首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Canola (Brassica napus) plants were co-transformed with two pathogenesis-related protein genes expressing a Trichoderma atroviride chitinase with a chitin-binding domain (chimeric chitinase) and a thaumatin-like protein (tlp) from Oryza sativa conferring resistance to phytopatogenic fungi by Agrobacterium-mediated transformation. The putative transgenic plants were confirmed by PCR. After measuring the specific activity of the chimeric chitinase and glucanase activity for tlp genes, transgenic plants with high specific activity were selected for southern blot analysis to confirm the copy number of the genes. In vitro assays, the antifungal activity of crude extracted protein against Sclerotinia sclerotiorum showed that the inhibition percentage in double transgenic plants was between 55 and 62, whereas the inhibition percentage in single-gene transformants (chimeric chitinase) ranged from 35 to 45 percent. Importantly, in greenhouse conditions, the double transgenic plants showed significant resistance than the single-gene transformant and wild type plants. The results in T2 generation using the intact leaf inoculation method showed that the average lesion diameters were 10, 14.7 and 29 mm for the double transformant, single-gene transformant and non-transgenic plants, respectively. Combined expression of chimeric chitinase and tlp in transgenic plants showed significantly enhanced resistance against S. sclerotiorum than the one that express single-gene transformant plants. These results suggest that the co-expression of chimeric chitinase and tlp can confer enhanced disease resistance in canola plant.  相似文献   

2.
The impact that the parasitic plant field dodder (Cuscuta campestris Yunk.) has on chlorophyll fluorescence and chlorophyll content of infested alfalfa (Medicago sativa L.) and sugar beet (Beta vulgaris L.) was examined under controlled conditions. Several parameters of chlorophyll fluorescence were measured in infested and non-infested alfalfa and sugar beet plants over a period of twenty days, beginning with the day of infestation. Chlorophyll contents (total, relative and ratio of chlorophyll a to b) were determined 1, 7, 14 and 20 days after infestation (DAI). Field dodder was found to affect both the total and relative chlorophyll contents in infested alfalfa and sugar beet, causing significant reduction in chlorophyll content in both host plants. This parasitic plant also affects a number of parameters of chlorophyll fluorescence (Fo, Fv/Fm, ΦPSII, Fv and IF), showing that these parameters may be considered sensitive indicators of the impact that field dodder has on its host plants.  相似文献   

3.

Objectives

Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum is one of the major fungal diseases of canola. To develop resistance against this fungal disease, the chit42 from Trichoderma atroviride with chitin-binding domain and polygalacturonase-inhibiting protein 2 (PG1P2) of Phaseolus vulgaris were co-expressed in canola via Agrobacterium-mediated transformation.

Results

Stable integration and expression of transgenes in T0 and T2 plants was confirmed by PCR, Southern blot and RT-PCR analyses. Chitinase activity and PGIP2 inhibition were detected by colorimetric and agarose diffusion assay in transgenic lines but not in untransformed plants. The crude proteins from single copy transformant leaves having high chitinase and PGIP2 activity (T16, T8 and T3), showed up to 44 % inhibition of S. sclerotiorum hyphal growth. The homozygous T2 plants, showing inheritance in Mendelian fashion (3:1), were further evaluated under greenhouse conditions for resistance to S. sclerotiorum. Intact plants contaminated with mycelia showed resistance through delayed onset of the disease and restricted size and expansion of lesions as compared to wild type plants.

Conclusions

Combined expression of chimeric chit42 and pgip2 in Brassica napus L. provide subsequent protection against SSR disease and can be helpful in increasing the canola production in Iran.
  相似文献   

4.
Flatiron (ffe) mice display features of “ferroportin disease” or Type IV hereditary hemochromatosis. While it is known that both Fe and Mn metabolism are impaired in flatiron mice, the effects of ferroportin (Fpn) deficiency on physiological distribution of these and other biometals is unknown. We hypothesized that Fe, Mn, Zn and/or Cu distribution would be altered in ffe/+ compared to wild-type (+/+) mice. ICP-MS analysis showed that Mn, Zn and Cu levels were significantly reduced in femurs from ffe/+ mice. Bone deposits reflect metal accumulation, therefore these data indicate that Mn, Zn and Cu metabolism are affected by Fpn deficiency. The observations that muscle Cu, lung Mn, and kidney Cu and Zn levels were reduced in ffe/+ mice support the idea that metal metabolism is impaired. While all four biometals appeared to accumulate in brains of flatiron mice, significant gender effects were observed for Mn and Zn levels in male ffe/+ mice. Metals were higher in olfactory bulbs of ffe/+ mice regardless of gender. To further study brain metal distribution, 54MnCl2 was administered by intravenous injection and total brain 54Mn was measured over time. At 72 h, 54Mn was significantly greater in brains of ffe/+ mice compared to +/+ mice while blood 54Mn was cleared to the same levels by 24 h. Taken together, these results indicate that Fpn deficiency decreases Mn trafficking out of the brain, alters body Fe, Mn, Zn and Cu levels, and promotes metal accumulation in olfactory bulbs.  相似文献   

5.

Aims

Sclerotia of Sclerotinia sclerotiorum survive in soil and germinate to produce apothecia which release airborne ascospores. Current control methods rely predominantly on the use of fungicides to kill ascospores. The aim of this research was to identify potential biofumigation treatments which suppress sclerotial germination, providing a potential alternative and long-term approach to disease management.

Methods

Microcosm and in vitro experiments were conducted using dried and milled plant material from six different biofumigant crop plants to determine effects on carpogenic germination of sclerotia and mycelial growth of S. sclerotiorum.

Results

All biofumigant plants significantly reduced germination of S. sclerotiorum sclerotia in the microcosm experiments, but were less effective against larger sclerotia. In vitro experiments showed a direct effect of biofumigant volatiles on both the mycelial growth of S. sclerotiorum, and carpogenic germination of sclerotia, where the most effective treatment was B. juncea ‘Vittasso’.

Conclusions

It was clear from this study that biofumigant crop plants have potential as part of an integrated disease management system for control of S. sclerotiorum. The microcosm experiments described here provide a straightforward and reliable screening method for evaluating different biofumigants for activity.
  相似文献   

6.
Morphological markers/traits are often used in the detection of allelopathic stress, but optical signals including chlorophyll a fluorescence emission could be useful in developing new screening techniques. In this context, the allelopathic effect of barley (Hordeum vulgare subsp. vulgare) root exudates (three modern varieties and three landraces) were assessed on the morphological (root and shoot length, biomass accumulation), physiological (Fv/Fm and F0), and biochemical (chlorophyll and protein contents) variables of great brome (Bromus diandrus Roth., syn. Bromus rigidus Roth. subsp. gussonii Parl.). All the measured traits were affected when great brome was grown in a soil substrate in which barley plants had previously developed for 30 days before being removed. The response of receiver plants was affected by treatment with activated charcoal, dependent on barley genotype and on the nature of the growing substrate. The inhibitory effect was lower with the addition of the activated charcoal suggesting the release of putative allelochemicals from barley roots into the soil. The barley landraces were more toxic than modern varieties and their effect was more pronounced in sandy substrate than in silty clay sand substrate. In our investigation, the chlorophyll content and Fv/Fm were the most correlated variables with barley allelopathic potential. These two parameters might be considered as effective tools to quantify susceptibility to allelochemical inhibitors in higher plants.  相似文献   

7.
Fungal endophytes use different strategies to protect host plants from abiotic and biotic stress. In this study, we isolated endophytic fungi from Pistacia vera and characterised their antifungal activity against Aspergillus flavus, Rhizoctonia solani and Sclerotinia sclerotiorum, and their release of some factors that can alter plant growth capability. Trichoderma harzianum TH 5-1-2, T. harzianum TH 10-2-2 and T. atroviride TA 2-2-1 exhibited the highest growth inhibition percentages in dual culture assays against A. flavus, R. solani and S. sclerotiorum, respectively. Among the fungal endophyte cultures, ethyl acetate extracts of T. harzianum TH 10-2-2, T. harzianum TH 5-1-2 and T. atroviride TA 2-2-1 exhibited the highest growth inhibition of S. sclerotiorum, R. solani and A. flavus, respectively. Phosphate solubilisation was induced by Byssochlamys nivea BN 1-1-1 in culture. Large amounts of siderophore production were observed with Quambalaria cyanescens QC 11-3-2 and Epicoccum nigrum EN1, but Trichoderma spp. also produced siderophore in lower amounts. Trichoderma harzianum TH 5-1-2 produced the highest chitinase activity (2.92 U/mL). In general, among the endophytes isolated, Trichoderma spp. appear to have the most promise for promoting healthy growth of P. vera.  相似文献   

8.
9.
10.
Transgenic chilli pepper (Capsicum annuum L.) plants tolerant to salinity stress were produced by introducing the wheat Na+/H+ antiporter gene (TaNHX2) via Agrobacterium-mediated transformation. Cotyledonary explants were infected with Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pBin438 that contains a wheat antiporter (TaNHX2) gene driven by the double CaMV 35S promoter and NPT II gene as a selectable marker. PCR and semiquantitative RT-PCR analysis confirmed that the TaNHX2 gene had been integrated and expressed in the T1 generation of transgenic pepper plants as compared to the non-transformed plants. Southern blot analysis further verified the integration and presence of TaNHX2 gene in the genome of chilli pepper plants. Biochemical assays of these transgenic plants revealed enhanced levels of proline, chlorophyll, superoxide dismutase, ascorbate peroxidase, relative water content, and reduced levels of hydrogen peroxide (H2O2), malondialdehyde compared to wild-type plants under salt stress conditions. The present investigation clearly showed that overexpression of the TaNHX2 gene enhanced salt stress tolerance in transgenic chilli pepper plants.  相似文献   

11.
Nearly 2 billion people worldwide are suffering from iron (Fe) deficiency anemia and zinc (Zn) deficiency. The available elite bread wheat cultivars have inherently low grain micronutrient content. Biofortification for grain Fe and Zn content is one of the most feasible and cost-effective approach for combating widespread deficiency of the micronutrients. QTL controlling high grain Fe and Zn have been mapped on groups 2 and 7 chromosomes of Triticeae. The present study was initiated for precise transfers of genes for high grain Fe and Zn on group 2 and 7 chromosomes of wheat-Aegilops substitution lines to wheat cultivars using pollen radiation hybridization. The pollen radiation hybrids (PRH1) derived from 1.75 krad irradiated spikes showed the presence of univalents and multivalents in meiotic metaphase-I indicating the effectiveness of radiation dose. In the advanced generation PRH5, the plants selected with stable chromosome number and high grain Fe and Zn content were analyzed with wheat groups 2 and 7 chromosome specific intron targeted amplified polymorphism (ITAP) markers of the metal homeostasis genes to monitor the transfers of alien genes from the substituted Aegilops chromosomes. The group 2 chromosome derivatives showed the presence of NAS2, FRO2, VIT1, and ZIP2 Aegilops genes whereas the group 7 derivatives had YSL15, NAM, NRAMP5, IRO3, and IRT2 Aegilops genes. The pollen radiation hybrids of both the groups 2 and 7 chromosomes showed more than 30% increase in grain Fe and Zn content with improved yield than the elite wheat cultivar PBW343 LrP indicating small and compensating transfers of metal homeostasis genes of Aegilops into wheat.  相似文献   

12.
Arbuscular mycorrhizal fungi (AMF) can promote plant growth performance, but their effectiveness varies depending on soil nitrogen (N) availability. To clarify the effectiveness of exogenous AMF along an N-fertilization gradient (0, 2, 10, 20, and 30 mM), the impacts of exogenous Rhizophagus irregularis and N on the growth, photochemical activity, and nutritional status of Populus?×?canadensis ‘Neva’ in natural soil were evaluated in a pot experiment. The results showed that the 10 mM N level was the optimal fertilization regime with the highest promotion effect on plant growth and the maximum quantum yield of photosystem II (PSII) (Fv/Fm). Excess N (20 and 30 mM) fertilization reduced the actual quantum yield of PSII (ФPSII) and the Fv/Fm of the plants. Regardless of the N availability, inoculated plants exhibited greater Fv/Fm values than did non-inoculated plants. The biomass of inoculated plants was significantly higher compared with the control under low N levels (0 and 2 mM). Under high N levels, inoculated plants showed significant increases in ФPSII. Moreover, the nutrient imbalance of plants inoculated with exogenous R. irregularis was eased by increasing P, Fe, Mn and Cu uptake in roots and higher P, Ca, Mg, Fe, Mn and Zn concentrations in leaves. Moreover, the Fv/Fm and ФPSII exhibited positive correlations with P, Ca, Mg and Zn concentrations in leaves. In conclusion, inoculation with exogenous R. irregularis can benefit plant fitness by improving the photochemical capacity and nutrient composition of poplar under different N levels.  相似文献   

13.
The goal of the study was to investigate the effects of exogenous selenium (Se) on the tolerance of faba bean plants to lead (Pb) stress under P-deficient conditions. The bean plants were grown for 2 weeks on Hoagland solution supplied with Pb (0, 50 μM) and Se (0, 1.5, or 6 μM), separately or simultaneously. It was shown that Pb did not affect shoot growth but caused major damage in the leaves, which was accompanied by Pb accumulation in these tissues. The exposure of the shoots to Pb led to significant changes in the biochemical parameters: the MDA content, glutathione peroxidase (GSH-Px), guaiacol peroxidase (GPOX), and catalase (CAT) activity increased. Furthermore, Pb intensified O 2 ?? and H2O2 production. Both the Se concentrations used increased the chlorophyll b, chlorophyll a+b, and carotenoid content in the faba bean plants. Selenite also generally enhanced CAT, GPOX, and GSH-Px activities and the T-SH level. Our results imply that the degree of disturbances caused by Pb could be partially ameliorated by Se supplementation. Selenite at a lower dose alleviated Pb toxicity by decreased H2O2 and O 2 ?? production and decreased the GSH-Px, GPOX, and CAT activities. The beneficial effect of the higher selenite concentration could be related to reduction of lipid peroxidation in the shoots of the Pb-treated plants. However, the effect of Se on the Pb-stressed plants greatly depended on the selenite dose in the nutrient solution.  相似文献   

14.
LrgA and LrgB genes have been identified as new components in regulation of programmed cell death (PCD) in bacteria. While in Arabidopsis, it has been documented that AtLrgB plays a crucial role in chloroplast development and photorespiration by acting as a glycolate/glycerate translocator (PLGG1) in the chloroplast inner membrane. However, little is known about LrgB homologs in other plant species, especially those with fleshy fruits. In this study, a homologous gene of AtLrgB, here designated SlLrgB, was identified in tomato. Similar to AtLrgB, structure analysis suggests that the LrgA and LrgB genes have evolved into two domains of the SlLrgB protein. Expression pattern analysis showed that SlLrgB accumulated mainly in green tissues and could be regulated by light, hormone, and abiotic stress treatments. Compared to wild-type plants, parts of SlLrgB overexpression plants displayed etiolated leaves and a growth retardation phenotype, with significantly reduced chlorophyll content both in leaves and fruits. The qPCR results revealed that the SGR gene, which was associated with chlorophyll degradation, was severely repressed. Two key genes in the chlorophyll biosynthesis pathway, CAO and POR, were also suppressed in the SlLrgB overexpression plants. Taken together, we suggest that SlLrgB may play important roles in the regulation of chlorophyll metabolism pathways in tomato.  相似文献   

15.
The variation of light intensity has obvious effects on leaf external morphology, internal anatomy, and physiological characteristics; it even induces changes in secondary metabolite production. The effects of different irradiance levels on biomass, gas exchange parameters, and photosynthetic pigment contents in Mahonia bodinieri (Gagnep.) Laferr. were analyzed here. Combined analyses of physiology, cytology, and HPLC were used to study the differences in leaf morphology, structure, physiological characters, and alkaloid content in response to different irradiances. The results indicated that the highest foliar biomass was observed under I 50 (50 % of full sunlight) followed by I 30 (30 % of full sunlight), the highest net photosynthetic rate, stomatal conductance, transpiration rate values were observed under I 30 followed by I 50, and lower values occurred in I 10 (10 % of full sunlight) and I 100 (full sunlight). With increased light intensity, total leaf area and the contents of chlorophyll a (Chl a), chlorophyll b (Chl b), and chlorophyll (Chl a+b) per unit leaf area were clearly reduced, whereas leaf mass per area, carotenoid content, leaf thickness, thickness of palisade and spongy parenchyma, and stomatal density were all significantly increased. Electron microscopic observation revealed that the number of grana, stroma lamellae and the number of starch grains in chloroplasts were decreased, the number of plastoglobuli was increased when irradiance levels increased. The estimated total yield of alkaloids in a single plant was higher under I 30 and I 50 than under I 10 or I 100 as a result of the higher biomass of the plants. Therefore, I 30 and I 50 were not only beneficial to increase biomass, but also suitable for the synthesis and accumulation of the major secondary metabolites (alkaloids). Our findings provide valuable data for the determination and regulation of irradiance levels during artificial cultivation of M. bodinieri.  相似文献   

16.
Aluminum is one of the most important heavy metals inducing stress during plant growth and development. In this study, transgenic rice (Oryza sativa L., cv. Kitaake) plants expressing the maize C4PEPC and PPDK genes were evaluated for aluminum tolerance. A 4.3 and 19.1 folds increase of PPDK and PEPC activities in transgenic rice produced increases in root exudation of oxalate, malate, and citrate (1.20, 1.41, and 1.65 times, respectively) compared to untransformed (WT) plants. Transgenic rice had enhanced aluminum tolerance compared to WT based on chlorophyll fluorescence and chlorophyll levels. Transgenic plants under aluminum stress also had decreased lipid membrane oxidative damage and higher levels of ROS-scavenging enzyme activity. The PEPC and PPDK genes play an important role in aluminum stress tolerance by increasing the effluxes of organic acids.  相似文献   

17.
The physiological state of the leaves of the small-leaved linden (Tilia cordata), silver birch (Betula pendula), and northern white cedar (Thuja occidentalis) under urban conditions was assessed via recording the kinetics of chlorophyll under fluorescence induction. Different sensitivities of the plants to adverse growing conditions were revealed. The most sensitive parameters of the fluorescence JIP test, viz., PI ABS , F V/F 0, and F V/F M, were identified as indicators of the physiological state of the urban phytocoenosis. Recommendations for the application of the method for monitoring studies are presented.  相似文献   

18.
Herein, we report isolation of the AlTMP2 gene from the halophytic C4 grass Aeluropus littoralis. The subcellular localization suggested that AlTMP2 is a plasma membrane protein. In A. littoralis exposed to salt and osmotic stresses, the AlTMP2 gene was induced early and at a high rate, but was upregulated relatively later in response to abscisic acid and cold treatments. Expression of AlTMP2 in tobacco conferred improved tolerance against salinity, osmotic, H2O2, heat, and freezing stresses at the germination and seedling stages. Under control conditions, no growth or yield penalty were mentioned in transgenic plants due to the constitutive expression of AlTMP2. Interestingly, under greenhouse conditions, the seed yield of transgenic plants was significantly higher than that of non-transgenic (NT) plants grown under salt or drought stress. Furthermore, AlTMP2 plants had less electrolyte leakage, higher membrane stability, and lower Na+ and higher K+ accumulation than NT plants. Finally, six stress-related genes were shown to be deregulated in AlTMP2 plants relative to NT plants under both control and stress conditions. Collectively, these results indicate that AlTMP2 confers abiotic stress tolerance by improving ion homeostasis and membrane integrity, and by deregulating certain stress-related genes.  相似文献   

19.
The amino acid sequence of APX4 is similar to other ascorbate peroxidases (APXs), a group of proteins that protect plants from oxidative damage by transferring electrons from ascorbate to detoxify peroxides. In this study, we characterized two apx4 mutant alleles. Translational fusions with GFP indicated APX4 localizes to chloroplasts. Both apx4 mutant alleles formed chlorotic cotyledons with significantly reduced chlorophyll a, chlorophyll b and lutein. Given the homology of APX to ROS-scavenging proteins, this result is consistent with APX4 protecting seedling photosystems from oxidation. The growth of apx4 seedlings was stunted early in seedling development. In addition, APX4 altered seed quality by affecting seed coat formation. While apx4 seed development appeared normal, the seed coat was darker and more permeable than the wild type. In addition, accelerated aging tests showed that apx4 seeds were more sensitive to environmental stress than the wild-type seeds. If APX4 affects seed pigment biosynthesis or reduction, the seed coat color and permeability phenotypes are explained. apx4 mutants had cotyledon chlorosis, increased H2O2 accumulation, and reduced soluble APX activity in seedlings. These results indicate that APX4 is involved in the ROS-scavenging process in chloroplasts.  相似文献   

20.

Background and aims

Low nitrogen negatively affects soil fertility and plant productivity. Glucose-6-phosphate dehydrogenase (G6PDH) and Epichloë gansuensis endophytes are two factors that are associated with tolerance of Achnatherum inebrians to abiotic stress. However, the possibility that E. gansuensis interacts with G6PDH in enhancing low nitrogen tolerance of host grasses has not been examined.

Methods

A. inebrians plants with (E+) and without E. gansuensis (E?) were subjected to different nitrogen concentration treatments (0.1, 1, and 7.5 mM). After 90 days, physiological studies were carried out to investigate the participation of G6PDH in the adaption of host plants to low nitrogen availability.

Results

Low nitrogen retarded the growth of A. inebrians. E+ plants had higher total dry weight, chlorophyll a and b contents, net photosynthesis rate, G6PDH activity, and GSH content, while having lower plasma membrane (PM) NADPH oxidase activity, NADPH/NADP+ ratios, and MDA and H2O2 than in E? A. inebrians plants under low nitrogen concentration.

Conclusions

The presence of E. gansuensis played a key role in maintaining the growth of the A. inebrians plants under low nitrogen concentration by regulating G6PDH activity and the NADPH/NADP+ ratio and improving net photosynthesis rate.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号