首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
Mungbean yellow mosaic India virus (MYMIV)—the causal agent of the yellow mosaic disease is responsible for severe damage of crops that are of great economic importance. In the current study, we explored the process of MYMIV infection and its natural resistance by analysing the expression of early and late viral genes at different time points in the leaves of resistant and susceptible Vigna mungo plants. Accordingly, we have periodically evaluated several biochemical parameters commonly associated with oxidative status of resistant and susceptible V. mungo plants during MYMIV infection. Our study revealed that accumulation levels of the early as well as late expressed genes of MYMIV were low and high in the resistant and susceptible plants, respectively; whereas membrane stability index (MSI) exhibited an opposite response. Moreover, a decrease in the malondialdehyde levels along with an increase in the activities/levels of different antioxidant enzymes, total phenol and H2O2 was noted during the early stages of infection in the resistant plants. Such observations argue in favour of strong defensive capability of the resistant plants in restricting the accumulation of viral RNA and generation of harmful free radicals within the studied tissue. Collectively, it appears that obstruction of viral invasion in plant cell wall, restriction in viral DNA replication, and early onset of antioxidant defense responses altogether might be responsible for MYMIV natural resistance. Such information is helpful in understanding the pathogenesis of MYMIV infection and its resistance in V. mungo and other economically important crops.  相似文献   

3.
Soybean [Glycine max (L.) Merr.] is an important crop for vegetable oil production, and is a major protein source worldwide. Because of its importance as a crop, genetic transformation has been used extensively to improve its valuable traits. Soybean mosaic virus (SMV) is one of the most well-known viral diseases affecting soybean. Transgenic soybean plants with improved resistance to SMV were produced by introducing HC-Pro coding sequences within RNA interference (RNAi) inducing hairpin construct via Agrobacterium-mediated transformation. During an experiment to confirm the response of transgenic plants (T2) to SMV infection, no T2 plants from lines #2 (31/31), #5 (35/35) or #6 (37/37) exhibited any SMV symptoms, indicating strong viral resistance (R), whereas NT (non-transgenic wild type) plants and those from lines #1, #3 and #4 exhibited mild mosaic (mM) or mosaic (M) symptoms. The northern blot analysis showed that three resistant lines (#2, #5 and #6) did not show the detection of viral RNA accumulation while NT, EV (transformed with empty vector carrying only Bar) and lines #1, #3 and #4 plants were detected. T3 seeds from SMV-inoculated T2 plants were harvested and checked for changes in seed morphology due to viral infection. T3 seeds of lines #2, #5 and #6 were clear and seed coat mottling was not present, which is indicative of SMV resistance. RT-PCR and quantitative real-time PCR showed that T3 seeds from the SMV-resistant lines #2, #5 and #6 did not exhibit any detection of viral RNA accumulation (HC-Pro, CP and CI), while the viral RNA accumulation was detected in SMV-susceptible lines #1, #3 and #4 plants. During the greenhouse test for viral resistance and yield components, T3 plants from the SMV-inoculated transgenic lines #2, #5 and #6 showed viral resistance (R) and exhibited a more favorable average plant height, number of nodes per plant, number of branches per plant, number of pods per plant and total seed weight with statistical significance during strong artificial SMV infection than did other plant lines. In particular, the SMV-resistant line #2 exhibited superior average plant height, pod number and total seed weight with highly significance. According to our results, RNAi induced by the hairpin construct of the SMV HC-Pro sequence effectively confers much stronger viral resistance than did the methods used during previous trials, and has the potential to increase yields significantly. Because of its efficiency, the induction of RNAi-mediated resistance will likely be used more frequently as part of the genetic engineering of plants for crop improvement.  相似文献   

4.
Legume crops in Central India, the main soybean production area of the country, may suffer from yellow mosaic disease caused by the Mungbean yellow mosaic India virus (MYMIV). MYMIV is transmitted by the sweet potato whitefly, Bemisia tabaci (Gennadius), which is a species complex composed of various genetic groups. This vector species harbors different endosymbionts among regional strains and among individuals. To elucidate fundamental aspects of this virus vector in the state of Madhya Pradesh, the infection status of the symbionts and the virus in whiteflies was studied. A polymerase chain reaction (PCR) survey of the whiteflies collected in Madhya Pradesh found four secondary endosymbionts, Arsenophonus, Hemipteriphilus, Wolbachia, and Cardinium, in addition to the primary endosymbiont Portiera. Arsenophonus and Hemipteriphilus were highly infected but the infection rates of Wolbachia and Cardinium were low. MYMIV was detected in whitefly populations collected from various host plants in Madhya Pradesh. The whitefly populations belonged to the Asia I and II genetic groups; several different Asia II populations were also distributed. Specific relations were not observed among symbiont infection status, virus infection, and the whitefly genetic groups in the populations of Madhya Pradesh, though Cardinium was highly detected in the Asia II-1 group. New primers, which can be used for PCR template validation and for discriminating two phylogenetically close endosymbionts, were designed.  相似文献   

5.
High throughput sequencing technologies, supported by bioinformatics tools are employed to retrieve small RNA sequence information derived from the nucleic acids of plant infecting viruses. In addition to characterization of the small RNAs to understand the biology of the virus, the small RNA sequence can be assembled to reconstitute viral genome sequence. For the first time the semiconductor based Ion Proton sequencing technology is used to sequence the small RNAs from pigeonpea (Cajanus cajan) plants infected by two distinct viruses with RNA and DNA as their genomes. The reconstitution of the viral genome sequence revealed that the pigeonpea plant from Kalaburagi (erstwhile Gulbarga, Karnataka state) was infected by an emaravirus species Pigeonpea sterility mosaic emaravirus 1 (PPSMV-1) and another plant from New Delhi was infected by a begomovirus species Mungbean yellow mosaic India virus (MYMIV). Characterization and comparison of small RNA sequences derived from both the viruses showed vast differences in their pattern of accumulation and their size classes. In the case of PPSMV-1, the 21 nt sized siRNAs accumulated at far greater levels followed by 22 and 24 nt siRNAs. Whereas in MYMIV, the proportion of accumulation of each size class of siRNAs was similar. Further the distribution of small RNAs across the genomes of PPSMV-1 and MYMIV was mapped and the density of small RNA accumulation showed a positive correlation with the GC content of viral sequence.  相似文献   

6.
7.
The Yellow mosaic disease is caused by Mungbean yellow mosaic India virus (MYMIV) and Mungbean yellow mosaic virus (MYMV) belonging to the genus Begomovirus of the family Geminiviridae. Yellow mosaic disease (YMD) is a major constraint to the production of soybean in South-East Asia. In India, yield losses of 10–88% had been reported due to YMD of soybean. An effort has been made to generate resistant soybean plants, by a construct targeting replication initiation protein (Rep) gene sequences of MYMIV. A construct containing the sequences of Rep gene (566?bp) in antisense orientation was used to transform cotyledonary node explants of three soybean cultivars (JS 335, JS 95-60 and NRC 37). Transformation efficiencies of 0.2, 0.21 and 0.24% were obtained with three soybean cultivars, JS 335, JS 95-60 and NRC 37, respectively. The presence of transgene in T1 plants was confirmed by polymerase chain reaction (PCR) and sequence analysis. The level of resistance was observed by challenge inoculation with the virus in T1 lines. The inheritance of transgene showed classical Mendelian pattern in six transgenic lines.  相似文献   

8.
Viral pathogens, such as soybean mosaic virus (SMV), are a major constraint in soybean production and often cause significant yield loss and quality deterioration. Engineering resistance by RNAi-mediated gene silencing is a powerful strategy for controlling viral diseases. In this study, a 248-bp inverted repeat of the replicase (nuclear inclusion b, NIb) gene was isolated from the SMV SC3 strain, driven by the leaf-specific rbcS2 promoter from Phaseolus vulgaris, and introduced into soybean. The transgenic lines had significantly lower average disease indices (ranging from 2.14 to 12.35) than did the non-transformed (NT) control plants in three consecutive generations, exhibiting a stable and significantly enhanced resistance to the SMV SC3 strain under field conditions. Furthermore, seed mottling did not occur in transgenic seeds, whereas the NT plants produced ~90% mottled seeds. Virus resistance spectrum screening showed that the greenhouse-grown transgenic lines exhibited robust resistance to five SMV strains (SC3, SC7, SC15, SC18, and a recombinant SMV), bean common mosaic virus, and watermelon mosaic virus. Nevertheless, no significantly enhanced resistance to bean pod mottle virus (BPMV, Comovirus) was observed in the transgenic lines relative to their NT counterparts. Consistent with the results of resistance evaluation, the accumulation of each potyvirid (but not of BPMV) was significantly inhibited in the transgenic plants relative to the NT controls as confirmed by quantitative real-time (qRT-PCR) and double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). These results demonstrate that robust RNAi-mediated resistance to multiple potyvirids in soybean was conferred by expressing an intron hairpin SMV NIb RNA.  相似文献   

9.
10.
11.
12.
Syringin, sinapyl alcohol 4-O-glucoside, is well known as a plant-derived bioactive monolignol glucoside. In Arabidopsis, recombinant chimeric protein UGT72E3/2 has been previously reported to lead to significantly higher syringin production than the parental enzymes UGT72E2 and UGT72E3. To enhance syringin content in Korean soybean (Glycine max L. ‘Kwangan’), we cloned the UGT72E3/2 gene under the control of the β-conglycinin or CaMV-35S promoter to generate β-UGT72E3/2 and 35S-UGT72E3/2 constructs, respectively, and then transformed them into soybean to obtain transgenic plants using the modified half-seed method. Real-time semi-quantitative PCR (RT-PCR) analysis showed that the UGT72E3/2 gene was expressed in the leaves of the β-UGT72E3/2 and 35S-UGT72E3/2 transgenic lines. HPLC analysis of the seeds and mature tissues of the T2 generation plants revealed that the β-UGT72E3/2 transgenic seeds accumulated 0.15 µmol/g DW of total syringin and 0.29 µmol/g DW of total coniferin, whereas coniferin and syringin were not detected in non-transgenic seeds. Moreover, coniferin and syringin also accumulated at high levels in non-seed tissues, particularly the leaves of β-UGT72E3/2 transgenic lines. In contrast, 35S-UGT72E3/2 lines showed no differences in the contents of coniferin and syringin between transgenic and non-transgenic soybean plants. Thus, the seed-specific β-conglycinin promoter might be an effective tool to apply to the nutritional enhancement of soybean crops through increased syringin production.  相似文献   

13.
14.
15.
Effects of isoflavones on plant salt tolerance were investigated in soybean (Glycine max L. Merr. cultivar N23674) and tobacco (Nicotiana tabacum L.). Leaf area, fresh weight, net photosynthetic rate (Pn), and transpiration rate (Tr) of soybean N23674 plants treated with 80 mM NaCl were significantly reduced, while a gene (GmIFS1) encoding for 2-hydroxyisoflavone synthase was highly induced, and isoflavone contents significantly increased in leaves and seeds. To test the impact of isoflavones to salt tolerance, transgenic soybean cotyledon hairy roots expressing GmIFS1 (hrGmIFS1) were produced. Salt stress slightly increased isoflavone content in hairy roots of the transgenic control harboring the empty vector but substantially reduced the maximum root length, root fresh weight, and relative water content (RWC). The isoflavone content in hrGmIFS1 roots, however, was significantly higher, and the above-mentioned root growth parameters decreased much less. The GmIFS1 gene was also transformed into tobacco plants; plant height and leaf fresh weight of transgenic GmIFS1 tobacco plants were much greater than control plants after being treated with 85 mM NaCl. Leaf antioxidant capacity of transgenic tobacco was significantly higher than the control plants. Our results suggest that salt stress-induced GmIFS1 expression increased isoflavone accumulation in soybean and improved salt tolerance in transgenic soybean hairy roots and tobacco plants.  相似文献   

16.
One isolate of Mungbean yellow mosaic India virus (MYMIV) of mungbean plants from Sri Ganganagar, Rajasthan, designated as MYMIV-Mg was isolated and DNA-A and DNA-B, the two full length bipartite genomic components of this virus, were cloned. The [α-32P] labeled diagnostic probes specific to these cloned DNA-A and -B of MYMIV-Mg were used to detect the virus infection in infected plants by nucleic acid spot hybridization (NASH) test. The NASH tests detected the MYMIV infection and concentration of viral titre in susceptible, moderately susceptible, resistant and symptomless genotypes of pigeonpea (Cajanus cajan) plants. Fourteen genotypes of pigeonpea were tested against five naturally occurring MYMIV variants viz.,.MYMIV Bg, -MgD, -MoL, -Mg and -Pp1 through viruliferous whitefly (Bemisia tabaci) transmission in greenhouse condition. Disease incidence and severity of MYMIV in different pigeonpea genotypes varied with the variants of MYMIV. Many genotypes of pigeonpea did not produce visible yellow mosaic symptoms after inoculation with MYMIV variants MYMIV-Bg, -MbD and -MoL, although, majority of the symptomless genotypes were found to be infected by MYMIV, as viral DNA was detected by NASH test.  相似文献   

17.
18.
Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is one of the most devastating diseases reducing soybean (Glycine max) production all over the world. Harpin proteins in many plant pathogenic bacteria were confirmed to enhance disease and insect resistance in crop plants. Here, a harpin protein-encoding gene hrpZpsta from the P. syringae pv. tabaci strain Psta218 was codon-optimized (renamed hrpZm) and introduced into soybean cultivars Williams 82 and Shennong 9 by Agrobacterium-mediated transformation. Three independent transgenic lines over-expressing hrpZm were obtained and exhibited stable and enhanced tolerance to P. sojae infection in T2–T4 generations compared to the non-transformed (NT) and empty vector (EV)-transformed plants. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression of salicylic acid-dependent genes PR1, PR12, and PAL, jasmonic acid-dependent gene PPO, and hypersensitive response (HR)-related genes GmNPR1 and RAR was significantly up-regulated after P. sojae inoculation. Moreover, the activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO), peroxidase, and superoxide dismutase also increased significantly in the transgenic lines compared to the NT and EV-transformed plants after inoculation. Our results suggest that over-expression of the hrpZm gene significantly enhances PRR tolerance in soybean by eliciting resistance responses mediated by multiple defense signaling pathways, thus providing an alternative approach for development of soybean varieties with improved tolerance against the soil-borne pathogen PRR.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号