首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
纤毛虫与藻类的共生关系在水体环境中广泛存在并有着重要的生态功能。文章回顾了国内外纤毛虫与藻类共生研究的发展历程,主要介绍了纤毛虫与藻类共生的生态功能,以及显微观察与分子生物学技术在纤毛虫与藻类共生研究中的应用;阐述了包括草履虫与小球藻共生关系建立的4个过程及其互作机制、红色中缢虫与隐藻的共生关系、宿主与共生体之间的互作等内容;提出了纤毛虫与藻类共生研究中亟待解决的科学问题,包括草履虫食物泡膜(digestive vacuole, DV)与围藻膜(perialgal vacuole, PV)发挥作用的分子机制、红色中缢虫与隐藻共生关系的建立过程、红色中缢虫在共生过程中的功能作用等,并展望未来的研究方向。  相似文献   

3.
    
Takishita K  Koike K  Maruyama T  Ogata T 《Protist》2002,153(3):293-302
The dinoflagellate genus Dinophysis contains species known to cause diarrhetic shellfish poisoning. Although most photosynthetic dinoflagellates have plastids with peridinin, photosynthetic Dinophysis species have cryptophyte-like plastids containing phycobilin rather than peridinin. We sequenced nuclear- and plastid-encoded SSU rDNA from three photosynthetic species of Dinophysis for phylogenetic analyses. In the tree of nuclear SSU rDNA, Dinophysis was a monophyletic group nested with peridinin-containing dinoflagellates. However, in the tree of plastid SSU rDNA, the Dinophysis plastid lineage was within the radiation of cryptophytes and was closely related to Geminigera cryophila. These analyses indicate that an ancestor of Dinophysis, which may have originally possessed peridinin-type plastid and lost it subsequently, adopted a new plastid from a cryptophyte. Unlike dinoflagellates with fully integrated plastids, the Dinophysis plastid SSU rDNA sequences were identical among the three species examined, while there were species-specific base substitutions in their nuclear SSU rDNA sequences. Queries of the DNA database showed that the plastid SSU rDNA sequence of Dinophysis is almost identical to that of an environmental DNA clone of a <10 pm sized plankter, possibly a cryptophyte and a likely source of the Dinophysis plastid. The present findings suggest that these Dinophysis species engulfed and temporarily retained plastids from a cryptophyte.  相似文献   

4.
    
We compared autotrophic growth of the dinoflagellate Karlodinium micrum (Leadbeater et Dodge) and the cryptophyte Storeatula major (Butcher ex Hill) at a range of growth irradiances (Eg). Our goal was to determine the physiological bases for differences in growth–irradiance relationships between these species. Maximum autotrophic growth rates of K. micrum and S. major were 0.5 and 1.5 div.·d?1, respectively. Growth rates were positively correlated with C‐specific photosynthetic performance (PPC, g C·g C?1·h?1) (r2=0.72). Cultures were grouped as light‐limited (LL) and high‐light (HL) treatments to allow interspecific comparisons of physiological properties that underlie the growth–irradiance relationships. Interspecific differences in the C‐specific light absorption rate (EaC, mol photons·g C?1·h?1) were observed only among HL acclimated cultures, and the realized quantum yield of C fixation (φC(real.), mol C·mol photons?1) did not differ significantly between species in either LL or HL treatments. The proportion of fixed C that was incorporated into new biomass was lower in K. micrum than S. major at each Eg, reflecting lower growth efficiency in K. micrum. Photoacclimation to HL in K. micrum involved a significant loss of cellular photosynthetic capacity (Pmaxcell), whereas in S. major, Pmaxcell was significantly higher in HL acclimated cells. We conclude that growth rate differences between K. micrum and S. major under LL conditions relate primarily to cell metabolism processes (i.e. growth efficiency) and that reduced chloroplast function, reflected in PPC and photosynthesis–irradiance curve acclimation in K. micrum, is also important under HL conditions.  相似文献   

5.
6.
7.
8.
9.
10.
    
Cryptophyte vestiges showing selective digestion of nuclei were found in the gonyaulacalean dinoflagellates Amylax buxus (Balech) Dodge and Amylax triacantha (Jörgensen) Sournia. They emitted bright yellow‐orange fluorescence (590‐nm emission) under epifluorescent microscopy and possessed U‐shaped plastids, suggesting the vestiges were active in photosynthesis. Under transmission electron microscopy, the plastid was characterized by a loose arrangement of two to three thylakoid stacks and included a stalked pyrenoid, as in the cryptophyte genus Teleaulax. Indeed, molecular data based on the plastid small‐subunit rRNA gene demonstrated that the vestiges in Amylax originated from Teleaulax amphioxeia. The stolen plastid (kleptoplastids) in Dinophysis is also derived from this cryptophyte species. However, in sharp contrast to Dinophysis, the plastid of the vestige in Amylax was surrounded by a double layer of plastid endoplasmic reticulum, and within the periplastidal area, a nucleomorph was retained. The vestiges also possessed mitochondria with characteristic plate‐like cristae, but lost the cell‐surface structure. The phagocytotic membrane of the dinoflagellates seemed to surround the cryptophytes right after the incorporation, but the membrane itself would probably be digested eventually. Remarkably, only one cryptophyte cell among 14 vestiges in a cell of A. buxus had a nucleus. This is the first recording of possible kleptoplastidy in gonyaulacalean dinoflagellates, and documents the strategy of a dinoflagellate involving the selective elimination of the cryptophyte nucleus.  相似文献   

11.
    
A relatively small number of freshwater dinoflagellates are involved in symbiotic association with cryptophytes. The chloroplasts of the cryptophytes are retained by the dinoflagellate and give it the characteristic phycobilin pigmentation, either phycoerythrin or phycocyanin. The pigment characterization of the retained chloroplasts can give precise and accurate information about the type of cryptophyte preyed upon by the dinoflagellate. For this purpose, we performed microspectrophotometric evaluation of the pigments of Gymnodinium acidotum Nygaard and three different cryptophytes present in samples collected from a tributary of the river Arno, in Tuscany (Italy). The comparison of the different spectroscopic data allowed us to discriminate effectively among the cryptophytes preyed upon by the dinoflagellate.  相似文献   

12.
13.
14.
    
Global declines of macroalgal beds in coastal waters have prompted a plethora of studies attempting to understand the drivers of change within dynamic nearshore ecosystems. Photosynthetic measurements are good tools for assessing the consequences of numerous stressors of macroalgae, but there is somewhat of a disconnection between studies that focus on organism‐specific ecophysiological responses and those that address causes and consequences of shifts in macroalgal productivity. Our goal is to highlight the applications of two complementary tools for measuring photosynthesis—variable chlorophyll a fluorescence and photorespirometry—and provide guidance for the integration of physiology and ecology to understand the drivers of change in macroalgal communities. Photorespirometry can provide an integrated measure of whole‐community metabolism, including an estimate of the physiological costs associated with stressors, while fluorescence‐based techniques provide point measures of the efficiency of the photosynthetic apparatus within communities. Variable chlorophyll a fluorescence does not provide an estimate of carbon balance or integrated photosynthesis across either whole plants or whole communities but can be used to estimate the contribution of individual community components in the dynamic subcanopy environment to help us understand the mechanisms underlying observed responses. We highlight the importance of the highly dynamic light environment within macroalgal communities and call for better integration of physiological techniques in an ecological context to enhance our understanding of the responses of whole communities to local and global stressors.  相似文献   

15.
Darkening of parts of the Greenland ice sheet surface during the summer months leads to reduced albedo and increased melting. Here we show that heavily pigmented, actively photosynthesising microalgae and cyanobacteria are present on the bare ice. We demonstrate the widespread abundance of green algae in the Zygnematophyceae on the ice sheet surface in Southwest Greenland. Photophysiological measurements (variable chlorophyll fluorescence) indicate that the ice algae likely use screening mechanisms to downregulate photosynthesis when exposed to high intensities of visible and ultraviolet radiation, rather than non-photochemical quenching or cell movement. Using imaging microspectrophotometry, we demonstrate that intact cells and filaments absorb light with characteristic spectral profiles across ultraviolet and visible wavelengths, whereas inorganic dust particles typical for these areas display little absorption. Our results indicate that the phototrophic community growing directly on the bare ice, through their photophysiology, most likely have an important role in changing albedo, and subsequently may impact melt rates on the ice sheet.  相似文献   

16.
17.
The well-known ciliate, Mesodinium Stein, 1863, is of great importance to marine microbial food webs and is related to the "red tides". However, it is possibly one of the most confusing ciliate taxa in terms of its systematic position: either the morphological or the molecular data excluded it from all the other known assemblages or groups. In the current work, the sequences of small subunit ribosomal RNA(SSU rR NA) genes for all isolates available are analysed and an examination of the secondary structure patterns of related groups is carried out. The results indicate that(1) Mesodinium invariably represents a completely separated and isolated clade positioned between two subphyla of ciliates with very deep branching, which indicates that they should be a primitive or ancestral group for the subphylum Intramacronucleata;(2) the secondary structure of the SSU r RNA of Mesodinium species is unusual in that, while the secondary structure of V4 in Mesodinium sp. has the deletions common to all litostome ciliates, it has more extensive deletions in helix E238 and a longer helix E231;(3) combining the phylogenetic and morphological information, we suggest establishing Mesodiniea cl. nov., including the order Mesodiniida Grain, 1994, belonging to the subphylum Intramacronucleata.  相似文献   

18.
The chlorophyll c-containing algae comprise four major lineages: dinoflagellates, haptophytes, heterokonts, and cryptophytes. These four lineages have sometimes been grouped together based on their pigmentation, but cytological and rRNA data had suggested that they were not a monophyletic lineage. Some molecular data support monophyly of the plastids, while other plastid and host data suggest different relationships. It is uncontroversial that these groups have all acquired plastids from another eukaryote, probably from the red algal lineage, in a secondary endosymbiotic event, but the number and sequence of such event(s) remain controversial. Understanding chlorophyll c-containing plastid relationships is a first step towards determining the number of endosymbiotic events within the chromalveolates. We report here phylogenetic analyses using 10 plastid genes with representatives of all four chromalveolate lineages. This is the first organellar genome-scale analysis to include both haptophytes and dinoflagellates. Concatenated analyses support the monophyly of the chlorophyll c-containing plastids and suggest that cryptophyte plastids are the basal member of the chlorophyll c-containing plastid lineage. The gene psbA, which has at times been used for phylogenetic purposes, was found to differ from the other genes in its placement of the dinoflagellates and the haptophytes, and in its lack of support for monophyly of the green and red plastid lineages. Overall, the concatenated data are consistent with a single origin of chlorophyll c-containing plastids from red algae. However, these data cannot test several key hypothesis concerning chromalveolate host monophyly, and do not preclude the possibility of serial transfer of chlorophyll c-containing plastids among distantly related hosts.  相似文献   

19.
    
Cryptophytes are unicellular, biflagellate algae with plastids (chloroplasts) derived from the uptake of a red algal endosymbiont. These organisms are unusual in that the nucleus of the engulfed red alga persists in a highly reduced form called a nucleomorph. Nucleomorph genomes are remarkable in their small size (<1,000 kilobase pairs [kbp]) and high degree of compaction (~1 kbp per gene). Here, we investigated the molecular and karyotypic diversity of nucleomorph genomes in members of the genus Cryptomonas. 18S rDNA genes were amplified, sequenced, and analyzed from C. tetrapyrenoidosa Skuja CCAP979/63, C. erosa Ehrenb. emmend. Hoef‐Emden CCAP979/67, Cryptomonas sp. CCAP979/52, C. lundii Hoef‐Emden et Melkonian CCAP979/69, and C. lucens Skuja CCAP979/35 in the context of a large set of publicly available nucleomorph 18S rDNA sequences. Pulsed‐field gel electrophoresis (PFGE) was used to examine the nucleomorph genome karyotype of each of these strains. Individual chromosomes ranged from ~160 to 280 kbp in size, with total genome sizes estimated to be ~600–655 kbp. Unexpectedly, the nucleomorph karyotype of Cryptomonas sp. CCAP979/52 is significantly different from that of C. tetrapyrenoidosa and C. lucens, despite the fact that their 18S rDNA genes are >99% identical to one another. These results suggest that nucleomorph karyotype similarity is not a reliable indicator of evolutionary affinity and provides a starting point for further investigation of the fine‐scale dynamics of nucleomorph genome evolution within members of the genus Cryptomonas.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号