首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simulated flooding experiment was conducted to evaluate the effects of seasonal flooding on the plant Salix triandroides from the Dongting Lake wetlands in China. The morphology, photosynthetic activity, and anatomy of cuttings in three water conditions (?40 cm, water level 40 cm below soil surface; 0 cm, water level 0 cm at the soil surface; and 40 cm, water level 40 cm above soil surface) and two lights conditions (full sunlight and 10% sunlight) were measured. Plants had a higher survival ratio and biomass accumulation in full sunlight than in 10% sunlight when the water level was ?40 and 0 cm, but there was no difference between these parameters in cuttings grown under the two light conditions in the 40 cm water treatment. In full sunlight, a lower survival ratio and reduced biomass were observed with increasing water level. The same trend was also seen for survival ratio in 10% sunlight. However, there was no difference in biomass among the three water levels in 10% sunlight, except for leaf weight. Branch height, leaf number, adventitious root length, and adventitious root number were different in the three water levels and two light conditions. In water levels of ?40 and 0 cm, plants had lower chlorophyll contents in full sunlight than in 10% sunlight. In full sunlight, there was no difference in chlorophyll content between the water levels, while in 10% sunlight, lower chlorophyll content was observed in ?40 cm than in 0 cm water. Photosynthetic rate, stomatal conductance, and transpiration rate decreased, but water-use efficiency increased in reduced light at all three water levels. Additionally, plants had higher porosity in 40 cm water than in ?40 and 0 cm conditions. Based on the reduced plant growth in the 10% sunlight condition and decreased survival in the 40 cm water level, we conclude that low light significantly decreased plant acclimation to incomplete submergence and that high water levels induced dormancy in the cuttings. Therefore, the height of cuttings used for forestation or reforestation is an important consideration for mitigating the negative effects of seasonal flooding on the survival and growth of S. triandroides in Dongting Lake wetlands.  相似文献   

2.
The 8 days old seedlings of pea (cv. Ilowiecki) and maize (cv. Alma F1) were subjected to differentiated aeration conditions (control — with pore water tension about 15 kPa and flooded treatment) for 12 days at three soil temperatures (7, 15 and 25 °C). The shoots were grown at 25 °C while the soil temperature was differentiated by keeping the cylinders with the soil in thermostated water bath of the appropriate temperature. Lowering the root temperature with respect to the shoot temperature caused under control (oxic) conditions a decrease of the root penetration depth, their mass and porosity as well as a decrease of shoot height, their mass and chlorophyll content; the changes being more pronounced in maize as compared to the pea plants. Flooding the soil diminished the effect of temperature on the investigated parameters; the temperature effect remaining significant only in the case of shoot biomass and root porosity of pea plants. Root porosity of pea plants ranged from 2 to 4 % and that of maize plants — from 4 to 6 % of the root volume. Flooding the soil caused an increase in the root porosity of the pea plants in the entire temperature range and in maize roots at lower temperatures by about 1 % of the root volume. Flooding the soil caused a decrease of root mass and penetration depth as well as a decrease of plant height, biomass and leaf chlorophyll content.  相似文献   

3.
This study was carried out to determine the effect of chilling on both cold-acclimated and non-acclimated chickpea (Cicer arietinum L.) cultivars (Gökçe and Can?tez 87). Chickpea seedlings grown in soil culture for 12 days were subjected to chilling temperatures (2 and 4°C for 12 days) after maintaining in cold-acclimation (10°C, 7 days) or non-acclimation (25°C, 7 days) periods. The lowest values of growth parameters were obtained with cold-acclimated plants, whereas non-acclimated plants exhibited the lowest water content values, especially at 2°C. There was no effect of cold-acclimation period on chlorophyll fluorescence parameters. Plants subjected to chilling temperatures after cold-acclimation were more tolerant with respect to chlorophyll fluorescence parameters, and Gökçe had better photosystem II (PSII) photochemical activity. In the chilling treatments, total chlorophyll (a + b) content reduced, especially at 2°C, while anthocyanin and flavonoid contents increased to a greater extent in Gökçe and carotenoid content of the cultivars did not change. Malondialdehyde (MDA) content was higher for Can?tez 87, mostly at 2°C, while proline accumulation was greater for Gökçe. The cold-acclimation period led to a remarkable increase in antioxidant enzyme activities of both cultivars. The superoxide dismutase (SOD) activity was much higher in Gökçe for both chilling temperatures and the ascorbate peroxidase (APX) activity increased only in the cold-acclimated 4°C treatments. Similarly, with APX activity, the glutathione reductase (GR) and peroxidase (POD) activities of cultivars were higher in cold-acclimated plants at both the chilling temperatures, mostly in Gökçe. The results of this study indicate that cold-acclimation increased the cultivars ability to withstand the chilling temperatures. The lower MDA content and higher antioxidant and photochemical activities in Gökçe indicated an enhanced chilling tolerance capacity of this cultivar to protect the plant from oxidative damage.  相似文献   

4.
Does biochar influence soil physical properties and soil water availability?   总被引:10,自引:0,他引:10  

Aims

This study aims to (i) determine the effects of incorporating 47 Mg ha?1 acacia green waste biochar on soil physical properties and water relations, and (ii) to explore the different mechanisms by which biochar influences soil porosity.

Methods

The pore size distribution of the biochar was determined by scanning electron microscope and mercury porosimetry. Soil physical properties and water relations were determined by in situ tension infiltrometers, desorption and evaporative flux on intact cores, pressure chamber analysis at ?1,500 kPa, and wet aggregate sieving.

Results

Thirty months after incorporation, biochar application had no significant effect on soil moisture content, drainable porosity between –1.0 and ?10 kPa, field capacity, plant available water capacity, the van Genuchten soil water retention parameters, aggregate stability, nor the permanent wilting point. However, the biochar-amended soil had significantly higher near-saturated hydraulic conductivity, soil water content at ?0.1 kPa, and significantly lower bulk density than the unamended control. Differences were attributed to the formation of large macropores (>1,200 μm) resulting from greater earthworm burrowing in the biochar-amended soil.

Conclusion

We found no evidence to suggest application of biochar influenced soil porosity by either direct pore contribution, creation of accommodation pores, or improved aggregate stability.  相似文献   

5.
Limited soil water availability is a major threat to agricultural productivity because it inhibits plant growth and yields. Various strategies have been adopted to mitigate water deficit stress in plants; however, using extremophilic microbes with plant growth promoting traits could be an environmentally friendly and cost-effective approach to improve crop stress resilience. Rhizobia are well known for their symbiotic association with legumes, but they can also improve the fitness of non-legumes under stressed conditions. Thus, different rhizobial strains were isolated from nodules of two legumes (lentil and chickpea) and tested for osmoadaptation at four different polyethylene glycol (PEG-6000) levels, i.e., ? 0.05, ? 0.65, ? 1.57, and ? 2.17 MPa. Two stress-tolerant rhizobial strains, SRL5 and SRC8, were selected to evaluate their potential to induce tolerance against water deficits in wheat grown at four different percentages of field capacity (FC; 40, 60, 80, and 100%). Rhizobial inoculation improved physiological parameters and growth of wheat under water deficit; however, co-inoculation of selected rhizobia was better than sole application. Grain yield was most limited at the highest level of water deficit but sole inoculation with SRC8 and SRL5 improved yield by 24% and 19%, respectively. Combined inoculation increased grain yield by up to 48% compared to the uninoculated control. Thus, rhizobia from different legumes possess enormous potential for improving the resilience of cereals (non-legumes) to water deficit stress. Moreover, co-inoculation of rhizobia could be more beneficial than their sole application.  相似文献   

6.
Summary The effect of soil moisture tension on nitrate reductase and on nitrate accumulation in wheat plants was studied. Nitrate reductase activity was inhibited when soil moisture tension was increased to about 3.0 bars associated with a drop in leaf relative water content to about 90 per cent. The decrease in nitrate reductase activity did not result in nitrate accumulation in short-term experiments (10 days) when plants were exposed to only 1–2 cycles of elevated soil moisture tensions. However, when the period of different moisture regimes was extended up to the flag-leaf stage, nitrate accumulated in stressed plants.Significant increase in plant nitrate concentration as a result of increased moisture tensions was only found at the high levels of added nitrogen. On the other hand, moisture tensions had no effect on the content of total nitrogen in wheat shoots, implying that nitrate reduction was rather limiting under stress conditions.An effect of soil moisture tension and nitrogen nutrition on dry matter production by wheat seedlings was also found in the long-term experiment. At the highest dose of soil nitrogen an increase in maximal soil moisture tension from 0.1 to 0.33 bars reduced plant growth; at intermediate nitrogen doses only tension higher than 2 bars reduced growth. Under complete nitrogen deficiency, plant dry matter production was very low and was not affected by soil moisture tensions.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. 1972 Series, No. 2185-E.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. 1972 Series, No. 2185-E.  相似文献   

7.
Stress induced by water deficit is considered to be a global problem and one of the most important factors limiting crop production in arid and semi-arid regions of the world. Application of certain microorganisms, including arbuscular mycorrhizal fungi (AMF), is considered to be an effective and sustainable strategy to mitigate the problem. A pot experiment was conducted in the field (from Feb. to Sep. in 2013–2014 in Isfahan, Iran) to assess the effectiveness of AMF inoculation on changes in biomass, essential oils, nutrient uptake and water-use efficiency of rose geranium (Pelargonium graveolens L.) experiencing stress induced by a deficit of water. The experiment was planned as a factorial experiment, using a completely randomized design, with two factors, including four AMF inoculation (non-mycorrhizal, Rhizophagus intraradices and Funneliformis mosseae inoculated, and the combination of both species) and three irrigation levels including well-watered (WW), moderate water deficiency (MWD) and severe water deficiency (SWD). The results indicated the occurrence of an adverse effect of water deficit on plant total biomass; however, AMF inoculation positively increased plant biomass compared to the non-inoculated ones under three irrigation levels. MWD condition resulted in higher essential oil (EO) content (12.4 %), water-use efficiency (WUE) (29.5 %) and glomalin-related soil proteins (GRSP) (19.1 %) in the plants compared to WW condition. Furthermore, all AMF inoculation improved EO content by at least 12 k%. The results also showed that severe water deficiency adversely affected the uptake of most nutrients by plants especially in non-inoculated plants. The results also revealed that, although EO production was under the control of irrigation regime, nutrient uptake was critically dependent on an association with mycorrhizae. Notwithstanding the fact that rose geranium can tolerate moderate drought stress, the high responsiveness of rose geranium to AMF under water deficiency stress confirms the key role of AMF in facilitating the production of this valuable crop in harsh environments. Dual infection of rose geranium with two AMF species could also synergistically affect biomass, essential oil content and mineral elements absorption.  相似文献   

8.
The possible hydrolytic activity towards chlorophyll molecules was predicted for DUF538 protein superfamily in plants. It was examined by using computational as well as experimental tools including in vitro chlorophyll degradation, antioxidant compounds production and in vivo real-time gene expression tests. Comparison of the computational data with the experimental results indicated that DUF538 proteins might be chlorophyll hydrolyzing enzyme (most probably carboxyesterase) which degrade chlorophyll molecules (66 % per 12 hrs) to produce new compounds (1.8 fold per 12 hrs) with antioxidant properties. The relevance of DUF538 gene expression level with the chlorophyll contents (2.8 fold increase per chlorophyll content of 50 %) of the drought-stressed leaves showed that chlorophyll degradation by DUF538 is most probably induced in response to stress stimuli. Despite membranous chlorophyll catabolic pathways, DUF538-dependent reactions is predicted to be occurred in the cytosol of the under stressed plants. We addressed as to whether chlorophyll breakdown to antioxidant compounds by DUF538 is a defense mechanism of plants against stress stimuli, in vivo? This question is going to be investigated in our next research project.  相似文献   

9.
Replacement of grasslands by forests may result in increased water consumption, and the magnitude of this will depend on stand density. To test this hypotheses and evaluate the impact of pine plantations on hydric resources in Patagonia Argentina, we measured over two seasons (1999–2000 and 2000–2001) and at two densities of ponderosa pine plantations (350 and 500 trees ha?1) the following variables: soil water content, leaf water potential (ψ), individual tree growth, individual sap flow, and response of sap flow density (u) to vapor pressure deficit (VPD). Stand transpiration (T) and whole-plant liquid-phase hydraulic conductance (L) were also estimated. Pre-dawn ψ varied from about –0.5 to –1.0 MPa. No differences were found in midday maximum u (1100–1800 hours) on clear days between the 2 measurement years, throughout each season, or between different densities of plantation. Sapflow density was also not correlated with soil water storage up to 1.4 m soil depth. Sapflow increased until VPD of about 2.3 kPa, and decreased at VPD >4 kPa, describing a hysteresis in the afternoon. Values of L in Patagonian trees were similar to those recalculated from published data for pines of the same height in the USA. Average stand transpiration increased with increased density (2.07 and 3.08 mm day-1 for 350 and 500 pines ha-1, respectively) and size of the trees. We conclude that ponderosa pines in Patagonia Argentina use more water, in a magnitude depending on the density of the trees, than native grasslands. Accordingly, ponderosa pines use deep water to maintain high water potential and transpiration rates even during the dry season.  相似文献   

10.
Water deficit limits plant growth and yield. Arbuscular mycorrhizal (AM) symbiosis is viewed as one of the several methods to improve growth under water deficit. The present study investigated the growth performance in relation to water deficit in two cultivars (“H2” and “660”) of AM treated macadamia (Macadamia tetraphylla L.) plants. AM treatment significantly improved the growth in macadamia plants that have been subjected to water deficit (7 % soil water content) for 14 days. Leaf water content (LWC) and maximum quantum yield of PSII (Fv/Fm) in AM-associated plants were maintained better than those in the control (well-watered) plants. A positive correlation was observed between LWC and Fv/Fm in “H2” cultivar. AM treatment enhanced proline and soluble sugar content in “H2” cultivar under water deficit stress. In contrast, only soluble sugars were accumulated in the AM-associated plants of “660” cultivar under water deficit stress. The study concludes that soluble sugars and proline are involved as key signals of osmoregulation defense response, improve water relation in plant tissues, and thereby resulting in improved growth in AM-associated macadamia plants.  相似文献   

11.
Bruguiera cylindrica is a major mangrove species in the tropical mangrove ecosystems and it grows in a wide range of salinities without any special features for the excretion of excess salt. Therefore, the adaptation of this mangrove to salinity could be at the physiological and biochemical level. The 3-month-old healthy plantlets of B. cylindrica, raised from propagules were treated with 0 mM, 400 mM, 500 mM and 600 mM NaCl for 20 days under hydroponic culture conditions provided with full strength Hoagland medium. The modulation of various physiochemical changes in B. cylindrica, such as chlorophyll a fluorescence, total chlorophyll content, dry weight, fresh weight and water content, Na+ accumulation, oxidation and antioxidation (enzymatic and non-enzymatic) features were studied. Total chlorophyll content showed very minute decrease at 500 mM and 600 mM NaCl treatment for 20 days and the water content percentage was decreased both in leaf and root tissues with increasing concentration. A significant increase of Na+ content of plants from 84.505 mM/plant dry weight in the absence of NaCl to 543.38 mM/plant dry weight in plants treated with 600 mM NaCl was recorded. The malondialdehyde and the metabolites content associated with stress tolerance (amino acid, total phenols and proline) showed an increasing pattern with increasing NaCl concentration as compared to the control in both leaf and root tissues but the increase recorded in plantlets subjected to 500 mM was much less, indicating the tolerance potential of this species towards 500 mM NaCl. The significant decrease of sugar content was found only in 600 mM NaCl on 20 days of treatment, showing that the process of sugar synthesis was negatively affected but the same process remains less affected at 500 mM NaCl. A slight reduction in ascorbate and glutathione content and very less increase in carotenoid content were observed at 500 mM and 600 mM NaCl stress. Antioxidant enzymes (APX, GPX, SOD and CAT) showed an enhanced activity in all the treatments and the increased activity was more significant in 600 mM treated plants. The result establishes that B. cylindrica tolerates high NaCl concentration, to the extent of 500 mM NaCl without any major inhibition on photosynthesis and metabolite accumulation. Understanding the modulation of various physiological and biochemical changes of B. cylindrica at high levels of NaCl will help us to know the physiochemical basis of tolerance strategy of this species towards high NaCl.  相似文献   

12.
Herbivore injury has a direct effect on the growth and performance of host plants through photosynthetic suppression. However, changes in plant photosynthesis affected by ant tending of hemipteran sap feeders remain poorly understood. We investigated the effects of an invasive mealybug (Phenacoccus solenopsis) tended by native ants (Paratrechina longicornis) on the chlorophyll content and chlorophyll fluorescence characteristics of cotton (Gossypium hirsutum) leaves under greenhouse conditions. The results showed that the relative chlorophyll content of the infested cotton leaves significantly decreased after 10 days, and the chlorophyll contents were reduced by 26.4 and 34.9 % after 20 days in the without and with ant treatments compared to the control, respectively. In addition, the light utilization efficiency and maximum relative electron transport rate were reduced by 53.0 and 51.3 % compared to the control, respectively. However, no significant differences in these factors were found between the without and with ant treatments. The light saturation coefficient, describing the capacity of a sample to resist glare, exhibited no significant difference among treatments. The number of tending P. longicornis ants increased with P. solenopsis numbers, and the P. solenopsis numbers decreased after 20 days compared to the without ant treatment. We suggest that the tending ants may enhance the feeding ability of individual mealybugs in spite of the decreased number of mealybugs in this situation. Additionally, P. longicornis decrease the relative chlorophyll content of infested cotton leaves and may accelerate the damage caused by P. solenopsis to plants over time.  相似文献   

13.
Dioon edule seedling mortality is mostly attributed to dehydration by prolonged drought, even when they present xeromorphic characteristics like the adult plants. The effect of germination date (GD) and soil water deficit on seedling tolerance to water stress was assessed. The seedlings germinated and grown from mature seeds every month from December to April GD were selected to evaluate the leaf area, photosynthetic pigment content, crassulacean acid metabolism (CAM) activity, stomatal conductance (gs) and leaflet anatomy at soil water potential (Ψs) of 0.0 MPa (day 1), ?0.1 MPa (day 40), ?1.0 MPa (day 90), ?1.5 MPa (day 130), and a control (0.0 MPa at day 130) to recognize differences due to leaf development. The seedlings shifted from C3 to CAM cycling when exposed to water stress at Ψs of ?1.0 MPa, like adult plants. The March–April GD seedlings with undeveloped sclerified hypodermis and stomata, presented reduced leaf area, lower Chlorophyll a/b ratio, higher CAM activity and midday partial stomatal closure when reached Ψs of ?1.0 MPa. These have higher probability of dehydration during severe drought (February–April) than those of the December–February GD with similar Ψs. Plants used for restoration purposes must have full leaf development to increase the survival.  相似文献   

14.
The desiccation-tolerant plants of the R. serbica and R. nathaliae are resurrection plants which are able to fully recover their physiological function after anabiosis. A comparison of chlorophyll fluorescence imaging and photosynthetic pigment contents responses of R. serbica and, for the first time, R. nathaliae to dehydration and rehydration were investigated. For this purpose, plants after collection from their natural habitats were kept fully watered for 14 days at natural condition. The experiment was conducted with mature leaves of both species. R. serbica and R. nathaliae plants were dehydrated to 5.88 % and 7.87 % relative water content (RWC) by withholding water for 15 days, afterwards the plants were rehydrated for 72 hours to 94.67 % and 97.02 % RWC. During desiccation, R. serbica plants preserved the chlorophyll content about 84 %, while R. nathaliae about 90 %. During dehydration when RWC were more than 40 %, photochemical efficiency of PSII for photochemistry, the Fv/Fm ratio, decreased about 40 % in R. nathaliae plants, but a strong reduction with 60 % was recorded for R. serbica. Following rehydration, the Fv/Fm ratio recovered more rapidly in R. nathaliae. The higher photosynthetic rates could also be detected via imaging the chlorophyll fluorescence decrease ratio Rfd, which possessed higher values after rehydration leaves of R. nathaliae as compared to R. serbica. The results showed that the photosynthetic activity and chlorophyll contents after rehydration are recovered more rapidly in R. nathaliae in comparison to R. serbica.  相似文献   

15.
Phycobiliproteins, light-harvesting pigments found in cyanobacteria and in some eukaryotic algae, have numerous commercial applications in food, cosmetic, and pharmaceutical industries. Colorant production from cyanobacteria offers advantages over their production from higher plants, as cyanobacteria have fast growth rate and high photosynthetic efficiency and require less space. In this study, three cyanobacteria strains were studied for phycobiliprotein production and the influence of sodium nitrate, potassium nitrate and ammonium chloride on the growth and phycobiliprotein composition of the strains were evaluated. In the batch culture period of 12 days, Phormidium sp. and Pseudoscillatoria sp. were able to utilize all tested nitrogen sources; however, ammonium chloride was the best nitrogen source for both strains to achieve maximum growth rate μ?=?0.284?±?0.03 and μ?=?0.274?±?0.13 day?1, chlorophyll a 16.2?±? 0.5 and 12.2?±? 0.2 mg L?1, and phycobiliprotein contents 19.38?±?0.09 and 19.99?±?0.14% of dry weight, whereas, for Arthrospira platensis, the highest growth rate of μ?=?0.304?±?0.0 day?1, chlorophyll a 19.1?±?0.5 mg L?1, and phycobiliprotein content of 22.27?±?0.21% of dry weight were achieved with sodium nitrate. The phycocyanin from the lyophilized cyanobacterial biomass was extracted using calcium chloride and food grade purity (A620/A280 ratio >?0.7) was achieved. Furthermore, phycocyanin was purified using two-step chromatographic method and the analytical grade purity (A620/A280 ratio >?4) was attained. SDS-PAGE demonstrated the purity and presence of two bands corresponding to α- and β-subunits of the C-phycocyanin. The results showed that Phormidium sp. and Pseudoscillatoria sp. could be good candidates for phycocyanin production.  相似文献   

16.
Water deficit is considered the main abiotic stress that limits agricultural production worldwide. Brassinosteroids (BRs) are natural substances that play roles in plant tolerance against abiotic stresses, including water deficit. This research aims to determine whether BRs can mitigate the negative effects caused by water deficiency, revealing how BRs act and their possible contribution to increased tolerance of cowpea plants to water deficit. The experiment was a factorial design with the factors completely randomised, with two water conditions (control and water deficit) and three levels of brassinosteroids (0, 50 and 100 nM 24-epibrassinolide; EBR is an active BRs). Plants sprayed with 100 nM EBR under the water deficit presented significant increases in ΦPSII, qP and ETR compared with plants subjected to the water deficit without EBR. With respect to gas exchange, P N, E and g s exhibited significant reductions after water deficit, but application of 100 nM EBR caused increases in these variables of 96, 24 and 33%, respectively, compared to the water deficit + 0 nM EBR treatment. To antioxidant enzymes, EBR resulted in increases in SOD, CAT, APX and POX, indicating that EBR acts on the antioxidant system, reducing cell damage. The water deficit caused significant reductions in Chl a, Chl b and total Chl, while plants sprayed with 100 nM EBR showed significant increases of 26, 58 and 33% in Chl a, Chl b and total Chl, respectively. This study revealed that EBR improves photosystem II efficiency, inducing increases in ΦPSII, qP and ETR. This substance also mitigated the negative effects on gas exchange and growth induced by the water deficit. Increases in SOD, CAT, APX and POX of plants treated with EBR indicate that this steroid clearly increased the tolerance to the water deficit, reducing reactive oxygen species, cell damage, and maintaining the photosynthetic pigments. Additionally, 100 nM EBR resulted in a better dose–response of cowpea plants exposed to the water deficit.  相似文献   

17.
Drought is one of the environmental factors that most affects peanut cultivation in semi-arid regions, resulting in economic losses to growers. However, growth promoting bacteria are able to reduce water deficit damage in some plant species. In this context, this study aimed to evaluate the interaction of Bradyrhizobium strains reducing water stress effects on peanut genotypes by antioxidant enzymes activities, leaf gas exchanges and vegetative growth, as well as to determine the taxonomic positioning of strain ESA 123. The 16S rRNA gene of ESA 123 was amplified by PCR and sequenced by dideoxy Sanger sequencing method. An experiment was performed in greenhouse with three peanut genotypes (BRS Havana, CNPA 76 AM and 2012-4), two Bradyrhizobium strains (SEMIA 6144 and ESA 123), a mineral source of N and an absolute control (without N) under two water regimes (with and without irrigation). Seeds of peanut were sown and the plants were grown until 30 days after emergence. On the 20th day, the water deficit plants group had their irrigation suspended for 10 days. At in silico analyzes, ESA 123 presented 98.97% similarity with the type strain of B. kavangense. Leaf gas exchange was affected by water deficit; as well as alteration of antioxidant activities and reduction of vegetative growth variables. However, some plants inoculated with SEMIA 6144 and ESA 123 strains presented lower reductions and increment of some evaluated variables, mainly the ones inoculated with the ESA 123 strain, Bradyrhizobium sp. from the semi-arid region of Northeast Brazil. This data suggests beneficial effects of the peanut-Bradyrhizobium interaction in a water stress condition, specially with the ESA 123 strain.  相似文献   

18.
The fact that molybdenum (Mo) applications can alleviate low temperature stress (LTS) in plants has been widely reported, but the underlying mechanisms are not fully understood. The effects of Mo (0 and 0.15 mg kg?1) on photosynthetic pigments, fatty acids and the chlorophyll–protein complex of wheat seedlings in pot culture were investigated at 0, 2, 4 and 6 days of LTS. Chlorophyll a and b, total chlorophyll and carotenoid contents were significantly enhanced by Mo application. The palmitic acid (C16:0) content and total saturated fatty acids (TSFA) were drastically decreased in wheat cultivar 97003 at 2 and 4 days of LTS and in wheat cultivar 97014 at 2 days of LTS. The linolenic acid (C18:3) content and total unsaturated fatty acids (TUSFA) were significantly increased in both cultivars at 2 and 4 days of LTS. The palmitoleic acid (C16:1) content was also drastically increased in cultivar 97003 at 2 days of LTS, suggesting that Mo induced a greater production of unsaturated fatty acids or the conversion of TSFA to TUSFA. The ratio of unsaturated to saturated fatty acids and the index of unsaturated fatty acids in the thylakoid membranes were enhanced with supplemental Mo, suggesting that Mo might improve the degree of unsaturation. However, no significant differences were observed in the chlorophyll–protein complexes between the +Mo and ?Mo treatments. These results indicated that the alteration of fatty acids induced by Mo application in the thylakoid membranes of wheat contributed to LTS tolerance.  相似文献   

19.
Salvia sinaloensis Fern. (sage) is a medicinal plant containing plant secondary metabolites (PSMs) with antioxidant properties. The current study investigated the effects of drought stress on S. sinaloensis morphological and ecophysiological traits, and active constituent production. Sage plants were cultivated in controlled conditions for 34 days and exposed to full irrigation as control, half irrigation, or no irrigation. Changes in growth index (G.I.), dry biomass, leaf water potential (LWP), physiological parameters, active compounds, volatilome (BVOCs) and essential oils (EOs) were determined. Not irrigated plants showed a decrease in total chlorophyll content (~???14.7%) and growth (G.I., ~???59.4%) from day 18, and dry biomass at day 21 (??56%), when the complete leaf withering occurred (LWP, ??1.10 MPa). Moderate drought stressed plants showed similar trends for chlorophyll content and growth but kept a constant LWP (??0.35 MPa) and dry biomass throughout the experiment, as control plants. Carotenoids were not affected by water regimes. The photosynthetic apparatus tolerated mild to severe water deficits, without a complete stomatal closure. Plants under both stress conditions increased the percentage of phenols and flavonoids and showed altered BVOC and EO chemical profiles. Interestingly Camphor, the main EO oxygenated monoterpene, increased in moderate stressed plants while the sesquiterpene hydrocarbon Germacrene D decreased. The same trend was seen in the headspace under stress severity. The data evidenced a possible role of the active molecules in the response of S. sinaloensis plants to drought stress. Taking together, these findings point at S. sinaloensis as a potential drought adaptive species, which could be used in breeding strategies to obtain sages with high quality PSMs, saving irrigation water.  相似文献   

20.
The objectives of this study were to investigate stomatal regulation in maize seedlings during progressive soil drying and to determine the impact of stomatal movement on photosynthetic activity. In well-watered and drought-stressed plants, leaf water potential (Ψ leaf), relative water content (RWC), stomatal conductance (g s), photosynthesis, chlorophyll fluorescence, leaf instantaneous water use efficiency (iWUEleaf), and abscisic acid (ABA) and zeatin-riboside (ZR) accumulation were measured. Results showed that g s decreased significantly with progressive drought and stomatal limitations were responsible for inhibiting photosynthesis in the initial stages of short-term drought. However, after 5 days of withholding water, non-stomatal limitations, such as damage to the PSII reaction center, became the main limiting factor. Stomatal behavior was correlated with changes in both hydraulic and chemical signals; however, changes in ABA and ZR occurred prior to any change in leaf water status. ABA in leaf and root tissue increased progressively during soil drying, and further analysis found that leaf ABA was negatively correlated with g s (R 2 = 0.907, p < 0.05). In contrast, leaf and root ZR decreased gradually. ZR in leaf tissue was positively correlated with g s (R 2 = 0.859, p < 0.05). These results indicate that ABA could induce stomatal closure, and ZR works antagonistically against ABA in stomatal behavior. In addition, the ABA/ZR ratio also had a strong correlation with g s, suggesting that the combined chemical signal (the interaction between ABA and cytokinin) plays a role in coordinating stomatal behavior. In addition, Ψ leaf and RWC decreased significantly after only 3 days of drought stress, also affecting stomatal behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号