首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
A 70-KD heat shock protein (HSP70) is one of the most conserved chaperones. It is involved in de novo protein folding and prevents the aggregation of unfolded proteins under lethal environmental factors. The purpose of this study is to characterise a MuHSP70 from horsegram (Macrotyloma uniflorum) and elucidating its role in stress tolerance of plants. A MuHSP70 was cloned and characterised from a natural drought stress tolerant HPK4 variety of horsegram (M. uniflorum). For functional characterization, MuHSP70 was overexpressed in transgenic Arabidopsis. Overexpression of MuHSP70 was found to provide tolerance to the transgenic Arabidopsis against various stresses such as heat, cold, drought, salinity and oxidative stress. MuHSP70 transgenics were observed to maintain the shoot biomass, root length, relative water content, and chlorophyll content during exposure to multi-stresses relative to non-transgenic control. Transgenic lines have further shown the reduced levels of MDA, H2O2, and proteolytic activity. Together, these findings suggest that overexpression of MuHSP70 plays an important role in improving abiotic stress tolerance and could be a crucial candidate gene for exploration in crop improvement program.  相似文献   

5.
On the basis of the results of gene chip analysis of the salt-tolerant wheat mutant RH8706-49 under conditions of salt stress, we identified and cloned an unknown salt-induced gene TaST (Triticum aestivum salt-tolerant). Real-time quantitative PCR analysis showed that the expression of the gene was induced by salt stress. Transgenic Arabidopsis plants overexpressing the TaST gene showed higher salt tolerance than the wild-type controls. Subcellular localization studies revealed that the protein encoded by this gene was in the nucleus. In comparison with wild-type controls, transgenic Arabidopsis plants accumulated more Ca2+, soluble sugar, and proline and less Na+ under salt stress. Real-time quantitative PCR analysis showed that Arabidopsis plants overexpressing TaST also showed increased expression of many stress-related genes. All these findings indicated that TaST can enhance the salt tolerance of transgenic Arabidopsis plants.  相似文献   

6.
The cuticle, composed primarily of wax and cutin, covers most plant aerial surfaces and plays a vital role in interactions between plants and their environment. Some ATP-binding cassette G subfamily (ABCG) members are involved in cuticular lipid molecule exportation to outside in the plant surface. Thellungiella salsugineum, a relative of Arabidopsis thaliana with a heavy cuticle, has extreme stress tolerance. TsABCG11, an ABCG transporter was cloned (GenBank accession number JQ389853), and its structure was studied. qRT-PCR showed that TsABCG11 expression varied in different organs of T. salsugineum and was upregulated under ABA, NaCl, drought and cold conditions. The rosette leaves from 4-week-old TsABCG11 overexpressed (OE) Arabidopsis plants displayed lower rates of water loss and decreased chlorophyll-extracted rates compared to wild-type plants. TsABCG11-OE plants also exhibited significantly increased total cuticular wax and cutin monomer amounts, mainly due to prominent changes in the C29, C31, and C33 alkanes in the wax and C18:2 dioic in cutin monomers, respectively. TsABCG11-OE seedlings exhibit lower root growth inhibition under 100 mM of NaCl or 1 µM of ABA than the wild type. Four-week-old TsABCG11-OE plants exhibited higher photosynthetic rates and water-use efficiency under cold stress (4 °C) than control plants. These results indicate that TsABCG11 plays an important role in cuticle lipid exportation and is involved in abiotic stresses, probably having a close relationship with extreme stress tolerance in T. salsugineum.  相似文献   

7.
Xanthine dehydrogenase (EC1.1.1.204; XDH) plays an important role in purine catabolism that catalyzes the oxidative hydroxylation of hypoxanthine to xanthine and of xanthine to uric acid. Long attributed to its role in recycling and remobilization of nitrogen, recently, XDH is implicated in plant stress responses and acclimation, such research efforts, however, have thus far been restricted to Arabidopsis XDH-knockdown/knockout studies. This study, using an ectopic overexpression approach, is expected to provide novel findings. In this study, a XDH gene from Vitis vinifera, named VvXDH, was synthesized and overexpressed in Arabidopsis, the transgenic Arabidopsis showed enhanced salt tolerance. The VvXDH gene was investigated and the results demonstrated the explicit role of VvXDH in conferring salt stress by increasing allantoin accumulation and activating ABA signaling pathway, enhancing ROS scavenging in transgenic Arabidopsis. In addition, the water loss and chlorophyll content loss were reduced in transgenic plants; the transgenic plants showed higher proline level and lower MDA content than that of wild-type Arabidopsis, respectively. In conclusion, the VvXDH gene has the potential to be applied in increasing allantoin accumulation and enhancing the tolerance to abiotic stresses in Arabidopsis and other plants.  相似文献   

8.
9.
Zinc is essential but toxic in excess. A bacterial metallothionein, SmtA from Synechococcus PCC 7942, has high affinity for Zn2+ and the intracellular exclusively handling of Zn2+. In this study, we report a functional analysis of SmtA in Arabidopsis thaliana and its response to zinc stress. After high zinc stress, the transgenic plants over-expressing SmtA showed higher survival rate than the wild type. We also found that over-expression of SmtA in Arabidopsis increased the activities of SOD and POD, and enhanced the tolerance to zinc stress. Together, our results indicate that SmtA may play an important role in the response to zinc stress in Arabidopsis.  相似文献   

10.
11.
12.
13.
Auxin receptors TIR1/AFBs play an essential role in a series of signaling network cascades. These F-box proteins have also been identified to participate in different stress responses via the auxin signaling pathway in Arabidopsis. Cucumber (Cucumis sativus L.) is one of the most important crops worldwide, which is also a model plant for research. In the study herein, two cucumber homologous auxin receptor F-box genes CsTIR and CsAFB were cloned and studied for the first time. The deduced amino acid sequences showed a 78% identity between CsTIR and AtTIR1 and 76% between CsAFB and AtAFB2. All these proteins share similar characteristics of an F-box domain near the N-terminus, and several Leucine-rich repeat regions in the middle. Arabidopsis plants ectopically overexpressing CsTIR or CsAFB were obtained and verified. Shorter primary roots and more lateral roots were found in these transgenic lines with auxin signaling amplified. Results showed that expression of CsTIR/AFB genes in Arabidopsis could lead to higher seeds germination rates and plant survival rates than wild-type under salt stress. The enhanced salt tolerance in transgenic plants is probably caused by maintaining root growth and controlling water loss in seedlings, and by stabilizing life-sustaining substances as well as accumulating endogenous osmoregulation substances. We proposed that CsTIR/AFB-involved auxin signal regulation might trigger auxin mediated stress adaptation response and enhance the plant salt stress resistance by osmoregulation.  相似文献   

14.
In Arabidopsis, NPR1 (non-expressor of pathogenesis related genes 1, AtNPR1) functions downstream of salicylic acid (SA) and modulates the SA mediated systemic acquired resistance. It is also involved in a cross talk with the jasmonate pathway that is essential for resistance against herbivores and necrotrophic pathogens. Overexpression of AtNPR1 in transgenic plants resulted in enhanced disease resistance. Recently, tobacco transgenic plants expressing AtNPR1 were shown to be tolerant to the early instars of Spodoptera litura (Meur et al., Physiol Plant 133:765–775, 2008). In this communication, we show that the heterologous expression of AtNPR1 in tobacco has also enhanced the oxidative stress tolerance. The transgenic plants exhibited enhanced tolerance to the treatment with methyl viologen. This tolerance was associated with the constitutive upregulation of PR1, PR2 (glucanase), PR5 (thaumatin like protein), ascorbate peroxidase (APX) and Cu2+/Zn2+ superoxide dismutase (SOD). This is the first demonstration of the novel function of heterologous expression of AtNPR1 in oxidative stress tolerance in transgenic tobacco.  相似文献   

15.
Cheng Y  Long M 《Biotechnology letters》2007,29(7):1129-1134
NADP-malic enzyme (NADP-ME, EC 1.1.1.40) functions in many different pathways in plant and may be involved in plant defense such as wound and UV-B radiation. Here, expression of the gene encoding cytosolic NADP-ME (cytoNADP-ME, GenBank Accession No. AY444338) in rice (Oryza sativa L.) seedlings was induced by salt stress (NaCl). NADP-ME activities in leaves and roots of rice also increased in response to NaCl. Transgenic Arabidopsis plants over-expressing rice cytoNADP-ME had a greater salt tolerance at the seedling stage than wild-type plants in MS medium-supplemented with different levels of NaCl. Cytosolic NADPH/NADP+ concentration ratio of transgenic plants was higher than those of wild-type plants. These results suggest that rice cytoNADP-ME confers salt tolerance in transgenic Arabidopsis seedlings.  相似文献   

16.
17.
Miura K  Sato A  Ohta M  Furukawa J 《Planta》2011,234(6):1191-1199
High salinity is an environmental factor that inhibits plant growth and development, leading to large losses in crop yields. We report here that mutations in SIZ1 or PHO2, which cause more accumulation of phosphate compared with the wild type, enhance tolerance to salt stress. The siz1 and pho2 mutations reduce the uptake and accumulation of Na+. These mutations are also able to suppress the Na+ hypersensitivity of the sos3-1 mutant, and genetic analyses suggest that SIZ1 and SOS3 or PHO2 and SOS3 have an additive effect on the response to salt stress. Furthermore, the siz1 mutation cannot suppress the Li+ hypersensitivity of the sos3-1 mutant. These results indicate that the phosphate-accumulating mutants siz1 and pho2 reduce the uptake and accumulation of Na+, leading to enhanced salt tolerance, and that, genetically, SIZ1 and PHO2 are likely independent of SOS3-dependent salt signaling.  相似文献   

18.
19.
We identified a peel-specific expressed gene in Citrus unshiu fruits by differentially expressed gene (DEG) analysis, which showed a homology with carotenoid isomerase-like genes identified from other plants and, therefore, designated as CuCRTISO-like. Here we determined the promoter sequence of CuCRTISO-like and analyzed histochemical GUS activity using transgenic Arabidopsis plants harboring CuCRTISO-like promoter-GUS gene constructs (pCRTL-Prom1~pCRTL-Prom5 lines). The promoter activity of CuCRTISO-like was detected in the cotyledon at 5 and 10 days after germination (DAG), young leaf, and anther, but not in the cotyledon at 15 DAG and mature leaf. Several cis-acting elements involved in hormones and abiotic stresses are located on the CuCRTISO-like promoter. Salicylic acid and ethylene treatments induced the GUS activity in the pCRTL-prom1 and pCRTL-Prom4 line, respectively. Treatment of drought and wounding stress induced the GUS activity in the pCRTL-Prom4 and pCRTL-Prom3 line, respectively. Heat stress treatment induced GUS activity more strongly as the promoter length decreased except for no GUS activity in the pCRTL-Prom5 line. The CuCRTISO-like expression during fruit maturation of C. unshiu showed a peel-specific expression pattern. Our results suggest that CuCRTISO-like promoter activity is regulated in a developmental and organ-specific manner, and responds to hormones and abiotic stresses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号