首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
To assess the toxic effect of nickel (Ni) on the growth and some key metabolic processes in sunflower, varying levels of Ni as Ni(NO3)2 up to 60 mg L−1 were applied once to sunflower cultivars SF-187 and Hysun-33 at sowing time in sand culture. An increase in Ni in the growth medium adversely affected growth parameters, sugar concentration (both reducing and non-reducing), as well as the activities of α-amylase and protease. It also slowed down mobilization of stored proteins and amino acids in the germinating seeds. However, an increase in the activities of α-amylase and protease was observed over time from 24 to 120 h after sowing. Cultivar Hysun-33 showed better performance than SF-187 in the presence of excess Ni. Overall, Ni-induced reduction in germination of sunflower seed appeared to be due to disturbance in biochemical metabolism as the availability of sugars for the synthesis of metabolic energy as well as necessary amino acids for the synthesis of proteins and enzymes essential for the growing embryo are generally reduced due to suppression in α-amylase and protease activities.  相似文献   

2.
Salt-induced changes in growth, photosynthetic pigments, various gas exchange characteristics, relative membrane permeability (RMP), relative water content (RWC) and ion accumulation were examined in a greenhouse experiment on eight sunflower (Helianthus annuus L.) cultivars. Sunflower cultivars, namely Hysun-33, Hysun-38, M-3260, S-278, Alstar-Rm, Nstt-160, Mehran-II and Brocar were subjected to non-stress (0 mM NaCl) or salt stress (150 mM NaCl) in sand culture. On the basis of percent reduction in shoot biomass, cvs. Hysun-38 and Nstt-160 were found to be salt tolerant, cvs. Hysun-33, M-3260, S-278 and Mehran-II moderately tolerant and Alstar-Rm and Brocar salt sensitive. Salt stress markedly reduced growth, different gas exchange characteristics such as photosynthetic rate (A), water-use efficiency (WUE) calculated as A/E, transpiration rate (E), internal CO2 concentration (C i) and stomatal conductance (g s) in all cultivars. The effect of 150 mM NaCl stress was non-significant on chlorophyll a and b contents, chlorophyll a/b ratio, RWC, RMP and leaf and root Cl, K+ and P contents; however, salt stress markedly enhanced C i /C a ratio, free proline content and leaf and root Na+ concentrations in all sunflower cultivars. Of all cultivars, cv. Hysun-38 was higher in gas exchange characteristics, RWC and proline contents as compared with the other cultivars. Overall, none of the earlier-mentioned physiological attributes except leaf K+/Na+ ratio was found to be effective in discriminating the eight sunflower cultivars as the response of each cultivar to salt stress appraised using various physiological attributes was cultivar-specific.  相似文献   

3.
To assess whether foliar application of K+S as potassium sulfate (K2SO4) could alleviate the adverse effects of salt on sunflower (Helianthus annuus L. cv. SF-187) plants, a greenhouse experiment was conducted. There were two NaCl levels (0 and 150 mM) applied to the growth medium and six levels of K+S as K2SO4 (NS (no spray), WS (spray of water+0.1% Tween 20 solution), 0.5% K+0.21% S, 1.0% K+0.41% S, 1.5% K+0.62% S, and 2.0% K+0.82% S in 0.1% Tween-20 solution) applied two times foliarly to non-stressed and salt-stressed sunflower plants. Salt stress markedly repressed the growth, yield, photosynthetic pigments, water relations and photosynthetic attributes, quantum yield (Fv/Fm), leaf and root K+, Mg2+, P, Ca2+, N as well as K+/Na+ ratios, while it enhanced the cell membrane permeability, and leaf and root Na+ and Cl concentrations. Foliar application of potassium sulfate significantly improved growth, achene yield, photosynthetic and transpiration rates, stomatal conductance, water use efficiency, leaf turgor and enhanced shoot and leaf K+ of the salt-stressed sunflower plants, but it did not improve leaf and root Na+, Cl, Mg2+, P, Ca2+, N as well as K+/Na+ ratios. The most effective dose of K+S for improving growth and achene yield was found to be 1.5% K+0.62% S and 1% K+0.41% S, respectively. Improvement in growth of sunflower plants due to exogenously applied K2SO4 was found to be linked to enhanced photosynthetic capacity, water use efficiency, leaf turgor and relative water content.  相似文献   

4.
Endophytic bacterial diversity shows an intricate network of interactions with host plants as they reside in various tissues and organs at certain stages or all stages of their life cycle stimulating the plant growth and fitness. Sunflower is a trendy oilfield crop and variation in its varieties is associated with the dynamics of endophytic diversity. The present study is undertaken to identify and compare the ecological niche of endophytic bacterial communities amongst different tissues of two hybrids varieties Hysun-33 and Hysun-39 of sunflower (Helianthus annuus) at three developmental stages which are vegetative stage I (after 15 days of seeds germination), vegetative stage II (after 30 days of germination) and reproductive stage (after 90 days of germination). A total of 74 endophytes from Hysun-33 and 115 endophytes from Hysun-39 have been isolated from different tissues and growth stages. Amongst plant parts, root tissues harbored higher bacterial inhabitants (44) followed by stem (33), leaf (30) and flower (7) of Hysun-39. Likewise, Hysun-33 endophytes colonized roots more abundantly followed by leaves, stem and flowers. All strains are found to be gram positive with the exception of only RA9 from Hysun-33 and RB9 from Hysun-39 that are gram negative. Among different growth stages, the maximum bacterial population (CFU of 320 × 103) was found amongst root microflora at vegetative stage II of plant in Hysun-39 variety as compared to root endophytes of Hysun-33 having (CFU of 10 × 103). The evaluation of their growth promoting features revealed that among 74 isolates of Hysun-33, 70% exhibited the ability of hydrogen cyanide production, 43% IAA production, 36% siderophore production and 4% nitrogen fixation and also phosphate solubilization. However among 115 isolates of Hysun-39, 64% appeared as hydrogen cyanide producers, 56% IAA producers, 33% siderophore producers, 2% nitrogen fixers and 4% as phosphate solubilizers. Therefore our study reveals understanding of wide-ranging diversity of endophytic bacteria and their beneficial relationship with internal tissues of host plant which may recommend their implementation to crops for better development of agricultural systems.  相似文献   

5.
The main component of the byproducts of flue gas desulfurization (BFGD) is CaSO4, which can be used to improve sodic soils. The effects of BFGD on sodic soil properties and sunflower growth were studied in a pot experiment. The experiment consisted of eight treatments, at four BFGD rates (0, 7.5, 15 and 22.5 t ha−1) and two leaching levels (750 and 1200 m3 ha−1). The germination rate and yield of the sunflower increased, and the exchangeable sodium percentage (ESP), pH and total dissolved salts (TDS) in the soils decreased after the byproducts were applied. Excessive BFGD also affected sunflower germination and growth, and leaching improved reclamation efficiency. The physical and chemical properties of the reclaimed soils were best when the byproducts were applied at 7.5 t ha−1 and water was supplied at 1200 m3·ha−1. Under these conditions, the soil pH, ESP, and TDS decreased from 9.2, 63.5 and 0.65% to 7.8, 2.8 and 0.06%, and the germination rate and yield per sunflower reached 90% and 36.4 g, respectively. Salinity should be controlled by leaching when sodic soils are reclaimed with BFGD as sunflower growth is very sensitive to salinity during its seedling stage.  相似文献   

6.
A field experiment in collaboration with a private textile industry (Noor Fatima Fabrics Private (Ltd.), Faisalabad) was conducted to evaluate the effect of disposed water from bleaching unit, printing unit and end drain for improving growth and yield of wheat under saline sodic soil. Textile waste water along with canal water (control) was applied with and without liquid NPK fertilizer. The application of liquid NPK fertilizer with end drain waste water increased plant height, spike length, flag leaf length, root length, number of tillers (m?2), number of fertile tillers (m?2), 1000 grain weight, grain yield, straw yield and biological yield up to 21, 20, 20, 44, 17, 20, 14, 44, 40 and 41%, respectively compared to canal water (control). Similarly, the NPK uptake in grain was increased up to 15, 30 and 28%, respectively by liquid fertilizer treated end drain water as compare to canal water with liquid fertilizer. Moreover, concentration of different heavy metals particularly Cu, Cr, Pb and Cd was decreased in grains by application of waste water along with liquid NPK. The result may imply that waste water application along with liquid-NPK could be a novel approach for improving growth and yield of wheat in saline sodic soils.  相似文献   

7.
Sunflower is a major oil seed crop worldwide, and it is also an important crop in Mediterranean areas where salinity is an increasing problem. In this paper, the effect of saline irrigation water on seed yield and quality of sunflower was evaluated. A pot experiment was carried out over two crop seasons on two hybrids – a standard one (Carlos) and a high oleic one (Tenor) – submitted to five salinity levels of irrigation water (0.6, 3, 6, 9 and 12 dS m?1). Soil salinity was monitored over the entire crop cycle, and leaf ion content was determined at maturity. Tenor showed higher Na+ and Mg2+ content but lower K+ values. No difference between the two hybrids was observed for Cl? content. A progressive increase in leaf Na+, K+ and Cl? contents and Na+/K+ ratio with increasing salinity level was observed. Seed weight per head, 1000 achene weight, number of seeds per plant and oil yield significantly decreased under salt stress in both hybrids. The percent seed yield decrease was higher per unit increase in electrical conductivity of irrigation water, ECw (8%), than per unit increase in electrical conductivity of saturated‐soil extracts, ECe (5%). Concerning oil fatty acid composition, the main significant difference as result of salt stress was a progressive increase in oleic acid content, from 82.2% to 86.7% for Tenor and from 21.8% to 27.3% for Carlos, which was consistent with a decrease in linoleic acid content, from 5.9% to 3% for Tenor and from 66% to 61.3% for Carlos. These results confirm the possible inhibition of oleate desaturase under salt stress.  相似文献   

8.
Salt stress has multiple damaging effects on plants including physiological damage, reduced growth, and productivity. Plant growth-promoting rhizobacteria (PGPR) are one of the valuable options to mitigate the negative effects of this stress. In the present study, native bacteria from chickpea’s rhizosphere were isolated, and checked for their salt tolerance and plant growth-promoting attributes (phosphate (P) solubilization, siderophores, indole-3-acetic acid (IAA) production, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase production). One isolate, subsequently identified as Pantoea dispersa, showed appreciable production of IAA (218.3 µg/ml) and siderophores (60.33% SU), P-solubilization (3.64 µg/ml) and ACC deaminase activity (207.45 nmol/mg/h) in the presence of 150 mM NaCl, under laboratory conditions. Salt stress in uninoculated chickpea (GPF2 cultivar) plants induced high accumulation of Na+ ions (3.86 mg g?1 dw) in the leaves, along with significant reduction in K+ uptake, membrane integrity, chlorophyll concentration, and leaf water content, thus resulting in impaired growth of the plant and yield (pods and seeds) in a salt concentration-dependent manner. The damage due to salt stress was restored significantly in plants inoculated with P. dispersa. A significant improvement in biomass (32–34%), pods number (31–34.5%), seeds number (32–35.7%), pods weight (30–32.6%), and seeds weight (27–35%) per plant occurred in salt stress-affected plants, which was associated with significant reduction in Na+ uptake, reduced membrane damage, significantly improved leaf water content, chlorophyll content, and K+ uptake. This study suggests for the first time that native P. dispersa strain PSB3 can be used to alleviate the negative effects of salt stress on chickpea plants and holds the potential to be used as a biofertilizer.  相似文献   

9.
Four Cr(VI)-reducing bacterial strains (Ochrobactrum intermedium, CrT-2, CrT-3 and CrT-4) previously isolated from chromium-contaminated sites were inoculated on to seeds of sunflower (Helianthus annuus var SF-187), which were germinated and grown along with non-inoculated controls with chromate salts (300 μg CrCl3 or K2CrO4 ml−1). Severe reduction (20%) in seed germination was observed in Cr(VI) stress. Plant height decreased (36%) with Cr(VI) when compared with chromium-free control, while O. intermedium inoculation resulted a 20% increment in this parameter as compared to non-inoculated chromium-free control. CrT-3 inoculation resulted a 69% increment in auxin content as compared to non-inoculated control. O. intermedium caused 30% decrease in chromium uptake in sunflower plant roots under Cr(VI) stress as compared to chromium-free control plants.  相似文献   

10.
Safflower (Carthamus tinctorius L.) represents an important oil crop internationally and may have a certain production potential under low input conditions, particularly in organic farming systems, where the putatively low nutrient requirement would be an advantage. However, little is known about the nutrient requirements of safflower. This study was undertaken to determine the growth and yield response of safflower as compared to sunflower (Helianthus annuus L.) under different N supplies. Safflower and sunflower plants were grown in Mitscherlich pots containing equal volumes of sand, nutrient-poor limed soil, and perlite. Nitrogen supply was the same for both species (0.25, 0.5, 1.0, 1.5, and 2.0 g per pot) in the first year, but was raised for sunflower (0.5, 1.0, 2.0, 3.0, and 4.0 g per pot) in the second. Increased N supply enhanced plant growth and yield for both species. Growth and yield of safflower increased up to 1.0 g pot−1, while the optimum for sunflower was 2.0 g pot−1. Safflower out-yielded sunflower at low N supply, while at high N level the opposite occurred. Functional analysis according to Michaelis–Menten revealed that – in terms of yield formation – safflower is superior to sunflower under N-limited conditions. Safflower is generally more efficient than sunflower in concentrating N in their shoots. N concentration in the photosynthetically active youngest mature blade of both species exhibited the same functional relationship with the N supply, but safflower required a much lower leaf N concentration to produce optimal yield as compared to sunflower, indicating the higher efficiency of the former in terms of NUE. Yield components analysis revealed that in safflower, yield is tightly correlated with the number of capitula per plant and the mass per achene, both being strongly correlated, too. On the contrary, sunflower yield was merely determined by the number of achenes per capitulum, followed by the mass per achene. Path coefficient analysis showed that in safflower, the direct effects of the achene and leaf N content as well as the leaf dry matter on oil yield are small, and mediated principally via indirect effects on the number of achenes per capitulum, while for sunflower the number of achenes per capitulum exerts a strong direct effect. Dedicated to the late Prof. Dr. Burkhard Sattelmacher, who passed away on November 21, 2005.  相似文献   

11.
Impact of four chromium resistant bacterial strains (S3, S4, S6, and S7) was studied on the different growth parameters of sunflower (Helianthus annuus var SF-187) in chromium free or under chromium stress. Strains used exhibited very high-level resistance to chromate (up to 50 mg ml-1 on nutrient agar and 1-2 mg ml-1 in minimal medium). Application of Cr(VI) salt adversely affected the seed germination, root and shoot length, and fresh weight of seedlings. Bacterial inoculations improved the growth parameters. The effects of Cr(VI) on the different biochemical parameters were also very severe but seedlings inoculated with bacteria showed much improvements as compared to non-inoculated controls. Uptake of Cr(VI) was higher than Cr(III) by the seedlings. Inoculated seedlings contained less chromium than non-inoculated seedlings. Much improvement in the internal region of root and shoot was observed in inoculated plants especially in guard cells.  相似文献   

12.
The influence of pre-sowing seed treatment with polyamines (2.5 mM putrescine, 5.0 mM spermidine and 2.5 mM spermine) on growth, photosynthetic capacity, and ion accumulation in two spring wheat (Triticum aestivum L.) cultivars MH-97 (intolerant) and Inqlab-91 (tolerant) was examined. The primed seeds of each treatment and non-primed seeds were sown in a field containing 15 dS m−1 NaCl. Although all three polyamines were effective in improving shoot growth and grain yield in both cultivars under saline conditions, the effect of spermine was very pronounced particularly in improving grain yield. Different priming agents did not affect the net CO2 assimilation rate and transpiration rate of either cultivar. However, pre-treatment with spermidine increased stomatal conductance (gs) in the tolerant cultivar, whereas with spermine stomatal conductance decreased in the intolerant cultivar under salt stress. Priming agents had different effects on the accumulation of different ions in wheat plant tissues. When spermidine and distilled water were used as priming agents, they were effective in reducing shoot [Na+] in the tolerant and intolerant cultivars, respectively under saline conditions. Although all priming agents caused an increase in shoot [K+], distilled water was more effective in improving shoot [K+] in both cultivars under salt stress. Pre-treatment with spermidine was very effective in reducing shoot [Cl] under saline conditions particularly in the tolerant cultivar. However, the pattern of accumulation of different ions in roots due to different seed priming treatments was not consistent in either cultivar except that root Na+ decreased due to priming with spermine and spermidine in the intolerant and tolerant cultivars under saline conditions. In conclusion, although all three priming agents, spermine, spermidine and putrescine, were effective in alleviating the adverse effect of salt stress on wheat plants, their effects on altering the concentration of different ions and growth were different in the two cultivars differing in salt tolerance.  相似文献   

13.
Salinization and alkalization of soil are widespread environmental problem and the alkali stress is more destructive than the effects caused by salt stress. To compare the mechanism of salt and alkali stresses, a sunflower variety (Helianthus annuus L. cv. Baikuiza 6) was tested under saline or alkaline conditions by mixing two neutral salts (NaCl and Na2SO4) or two alkaline salts (NaHCO3 and Na2CO3). The results showed that saline conditions differed greatly from alkaline conditions in their threshold intensities where sunflower can germinate, survive and grow. Under saline conditions, the emergence time was delayed, and the emergence rate and seedling survival rate also decreased with increasing salinity. However, under alkaline conditions, the rate of seedling survival decreased sharply but the emergence time and emergence rate did not change. In addition, the damaging effects of alkali stress on growth and photosynthesis were more severe than those of saline. In shoots, the main inorganic osmolyte and cation was K+ rather than Na+; the primary organic osmolytes were organic acid and soluble sugar rather than proline. Organic acid, NO3 , and Cl (only under saline condition) were the main source of anion. In addition, the osmotic adjustment and ion balance differed among sunflower roots, stems, and leaves. In conclusion, saline and alkaline conditions are two different stress conditions and there are special responses to two stress conditions for sunflower.  相似文献   

14.
Rice is relatively sensitive to salinity and is classified as a silicon accumulator. There have been reports that silicon can reduce sodium uptake in crop grasses in saline conditions, but the mechanism by which silicon might alleviate salinity damage is unclear. We report on the effects of silicon on growth, gas exchange and sodium uptake in rice genotypes differing in salt tolerance. In non-saline media there were no effects of supplementary silicate upon shoot fresh or dry weight or upon root dry weight, indicating that the standard culture solution was not formally deficient with respect to silicon. Plants grown with supplementary silicate had slightly, but significantly, shorter leaves than plants grown in a standard culture solution. Salinity reduced growth and photosynthetic gas exchange. Silicate supplementation partly overcame the reduction in growth and net photosynthesis caused by salt. This amelioration was correlated with a reduction in sodium uptake. Silicate supplementation increased the stomatal conductance of salt-treated plants, showing that silicate was not acting to reduce sodium uptake via a reduction in the transpiration rate. Silicate reduced both sodium transport and the transport of the apoplastic tracer trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS). This implies that the mode of action of silicate was by partial blockage of the transpirational bypass flow, the pathway by which a large proportion of the uptake of sodium in rice occurs. Mechanisms by which silicate might reduce the transpirational bypass flow directly are discussed.  相似文献   

15.
Beneficial effects of silicon (Si) on growth have been observed in some plant species, reportedly due to stoichiometric changes of C, N, and P. However, little is known about the effects on the stoichiometric relationships between C, N, and P when silicon is supplied via different modes in sorghum and sunflower plants under salt stress conditions. Therefore, the current study was performed to investigate the impact of differing modes of Si supply on shoot biomass production and C:N:P stoichiometry in sorghum and sunflower plants under salt stress. Two experiments were performed in a glass greenhouse using the strong Si-accumulator plant sorghum, as well as the intermediate type Si-accumulator sunflower, both of which were grown in pots filled with washed sand. Plant species were cultivated for 30 days in the absence or presence of salt stress (0 or 100 mM) and supplemented with one of four Si treatments: control plants (without Si), 28.6 mmol Si L−1 via foliar application, 2.0 mmol Si L−1 via nutrient solution, and combined application of foliar and nutrient solution, each group with five replications. The results revealed that supplied Si modified the C, N, and P concentrations, thereby enhancing the C:N:P stoichiometry and shoot dry matter of sorghum and sunflower plants under salt stress. Both application of Si via nutrient solution, as well as combined application via foliar and nutrient solution, increased the C:N ratio in both plant species under salt stress, but in sorghum plants decreased the C:P and N:P ratios and increased the shoot biomass production by 39%, while in sunflower plants increased the C:P and N:P ratios and increased the shoot biomass production by 24%. Our findings suggest that salt stress alleviation by Si impacts C:N:P stoichiometric relationships in a variable manner depending on the ability of the species to accumulate Si, as well as the route of Si administration.  相似文献   

16.
In the current review we focus on the opportunity to use brackish water in the cultivation of floricultural plants, plants for which, due to their high economic value, growers have traditionally used good quality water for irrigation. Now, even for these crops the use of alternative water sources for irrigating nursery plants is needed because of the limited supplies of fresh water in many countries; understanding how saline water can be used will also enhance sustainable development in floriculture. While salt stress usually reduces plant growth, any such reduction might not be negative for ornamentals, where shoot vigour is sometime undesirable, although on flower crops salt stress can delay flowering or decrease flower quality characteristics. However, a decrease in growth rate is not enough to characterize the salt tolerance of ornamental plants, but traits like tip and marginal leaf burn, as consequence of sodium and chlorine accumulation, have to be considered for their effects on aesthetical value. With this in mind, some halophytes should be considered for floriculture because of their ability to cope with saline environments; their potential to tolerate salt is an important factor in reducing production costs. Consequently, the identification of ornamental halophytes is important for producing a commercially acceptable crop when irrigated with brackish waters. Many aspects of a plant's reaction to salt are genetically determined, so selection of suitable genotypes or breeding for salt tolerance in ornamentals are interesting options. Developing salt-tolerant floricultural crops, together with typical management practices that avoid excessive salinity stress in the root media, will provide the grower with economically and environmentally sound wastewater reuse options.  相似文献   

17.
Sunflowers were treated with mixing proportions of NaCl, Na2SO4, NaHCO3, and Na2CO3. Effects of salt and saltalkaline mixed stress on growth, photosynthesis, chlorophyll fluorescence, and contents of inorganic ions and organic acids of sunflower were compared. The growth of sunflower decreased with increasing salinity. The contents of photosynthetic pigments did not decrease under salt stress, but their contents decreased sharply under salt-alkaline mixed stress. Net photosynthetic rates, stomatal conductance and intercellular CO2 concentration decreased obviously, with greater reductions under salt-alkaline mixed stress than under salt one. Fluorescence parameters showed no significant differences under salt stress. However, maximal efficiency of PSII photochemistry, photochemical quenching coefficient, electron transport rate, and actual PSII efficiency significantly decreased but non-photochemical quenching increased substantially under salt-alkaline mixed stress. Under salt-alkaline mixed stress, sunflower leaves maintained a low Na+- and high K+ status; this may be an important feature of sunflower tolerance to salinity. Analysis of the mechanism of ion balance showed that K+ but not Na+ was the main inorganic cation in sunflower leaves. Our results indicated that the change in organic acid content was opposite to the change of Cl, and the contribution of organic acid to total charge in sunflower leaves under both stresses decreased with increasing salinity. This may be a special adaptive response to stresses for sunflower. Sunflower under stress conditions mainly accumulated inorganic ions instead of synthesizing organic compounds to decrease cell water potential in order to save energy consumption.  相似文献   

18.
Water use and sodium chloride uptake by apple trees   总被引:2,自引:0,他引:2  
D. W. West 《Plant and Soil》1978,50(1-3):37-49
Summary Apple trees grown with their root systems split into halves were used to study the effects of non-uniform salinity stress within a root system upon salt and water uptake. Water uptake declined rapidly when sodium chloride solution (90 meq l−1) was added to any root zone but uptake increased correspondingly in the non-saline root zone of each tree. This changed pattern of water uptake with partial salinization did not change the total water use by the trees compared with their water use when neither root zone was salt stressed. After a‘steady-state’ condition of water uptake had been reached 80 to 85% of the water was taken up in the non-saline root zone. Irrigation at three soil matric potential intervals of −6.6, −33 and −66 kPa allowed to develop in the non-saline root zone of each tree did not affect water use responses. Leaf concentrations of Ca, Mg and K were unaffected by treatments. Chloride and Na concentrations increased in leaves with exposure to salinity stress in half root zones and with increasing soil matric potential stress. Some evidence was obtained using tritium enriched water that water was transferred from a non-saline root zone into a saline root zone but the volume involved was unmeasurable.  相似文献   

19.
Poor seed development in sunflower may result from insufficient assimilate supply (source limitation). To test this hypothesis, the effects of changed source–sink ratio on seed set (measured as percentage of empty achenes) and seed filling (measured as dry mass per filled achene) in individual plants were investigated. Source–sink ratio, defined as leaf area per floret (LAF), was experimentally altered using invasive (floret removal, defoliation) and non‐invasive (pulse of chilling, short days or shading during leaf or floret initiation) treatments. Shading at floret initiation proved the most effective non‐invasive method. Generally, an increase, or decrease, in LAF improved, or impaired, both seed set and filling. Increasing LAF by 2.0 cm2[95% confidence interval (1.5, 2.5)] decreased the percentage of empty achenes by 36.9%‐points (?41.9, ?30.9) and increased dry mass per filled achene by 20.1 mg (13.6, 26.7) in the capitulum centre. The effect of source–sink ratio on seed set was always strongest in the centre, whereas peripheral whorls were not affected. Achene mass was affected in all parts of the capitulum. It is concluded that source limitation is a major cause for empty achenes in sunflower plants grown under non‐stress conditions.  相似文献   

20.
A greenhouse experiment was conducted to investigate the effects of silicon application on Phaseolus vulgaris L. under two levels of salt stress (30 and 60 mM NaCl in the irrigation water). Salinity significantly reduced growth, stomatal conductance and net photosynthetic rate, and increased Na+ and Cl content mainly in roots. Silicon application enhanced growth of salt stressed plants, significantly reduced Na+ content especially in leaves and counterbalanced the effects of NaCl on gas exchange; the effect was more evident at 30 mM NaCl. Cl content in shoots and roots was not significantly modified by silicon application; the drop in K+ content caused by salinity was partially counterbalanced by silicon, especially in roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号