled by a single locus, with complete dominance of red over yellow. Our results not only help clarify the role of sexual selection in reducing gene flow, but also shed light on the mechanisms underlying colour-pattern variation among sympatric colour morphs. The difference we observed between mating preferences measured under laboratory conditions and the pattern of mate choice observed in the wild highlight the importance of field studies for understanding behavioural reproductive isolation.  相似文献   

13.
Island races of passerine birds display repeated evolution towards larger body size compared with their continental ancestors. The Capricorn silvereye (Zosterops lateralis chlorocephalus) has become up to six phenotypic standard deviations bigger in several morphological measures since colonization of an island approximately 4000 years ago. We estimated the genetic variance-covariance (G) matrix using full-sib and 'animal model' analyses, and selection gradients, for six morphological traits under field conditions in three consecutive cohorts of nestlings. Significant levels of genetic variance were found for all traits. Significant directional selection was detected for wing and tail lengths in one year and quadratic selection on culmen depth in another year. Although selection gradients on many traits were negative, the predicted evolutionary response to selection of these traits for all cohorts was uniformly positive. These results indicate that the G matrix and predicted evolutionary responses are consistent with those of a population evolving in the manner observed in the island passerine trend, that is, towards larger body size.  相似文献   

14.
Caterpillars of the hawkmoth Eumorpha fasciata are highly polymorphic for colour, with green, pink, and pink-and-yellow forms in the second through fourth instars, and green and multicoloured forms in the fifth instar. Four years of field censuses on four foodplant species determined that all morphs were found on all plant species; morph frequencies were homogeneous on each plant species over time; and morph frequencies differed consistently among plant species. When larvae were reared from eggs on three of the hostplant species in the laboratory, differences in morph frequencies paralleled the census results. Thus foodplant quality is one factor affecting larval colour in E. fasciata. A literature survey reveals that foodplant effects on larval colouration may be widespread in the family Sphingidae, but most reports are anecdotal rather than experimental. The implications of this mechanism of colour determination are discussed.  相似文献   

15.
Mate choice has important evolutionary consequences because it influences assortative mating and the level of genetic variation maintained within populations. In species with genetically determined polymorphisms, nonrandom mate choice may affect the evolutionary stability and maintenance (or loss) of alternative phenotypes. We examined the mating pattern in the colour polymorphic Gouldian finch (Erythrura gouldiae), and the role of mate choice, both female and male, in maintaining the three discrete head colours (black, red and yellow). In both large captive and wild populations, Gouldian finches paired assortatively with respect to head colour. In mate choice trials, females showed a strong preference for mates with the most elaborate sexually dimorphic traits (i.e. more chromatic UV/blue plumage and longer pin-tail feathers), but did not discriminate assortatively. Unexpectedly, however, males were particularly choosy, associating and pairing only with females of their own morph-type. Although female mate choice is generally invoked as the major selective force maintaining conspicuous male colouration in sexually dichromatic species, and is typically thought to drive nonrandom mating, these findings suggest that mutual mate choice and male mate choice in particular, are an important yet neglected component of selection.  相似文献   

16.
The distribution of yellow, brown and red morphs of sympatric species of Littoraria were recorded on mangrove trees of the genus Avicennia within Moreton Bay, Queensland. The roles of background mimicry (leaf vs. bark, dark vs. light), niche selection and thermal tolerance (sunny vs. shaded positions and height above ground) were examined. The yellow advantage found previously in the area was tested. Total yellow morph frequency adjusted to a reduction in leaf background on pruned trees. Morph frequencies in Littoraria species reflect differences in habitat use. L. filosa (high yellow frequency) was more frequently found on leaves at the highest tree levels, while L. luteola (high brown frequency) was more frequently found on branches at lower levels. It is therefore argued that morphs mimic background elements. Previously reported niche selection by yellow and brown morphs of leaf and bark backgrounds is shown to be a result of the distribution of L. luteola on branches and L. filosa on leaves. At warmer times of the year, yellow L. filosa were more common in sunny positions; this is thought to be a result of thermal tolerance. There appears to be some advantage to particular morphs on particular tree types, but this relationship needs to be examined further. Mangrove-dwelling Littoraria are a promising model to investigate molluscan polymorphism. In the past, erroneous identification of sympatric species may have influenced the accuracy of reported patterns. We used allozyme electrophoretic markers as a precise identification technique. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 75 , 219–232.  相似文献   

17.
Aphids (Homoptera: Aphidoidea) produce a number of different phenotypes in their life-cycle, among which are winged (alate) and wingless (apterous) morphs. Lowe & Taylor (1964) and Sutherland (1969a, b) were the first to suggest that aphid clones differ in their propensity to produce the winged morph and that in the pea aphid (Acyrthosiphon pisum Harris), this propensity is linked to the colour of the phenotype. We tested for the occurrence of genetic variation in winged morph production by rearing individuals from red and green clones of pea aphid under wing-inducing (crowding) and control conditions, and scored the phenotypes of their offspring. Clones differed significantly in alate production and red clones produced on average a higher proportion of winged morphs than green clones. Importantly, however, there was considerable variation between clones of the same colour. Broad-sense heritabilities of winged morph production were 0.69 (crowding treatment) and 0.63 (control). Clones also differed in the number of offspring they produced. When exposed to the crowding stimulus, aphids deferred offspring production, resulting in a higher number of offspring produced in the crowding treatment than in the control.  相似文献   

18.
Rudh A  Rogell B  Höglund J 《Molecular ecology》2007,16(20):4284-4294
The relative roles that geographical isolation and selection play in driving population divergence remain one of the central questions in evolutionary biology. We approached this question by investigating genetic and morphological variation among populations of the strawberry poison frog, Dendrobates pumilio, in the Bocas del Toro archipelago, Panama. We found significant population genetic structure and isolation by distance based on amplified fragment length polymorphism markers. Snout vent length (SVL), coloration and the extent and size of dorsal black spots showed large variation among the studied populations. Differences in SVL correlated with genetic distance, whereas black spot patterns and other coloration parameters did not. Indeed, the latter characters were observed to be dramatically different between contiguous populations located on the same island. These results imply that neutral divergence among populations may account for the genetic patterns based on amplified fragment length polymorphism markers and SVL. However, selective pressures need to be invoked in order to explain the extraordinary variation in spot size and coverage, and coloration. We discuss the possibility that the observed variation in colour morphs is a consequence of a combination of local variation in both natural selection on an aposematic signal towards visual predators and sexual selection generated by colour morph-specific mate preferences.  相似文献   

19.
20.
Social barriers have been shown to reduce gene flow and contribute to genetic structure among populations in species with high cognitive capacity and complex societies, such as cetaceans, apes and humans. In birds, high dispersal capacity is thought to prevent population divergence unless major geographical or habitat barriers induce isolation patterns by dispersal, colonization or adaptation limitation. We report that Iberian populations of the red‐billed chough, a social, gregarious corvid with high dispersal capacity, show a striking degree of genetic structure composed of at least 15 distinct genetic units. Monitoring of marked individuals over 30 years revealed that long‐distance movements over hundreds of kilometres are common, yet recruitment into breeding populations is infrequent and highly philopatric. Genetic differentiation is weakly related to geographical distance, and habitat types used are overall qualitatively similar among regions and regularly shared by individuals of different populations, so that genetic structure is unlikely to be due solely to isolation by distance or isolation by adaptation. Moreover, most population nuclei showed relatively high levels of genetic diversity, suggesting a limited role for genetic drift in significantly differentiating populations. We propose that social mechanisms may underlie this unprecedented level of genetic structure in birds through a pattern of isolation by social barriers not yet described, which may have driven this remarkable population divergence in the absence of geographical and environmental barriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号