首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the rhizobacterial densities and community structure in watermelon rhizosphere under the infection of cucumber green mottle mosaic virus (CGMMV) by artificial inoculation. Rhizobacterial densities and communities were analysed from healthy and infected plants under aerobic and anaerobic culture techniques. The highest total number of aerobic rhizobacteria was counted to be 2.7 × 108 colony forming units per gram (CFU · g?1) and anaerobic rhizobacteria was to be 3.2 × 106 CFU · g?1, in healthy and infected plants, respectively. Cultivation-dependent ribosomal intergenic spacer analysis (RISA) was employed for further analysis on the rhizobacterial community structure. By incorporating the relative abundance of amplicons, the per cent similarity was determined by the similarity coefficients based only upon the absence or presence of DNA bands. The cluster analysis of RISA showed that the community structure of aerobic rhizobacteria exhibited 60% similarity between healthy and infected plant. The highest community structure similarity (50% similarity) of anaerobic rhizobacteria occurred between before planting and infected plant.  相似文献   

2.
This study investigated the effect of the dwarfing M9, semi‐dwarfing MM106 and local Hashabi rootstocks on the water use, canopy conductance (Gc) and hydraulic conductance (k) of apple orchards with the same scion, Golden Delicious. The average summer leaf area index (LAI) was 2·4, 2·7 and 1·7 for M9, MM106 and Hashabi, respectively. Irrigation in 1997 was less than water use until June, and excessive afterwards. In 1998, irrigation was doubled, and was excessive throughout the season. Sap flow (J) in June–August 1998 totalled 476, 682 and 606 mm (or 0·60, 0·86 and 0·76 of class A pan evaporation) for M9, MM106 and Hashabi, respectively. Maximum sap velocity in the three rootstocks (approximately 70 cm h?1) occurred in the outer 30–60% of the stem, and its decrease with depth was greater in M9 than in the other rootstocks. Midday Gc during both summers was least for M9, intermediate for Hashabi and greatest for MM106. The k value of M9 and MM106 for the soil to stem, stem to leaves and soil to leaves pathways were determined from daily courses of water potential of leaves, Ψl, stem, Ψstem and J. Specific k (ks, i.e. relative to stem sapwood area) did not significantly differ between the two rootstocks for soil to stem and soil to leaf pathways, but leaf specific k (kl) was greater for MM106 soil to stem (71% greater) and soil to leaf (63%) pathways, respectively. The inverse slopes of the relationships between midday canopy resistance (Rc) and vapour pressure deficit (D) for MM106 was 1·75 of that for M9, and the ratio of their Huber values, i.e. the ratio of sapwood to leaf area, was 1·6. These findings indicate that differences in water use are attributable to differences in kl, and not to differences in wood properties (ks). Application of a model relating Rc to orchard area specific k (kg) showed that the slope of the relationships between midday Rc and D for the 1998 data could be predicted using common values of ks (0·134 kg m?2 s?1 MPa?1) and midday Ψl (?1·34 MPa) for the three rootstocks. The implications of these findings, and the similarities in the differences between rootstocks of Gc, kl, kg and Huber values, are discussed with respect to rootstock water use and irrigation.  相似文献   

3.
The aim of this work was to evaluate the effects of co-inoculation with phosphate-solubilizing and nitrogen-fixing rhizobacteria on growth promotion, yield, and nutrient uptake by wheat. Out of twenty-five bacteria isolated from the rhizosphere soils of cereal, vegetable, and agro-forestry plants in eastern Uttar Pradesh, three superior most plant growth-promoting (PGP) isolates were characterized as Serratia marcescens, Microbacterium arborescens, and Enterobacter sp. based on their biochemical and 16S rDNA gene sequencing data and selected them for evaluating their PGP effects on growth and yield of wheat. Among them, Enterobacter sp. and M. arborescens fixed significantly higher amounts (9.32?±?0.57 and 8.89?±?0.58 mg Ng?1 carbon oxidized, respectively) of atmospheric nitrogen and produced higher amounts (27.06?±?1.70 and 26.82?±?1.63 TP 100 µg mL?1, respectively) of IAA in vitro compared to S. marcescens (8.32?±?0.39 mg Ng?1 carbon oxidized and 21.29?±?0.99 TP 100 µg mL?1). Although both M. arborescens and S. marcescens solubilized remarkable amounts of phosphate from tricalcium phosphate likely through production of organic acids, however, Enterobacter sp. was inactive. The effects of these three rhizobacteria were evaluated on wheat in alluvial soils of the Indo-Gangetic Plain by inoculation of plants with bacterial isolates either alone or in combinations in both pot and field conditions for two successive years. Rhizobacterial inoculation either alone or in consortium of varying combinations significantly (P?≤?0.05) increased growth and yield of wheat compared to mock inoculated controls. A consortium of two or three rhizobacterial isolates also significantly increased plant height, straw yield, grain yield, and test weight of wheat in both pot and field trials compared to single application of any of these isolates. Among the rhizobacterial treatment, co-inoculation of three rhizobacteria (Enterobacter, M. arborescens and S. marcescens) performed best in promotion of growth, yield, and nutrient (N, P, Cu, Zn, Mn, and Fe) uptake by wheat. Taken together, our results suggest that co-inoculation of Enterobacter with S. marcescens and M. arborescens could be used for preparation of an effective formulation of PGP consortium for eco-friendly and sustainable production of wheat.  相似文献   

4.
The effect of nitrogen (N) and phosphorus (P) fertilization on composition of rhizobacterial communities of volcanic soils (Andisols) from southern Chile at molecular level is poorly understood. This paper investigates the composition of rhizobacterial communities of two Andisols under pasture after 1- and 6-year applications of N (urea) and P (triple superphosphate). Soil samples were collected from two previously established sites and the composition of rhizobacterial communities was determined by denaturing gradient gel electrophoresis (PCR–DGGE). The difference in the composition and diversity between rhizobacterial communities was assessed by nonmetric multidimensional scaling (MDS) analysis and the Shannon–Wiener index. In Site 1 (fertilized for 1 year), PCR–DGGE targeting 16S rRNA genes and MDS analysis showed that moderate N application (270 kg N ha?1 year?1) without P significantly changed the composition of rhizobacterial communities. However, no significant community changes were observed with P (240 kg P ha?1 year?1) and N–P application (270 kg N ha?1 year?1 plus 240 kg P ha?1 year?1). In Site 2 (fertilized for 6 years with P; 400 kg P ha?1 year?1), PCR–DGGE targeting rpoB, nifH, amoA and alkaline phosphatase genes and MDS analysis showed changes in rhizobacterial communities only at the highest rate of N application (600 kg N ha?1 year?1). Quantitative PCR targeting 16S rRNA genes also showed higher abundance of bacteria at higher N application. In samples from both sites, the Shannon–Wiener index did not show significant difference in the diversity of rhizobacterial communities. The changes observed in rhizobacterial communities coincide in N fertilized pastures with lower soil pH and higher pasture yields. This study indicates that N–P application affects the soil bacterial populations at molecular level and needs to be considered when developing fertilizer practices for Chilean pastoral Andisols.  相似文献   

5.
Litterfall and fine root production is a major pathway for carbon and nutrient cycling in forest ecosystems. We investigated leaf litterfall, fine-root mass, production and turnover rate in the upper soil (0–30 cm) under four major tree species (Leucaena leucocephala, Acacia nilotica, Azadirachta indica, Prosopis juliflora) of the semi-arid region of India. All the four tree species showed an unimodal peak of leaf litterfall with distinct seasonality. Leucaena leucocephala and Acacia nilotica had maximum leaf litterfall between September and December while Azadirachta indica and Prosopis juliflora shed most of their leaves between February and May. Annual leaf litterfall of the four species ranged from 3.3 Mg ha?1 (Leucaena leucocephala) to 8.1 Mg ha?1 (Prosopis juliflora). Marked seasonal variations in amount of fine root biomass were observed in all the four tree species. Fine root production was maximum in Prosopis juliflora (171 g m?2 y?1) followed by Azadirachta indica (169 g m?2 y?1), Acacia nilotica (106 g m?2 y?1) and Leucaena leucocephala (79 g m?2 y?1). Fine root biomass showed a seasonal peak after the rainy season but fell to its lowest value during the winter and dry summer season. Fine root turnover rate ranged from 0.56 to 0.97 y?1 and followed the order Azadirachta indica > Leucaena leucocephala > Prosopis juliflora > Acacia nilotica. The results of this study demonstrated that Prosopis juliflora and Azadirachta indica had greater capability for maintaining site productivity as evidenced from greater leaf litterfall and fine root production.  相似文献   

6.
Indole-3-acetic acid (IAA)-producing bacteria Kocuria turfanensis strain 2M4 was isolated from the rhizospheric soil of halotolerant plant Suaeda fruticosa from a unique saline desert of Little Rann of Kutch, Gujarat, India. Rhizobacteria was bright orange pigmented, gram-positive, coccoid, non-endospore forming, and aerobic in nature. 16S rRNA gene sequence analysis showed that 2M4 isolate matched best with type strain of K. turfanensis HO-9042T. Isolate optimally produced 38 µg ml?1 IAA when growth medium was supplemented with 600 µg ml?1 of L-tryptophan. Thin layer chromatography and Fourier transform infrared spectroscopy analysis were performed to corroborate IAA production. To characterize rhizobacterial isolate as a plant growth-promoting bacteria, it was tested for phosphate solubilization where it solubilized maximum 12 µg ml?1 phosphate in presence of fructose, produced 53% siderophore units under iron-free minimal MM9 medium and produced 1.8 µmol ml?1 ammonia in peptone water broth. Plant growth promotion by test isolate was studied on groundnut (Arachis hypogaea L.) under non-saline and saline soil. There was increase by 18% in total plant length and 30% in fresh biomass observed under non-saline control soil. Under saline soil, test isolate showed 17% increase in total length of the plant and 13% increase in fresh biomass.  相似文献   

7.
Biometric-based carbon flux measurements were conducted in a pine forest on lava flow of Mt. Fuji, Japan, in order to estimate carbon cycling and sequestration. The forest consists mainly of Japanese red pine (Pinus densiflora) in a canopy layer and Japanese holly (Ilex pedunculosa) in a subtree layer. The lava remains exposed on the ground surface, and the soil on the lava flow is still immature with no mineral soil layer. The results showed that the net primary production (NPP) of the forest was 7.3 ± 0.7 t C ha?1 year?1, of which 1.4 ± 0.4 t C ha?1 year?1 was partitioned to biomass increment, 3.2 ± 0.5 t C ha?1 year?1 to above-ground fine litter production, 1.9 t C ha?1 year?1 to fine root production, and 0.8 ± 0.2 t C ha?1 year?1 to coarse woody debris. The total amount of annual soil surface CO2 efflux was estimated as 6.1 ± 2.9 t C ha?1 year?1, using a closed chamber method. The estimated decomposition rate of soil organic matter, which subtracted annual root respiration from soil respiration, was 4.2 ± 3.1 t C ha?1 year?1. Biometric-based net ecosystem production (NEP) in the pine forest was estimated at 2.9 ± 3.2 t C ha?1 year?1, with high uncertainty due mainly to the model estimation error of annual soil respiration and root respiration. The sequestered carbon being allocated in roughly equal amounts to living biomass (1.4 t C ha?1 year?1) and the non-living C pool (1.5 t C ha?1 year?1). Our estimate of biometric-based NEP was 25 % lower than the eddy covariance-based NEP in this pine forest, due partly to the underestimation of NPP and difficulty of estimation of soil and root respiration in the pine forest on lava flows that have large heterogeneity of soil depth. However, our results indicate that the mature pine forest acted as a significant carbon sink even when established on lava flow with low nutrient content in immature soils, and that sequestration strength, both in biomass and in soil organic matter, is large.  相似文献   

8.
Concentrations of aluminum (Al) were determined in leaves of native terrestrial plants, macrophytes and fruit parts (watermelon and tomato) using inductively coupled plasma mass spectrometry. Al concentrations in water and soil were determined by inductively coupled plasma optical emission spectrometry. Potamogeton thunbergii (macrophyte) and Cynodon aethiopicus (terrestrial grass) had the highest leaf Al concentrations (2 and 1 g kg?1 dw, respectively). Transfer factors (mg kg?1 dw plants/mg kg?1 dw soil) based on total Al concentrations in soil varied from 2 × 10?3 to 0.05 and from 1.9 to 78 based on mobile Al concentrations determined after sequential extraction. Bioconcentration factors (mg kg?1 dw plants/mg L?1 water) varied from 19 to 9.5 × 103 L kg?1 dw. Plants can accumulate high concentrations of Al when growing in neutral pH soils and slightly alkaline lakes in the Ethiopian Rift Valley. Controlled experiments showed that C. aethiopicus can accumulate high levels of Al both in root and shoot. Compared to Arabidopsis thaliana, C. aethiopicus was more tolerant to Al exposure as ≥400 μM AlCl3 was needed to inhibit root growth compared to 200 μM in A. thaliana. After exposing C. aethiopicus and A. thaliana in 800 μM AlCl3, alkaline comet assay indicates significant DNA (deoxyribonucleic acid) damage in A. thaliana while C. aethiopicus was unaffected. No significant induction of reactive oxygen species (ROS), in terms of leaf H2O2 levels, could be observed in C. aethiopicus. C. aethiopicus has mechanisms to suppress both Al-induced ROS and DNA damage, thereby increasing tolerance of the species to high Al concentrations.  相似文献   

9.
Soil respiration is derived from heterotrophic (decomposition of soil organic matter) and autotrophic (root/rhizosphere respiration) sources, but there is considerable uncertainty about what factors control variations in their relative contributions in space and time. We took advantage of a unique whole‐ecosystem radiocarbon label in a temperate forest to partition soil respiration into three sources: (1) recently photosynthesized carbon (C), which dominates root and rhizosphere respiration; (2) leaf litter decomposition and (3) decomposition of root litter and soil organic matter >1–2 years old. Heterotrophic sources and specifically leaf litter decomposition were large contributors to total soil respiration during the growing season. Relative contributions from leaf litter decomposition ranged from a low of ~1±3% of total soil respiration (6± 3 mg C m?2 h?1) when leaf litter was extremely dry, to a high of 42±16% (96± 38 mg C m?2 h?1). Total soil respiration fluxes varied with the strength of the leaf litter decomposition source, indicating that moisture‐dependent changes in litter decomposition drive variability in total soil respiration fluxes. In the surface mineral soil layer, decomposition of C fixed in the original labeling event (3–5 years earlier) dominated the isotopic signature of heterotrophic respiration. Root/rhizosphere respiration accounted for 16±10% to 64±22% of total soil respiration, with highest relative contributions coinciding with low overall soil respiration fluxes. In contrast to leaf litter decomposition, root respiration fluxes did not exhibit marked temporal variation ranging from 34±14 to 40±16 mg C m?2 h?1 at different times in the growing season with a single exception (88±35 mg C m?2 h?1). Radiocarbon signatures of root respired CO2 changed markedly between early and late spring (March vs. May), suggesting a switch from stored nonstructural carbohydrate sources to more recent photosynthetic products.  相似文献   

10.

Background and aims

The potential use of a metal-tolerant sunflower mutant line for both biomonitoring and phytoremediating a Cu-contaminated soil series was investigated.

Methods

The soil series (21–1,170 mg Cu kg?1) was sampled in field plots at control and wood preservation sites. Sunflowers were cultivated 1 month in potted soils under controlled conditions.

Results

pH and dissolved organic matter influenced Cu concentration in the soil pore water. Leaf chlorophyll content and root growth decreased as Cu exposure rose. Their EC10 values corresponded to 104 and 118 μg Cu L?1 in the soil pore water, 138 and 155 mg Cu kg?1 for total soil Cu, and 16–18 mg Cu kg?1 DW shoot. Biomass of plant organs as well as leaf area, length and asymmetry were well correlated with Cu exposure, contrary to the maximum stem height and leaf water content.

Conclusions

Physiological parameters were more sensitive to soil Cu exposure than the morphological ones. Bioconcentration and translocation factors and distribution of mineral masses for Cu highlighted this mutant as a secondary Cu accumulator. Free Cu2+ concentration in soil pore water best predicted Cu phytoavailability. The usefulness of this sunflower mutant line for biomonitoring and Cu phytoextraction was discussed.  相似文献   

11.
Plant-soil feedbacks are an important aspect of invasive species success. One type of feedback is alteration of soil nutrient cycling. Cheatgrass invasion in the western USA is associated with increases in plant-available nitrogen (N), but the mechanism for this has not been elucidated. We labeled cheatgrass and crested wheatgrass, a common perennial grass in western rangelands, with 15N-urea to determine if differences in root exudates and turnover could be a mechanism for increases in soil N. Mesocosms containing plants were either kept moist, or dried out during the final 10 days to determine the role of senescence in root N release. Soil N transformation rates were determined using 15N pool dilution. After 75 days of growth, cheatgrass accumulated 30 % more total soil N and organic carbon than crested wheatgrass. Cheatgrass roots released twice as much N as crested wheatgrass roots (0.11 vs. 0.05 mg N kg?1 soil day?1) in both soil moisture treatments. This occurred despite lower root abundance (7.0 vs. 17.3 g dry root kg?1 soil) and N concentration (6.0 vs. 7.6 g N kg?1 root) in cheatgrass vs. crested wheatgrass. We propose that increases in soil N pool sizes and transformation rates under cheatgrass are caused by higher rates of root exudation or release of organic matter containing relatively large amounts of labile N. Our results provide the first evidence for the underlying mechanism by which the invasive annual cheatgrass increases N availability and establishes positive plant-soil feedbacks that promote its success in western rangelands.  相似文献   

12.
The objective of this study was to investigate Cd phytoremediation ability of Indian mustard, Brassica juncea. The study was conducted with 25, 50, 100, 200 and 400 mg Kg?1 CdCl2 in laboratory for 21 days and Cd concentrations in the root, shoot and leaf tissues were estimated by atomic absorption spectroscopy. The plant showed high Cd tolerance of up to 400 mg Kg?1 but there was a general trend of decline in the root and shoot length, tissue biomass, leaf chlorophyll and carotenoid contents. The tolerance index (TI) of plants were calculated taking both root and shoot lengths as variables. The maximum tolerance (TI shoot = 87.4 % and TI root = 89.6 %) to Cd toxicity was observed at 25 mg Kg?1, which progressively decreased with increase in dose. The highest shoot (10791 μg g?1 dry wt) and root (9602 μg g?1 dry wt) Cd accumulation was achieved at 200 mg kg?1 Cd treatment and the maximum leaf Cd accumulation was 10071.6 μg g?1 dry wt achieved at 100 mg Kg?1 Cd, after 21 days of treatment. The enrichment coefficient and root to shoot translocation factor were calculated, which, pointed towards the suitability of Indian mustard for removing Cd from soil.  相似文献   

13.
American elm (Ulmus americana) seedlings were either non-inoculated or inoculated with Hebeloma crustuliniforme, Laccaria bicolor and a mixture of the two fungi to study the effects of ectomycorrhizal associations on seedling responses to soil compaction and salinity. The seedlings were grown in the greenhouse in pots containing non-compacted (0.4 g cm?3 bulk density) and compacted (0.6 g cm?3 bulk density) soil and subjected to 60 mM NaCl or 0 mM NaCl (control) treatments for 3 weeks. All three fungal inocula had similar effects on the responses of elm seedlings to soil compaction and salt treatment. In non-compacted soil, ectomycorrhizal fungi reduced plant dry weights, root hydraulic conductance, but did not affect leaf hydraulic conductance and net photosynthesis. When treated with 60 mM NaCl, ectomycorrhizal seedlings had several-fold lower leaf concentrations of Na+ compared with the non-inoculated plants. Soil compaction reduced Na+ leaf concentrations in non-ectomycorrhizal plants and decreased dry weights, gas exchange and root hydraulic conductance. However, in ectomycorrhizal plants, soil compaction had little effect on the leaf Na+ concentrations and on other measured growth and physiological parameters. Our results demonstrated that ECM associations could be highly beneficial to plants growing in sites with compacted soil such as urban areas.  相似文献   

14.
Three differently adapted populations of sewan grass (Lasiurus scindicus Henr.) were evaluated for structural and functional adaptations to high salinity. The habitats were Derawar Fort (DF, least saline, ECe 15.21), Bailahwala Dahar (BD, moderately saline, ECe 27.56 dS m?1) and Ladam Sir (LS, highly saline, ECe 39.18 dS m?1) from within the Cholistan Desert. The adaptive components of salt tolerance in sewan grass were assessed by determining various morpho–anatomical and physiological attributes. The degree of salt tolerance of all three ecotypes of L. scindicus from the saline habitats was compared in a controlled hydroponic system to evaluate the adaptive components that are expected to be genetically fixed during a long evolutionary process. Salinity tolerance in the most tolerant LS population relied on increased root length and total leaf area, restricted uptake of toxic Cl?, increased uptake of Ca2+, high excretion of Na+, accumulation of organic osmolytes, high water use efficiency, increased root, thicker leaf and cortical region, intensive sclerification, large metaxylem vessels, and dense pubescence on abaxial leaf surface. The BD population (from moderately saline soil) relied on high Ca2+ uptake, Na+ excretion, epidermal thickness, large cortical cells, thick endodermis and large vascular tissue. The DF population (from less saline soil) showed a significant decrease in all morphological characteristics; however, it accumulated organic osmolytes for its survival under high salinities. Structural modifications in all three populations were crucial for checking undue water loss under physiological stress that is caused by high amounts of soluble salts in the soil.  相似文献   

15.
The aim of the present study was to estimate the endogenous abscisic acid (ABA) content in tulip ‘Apeldoorn’ torpedo and mature somatic embryos. Moreover, the effect of exogenous ABA and/or its inhibitor fluridone on somatic embryo maturation and conversion into plantlets was investigated. Torpedo-stage somatic embryos were subcultured on media containing 5 μM of picloram and 1 μM of 6-benzyl-aminopurine (BAP)—control, and combinations of ABA (0 or 10 μM) and/or fluridone (0 or 30 μM) for 1 week. Then, the torpedo embryos were transferred to a maturation medium containing 0.25 μM of α-naphthaleneacetic acid (NAA) and 2.5 μM of BAP, without ABA and fluridone treatment, and cultivated under darkness or light for ten weeks. Endogenous ABA content (first time measured in tulip somatic embryos) was evaluated by ELISA test. The obtained results revealed that the highest level of endogenous ABA, at 17.45 nmol g?1 dry weight (DW), was recorded in torpedo-stage of tulip embryo development, only after 1 week of ABA treatment, and was nearly 10 times higher in comparison with the control. Simultaneous addition of ABA and fluridone to the medium resulted in the lowering of the ABA concentration to 9.58 nmol g?1 DW. During ten weeks of maturation of the embryos, the endogenous ABA content in mature tissue of tulip somatic embryo considerably decreased to an amount 0.87–1.33 nmol g?1 DW (irrespective of ABA and fluridone treatment) and did not differ significantly from control (0.59 nmol g?1 DW). Exogenous ABA and fluridone significantly decreased the growth value of fresh weight (FW) of the tulip torpedo-shaped and mature embryos under light conditions. Percentage of the DW of the torpedo embryos treated with exogenous ABA was significantly higher (15.43–17.02) in comparison with the control (10.87). Three to three and a half times more malformed mature embryos were noted under light conditions than in darkness, irrespective of ABA and fluridone treatment. The highest percentage of mature embryos forming shoots (conversion) was observed under light conditions in the control and after fluridone treatment (26 and 20%, respectively).  相似文献   

16.
The history of the deep north basin of Lake Biwa extends over 430,000 years. Although it has probably been oxic and oligotrophic since its formation, human impacts have been changing lake conditions. In this paper, we discuss long-term changes in the chemistry of bottom water by compiling literature and through our own data over the last half-century. Long-term records show an increase in temperature, decrease in dissolved oxygen (DO), and increase in nutrients in bottom water. The stoichiometry among oxygen and nutrients indicates that changes are basically consistent with aerobic decomposition of organic matter. These changes are most likely the result of global warming and local eutrophication. Of particular note, yearly minimum DO concentrations <50 µmol kg?1 have started to occur frequently at ~90 m depth since 1999. Manganese (Mn) concentrations in bottom water are at their minimum during the turnover period and at a maximum during the late stratification period each year. Yearly minimum Mn concentration has been within a narrow range over the last 30 years (0.25 ± 0.07 µmol kg?1, n = 12). However, abnormally high Mn concentrations (up to 9.3 µmol kg?1) were observed in 2007, caused by reductive release of a substantial amount of Mn from suboxic sediments and subsequent oxidation in bottom water. The concentration of arsenic (As) has gradually increased over the last 20 years in a similar manner, with a homologous element of phosphorus (P), resulting in an observed range of 17–29 nmol kg?1 in 2010. The accumulation rate was ~0.8 nmol kg?1 year?1 for As and ~6 nmol kg?1 year?1 for P.  相似文献   

17.
We measured CO2 concentration and determined evasion rate and piston velocity across the water–air interface in flow-through chambers at eight stations along two 20 km long streams in agricultural landscapes in Zealand, Denmark. Both streams were 9–18-fold supersaturated in CO2 with daily means of 240 and 340 μM in January–March and 130 and 180 μM in June–August. Annual CO2 medians were 212 μM in six other streams and 460 μM in four groundwater wells, while seven lakes were weakly supersaturated (29 μM). Air concentrations immediately above stream surfaces were close to mean atmospheric conditions except during calm summer nights. Piston velocity from 0.4 to 21.6 cm h?1 was closely related to current velocity permitting calculation of evasion rates for entire streams. CO2 evasion rates were highest in midstream reaches (170–1,200 mmol m?2 day?1) where CO2-rich soil water entered fast stream flow, while rates were tenfold lower (25–100 mmol m?2 day?1) in slow-flowing lower reaches. CO2 evasion mainly derived from the input of CO2 in soil water. The variability of CO2 evasion along the two lowland streams covered much of the range in sub-Arctic and temperate streams reported previously. In budgets for the two stream catchments, loss of carbon from soils via the hydrological cycle was substantial (3.2–5.7 mmol m?2 day?1) and dominated by CO2 consumed to form HCO3 ? by mineral dissolution (69–76%) and export of organic carbon (15–23%) relative to dissolved CO2 export (7–9%).  相似文献   

18.
Rhizobacteria of Maize and Their Antifungal Activities   总被引:15,自引:10,他引:5       下载免费PDF全文
During the growing season of 1984, the rhizobacteria (including organisms from the rhizosphere soil, the rhizoplane, and internal root zones) of 47 maize plants (two varieties) sampled from different locations in France and at different growth stages were inventoried. Isolates were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of their total cell proteins and were found to represent 352 different protein electrotypes. Maize seedlings were initially colonized by a small number of different strains. Densities reached up to 108 CFU/g of root. Later in the season, the population density decreased but the heterogeneity of the rhizobacterial populations increased. Fluorescent pseudomonads represented up to 35% of the total rhizobacterial population and comprised 43 different electrotypes. Other bacteria regularly present were Xanthomonas maltophilia, Serratia liquefaciens, Pseudomonas paucimobilis, and Bacillus spp. There was a very low similarity between rhizobacterial populations of plants of the same cultivar (LG5) within one field at different growth stages and also between rhizobacterial populations of the cultivars LG5 and BRIO42 on the same field. Most electrotypes (76%) were found on a single occasion. None of the 352 electrotypes was present on all plants. In the 1985 analysis the rhizobacteria of maize seedlings (one variety) sampled from one field were characterized. They represented 236 different protein electrotypes. Thirty-three isolates showed antifungal activity against major maize pathogens; they comprised four Pseudomonas cepacia strains, producing pyrrolnitrin as well as another unknown antifungal compound.  相似文献   

19.
Forest soils and canopies are major components of ecosystem CO2 and CH4 fluxes. In contrast, less is known about coarse woody debris and living tree stems, both of which function as active surfaces for CO2 and CH4 fluxes. We measured CO2 and CH4 fluxes from soils, coarse woody debris, and tree stems over the growing season in an upland temperate forest. Soils were CO2 sources (4.58 ± 2.46 µmol m?2 s?1, mean ± 1 SD) and net sinks of CH4 (?2.17 ± 1.60 nmol m?2 s?1). Coarse woody debris was a CO2 source (4.23 ± 3.42 µmol m?2 s?1) and net CH4 sink, but with large uncertainty (?0.27 ± 1.04 nmol m?2 s?1) and with substantial differences depending on wood decay status. Stems were CO2 sources (1.93 ± 1.63 µmol m?2 s?1), but also net CH4 sources (up to 0.98 nmol m?2 s?1), with a mean of 0.11 ± 0.21 nmol m?2 s?1 and significant differences depending on tree species. Stems of N. sylvatica, F. grandifolia, and L. tulipifera consistently emitted CH4, whereas stems of A. rubrum, B. lenta, and Q. spp. were intermittent sources. Coarse woody debris and stems accounted for 35% of total measured CO2 fluxes, whereas CH4 emissions from living stems offset net soil and CWD CH4 uptake by 3.5%. Our results demonstrate the importance of CH4 emissions from living stems in upland forests and the need to consider multiple forest components to understand and interpret ecosystem CO2 and CH4 dynamics.  相似文献   

20.
The contribution of below ground plant root tissue to soil carbon (C) pools is attracting considerable interest in the context of greenhouse gas mitigation options. A field experiment was conducted on a perennial ryegrass/white clover pasture in the Manawatu, New Zealand, to examine the effect of differing soil nitrogen (N) and phosphorus (P) fertility status on root dynamics. Root standing mass, shoot and root dry matter (DM) accumulation and root tissue decomposition were measured at 6–8 week intervals over one year at moderate (Olsen P?=?24, no added N) and high (Olsen P?=?49, 400 kgN ha?1y?1 added N) soil fertility levels. Shoot production was significantly greater in the high fertility treatment (2550 cf. 1890 gDM m?2y?1) but differences in root dynamics were confined to two periods in spring and winter. In late spring the pattern was for lower root mass (183 cf. 231 gDM m?2 between 0–80 mm depth) and higher root production (0.71 cf. 0.52 gDM m?2 d?1 between 0–120 mm depth) under higher fertility. In winter the reverse was observed. There is some evidence that the soil type used in the root in-growth cores underestimated root production values for this site by a factor of approx. one third. Short-term differences between the two fertiity treatments in standing root mass and root production did not lead to treatment differences in topsoil C and N changes over four years. This may reflect insufficient separation in the two soil fertility treatments and a low overall root tissue input to soil organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号