首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Phenolic acids and tanshinones are two groups of pharmaceutical components present in Salvia miltiorrhiza Bunge. Methyl jasmonate (MeJA) has been reported to influence the accumulation of both phenolic acids and tanshinones in S. miltiorrhiza hairy roots. However, there is currently a lack of information regarding the comparison of how these two groups of bioactive compounds in S. miltiorrhiza respond to MeJA under the same conditions. In the present study, the effect of 100 µM MeJA on the biosynthesis of phenolic acids and tanshinones in S. miltiorrhiza hairy roots was investigated. The results showed that MeJA dramatically induced the accumulation of five different phenolic acids, especially rosmarinic acid and salvianolic acid B, which reached their highest contents at day 3 (20.3 mg/g DW, 1.5-fold of control) and day 6 (47.49 mg/g DW, 2.5-fold of control), respectively. The total production of phenolic acids was induced by as much as 3.3-fold of the control (day 9 after treatment), reaching 357.5 mg/L at day 6. However, tanshinone I was almost unaffected by MeJA treatment, and the accumulation of tanshinone IIA was inhibited. Furthermore, cryptotanshinone and dihydrotanshinone I were moderately induced by MeJA. The gene expression results indicated that MeJA probably induced the whole pathways, especially the tyrosine-derived pathway and the methylerythritol phosphate pathway, and finally resulted in the increased production of these metabolites. This study will help us to further understand how the different biosynthetic mechanisms of phenolic acids and tanshinones respond to MeJA and provide a reference for the future selection of elicitors for application to improving the production of targeted compounds.  相似文献   

3.
The medicinal plant Salvia miltiorrhiza produces various tanshinone diterpenoids that have pharmacological activities such as vasorelaxation against ischemia reperfusion injury and antiarrhythmic effects. Their biosynthesis is initiated from the general diterpenoid precursor (E,E,E)-geranylgeranyl diphosphate by sequential reactions catalyzed by copalyl diphosphate synthase (CPS) and kaurene synthase-like cyclases. Here, we report characterization of these enzymatic families from S. miltiorrhiza, which has led to the identification of unique pathways, including roles for separate CPSs in tanshinone production in roots versus aerial tissues (SmCPS1 and SmCPS2, respectively) as well as the unique production of ent-13-epi-manoyl oxide by SmCPS4 and S. miltiorrhiza kaurene synthase-like2 in floral sepals. The conserved SmCPS5 is involved in gibberellin plant hormone biosynthesis. Down-regulation of SmCPS1 by RNA interference resulted in substantial reduction of tanshinones, and metabolomics analysis revealed 21 potential intermediates, indicating a complex network for tanshinone metabolism defined by certain key biosynthetic steps. Notably, the correlation between conservation pattern and stereochemical product outcome of the CPSs observed here suggests a degree of correlation that, especially when combined with the identity of certain key residues, may be predictive. Accordingly, this study provides molecular insights into the evolutionary diversification of functional diterpenoids in plants.Salvia miltiorrhiza, a Lamiaceae species known as red sage or tanshen, is a traditional Chinese medicinal herb that is described in Shen Nong Ben Cao Jing, the oldest classical Chinese herbal book, which dates from between 25 and 220 C.E. The lipophilic pigments from the reddish root and rhizome consist of abietane quinone diterpenoids (Nakao and Fukushima, 1934), largely tanshinone IIA, cryptotanshinone, and tanshinone I (Zhong et al., 2009). These are highly bioactive. For example, tanshinone IIA exerts vasorelaxative activity, has antiarrhythmic effects, provides protection against ischemia reperfusion injury (Zhou et al., 2005; Gao et al., 2008; Sun et al., 2008), and exhibits anticancer activities (Efferth et al., 2008; Lee et al., 2008; Wang et al., 2008; Gong et al., 2011). In addition, tanshinones have been reported to have a broad spectrum of antimicrobial activities against various plant pathogens, including rice (Oryza sativa) blast fungus Magnaporthe oryzae (Zhao et al., 2011). Although tanshinones are mainly accumulated in the roots, trace amounts of tanshinones have been detected in aerial organs as well (Hang et al., 2008).Diterpenoid biosynthesis is initiated by diterpene synthases (diTPSs), which catalyze cyclization and/or rearrangement of the general acyclic precursor (E,E,E)-geranylgeranyl diphosphate (GGPP) to form various hydrocarbon backbone structures that are precursors to more specific families of diterpenoids (Zi et al., 2014). Previous work has indicated that tanshinone biosynthesis is initiated by cyclization of GGPP to copalyl diphosphate (CPP) by a CPP synthase (SmCPS1) and subsequent further cyclization to the abietane miltiradiene by a kaurene synthase-like cyclase (SmKSL1), so named for its homology to the ent-kaurene synthases (KSs) required for GA plant hormone biosynthesis (Gao et al., 2009). Miltiradiene is a precursor to at least cryptotanshinone (Guo et al., 2013), and RNA interference (RNAi) knockdown of SmCPS1 expression reduces tanshinone production, at least in hairy root cultures (Cheng et al., 2014). The identification of SmCPS1 and SmKSL1 has been followed by that of many related diTPSs from other Lamiaceae plant species (Caniard et al., 2012; Sallaud et al., 2012; Schalk et al., 2012; Brückner et al., 2014; Pateraki et al., 2014). These largely exhibit analogous activity, particularly the CPSs, which produce CPP or the stereochemically related 8α-hydroxy-labd-13E-en-15-yl diphosphate (LDPP) rather than the enantiomeric (ent) CPP relevant to GA biosynthesis.To further investigate diterpenoid biosynthesis in S. miltiorrhiza, we report here a more thorough characterization of its diTPS family. A previously reported whole-genome shotgun sequencing survey (Ma et al., 2012) has indicated that there are at least five CPSs, although only two KSL genes in S. miltiorrhiza (Supplemental Table S1). Intriguingly, based on a combination of biochemical and genetic (RNAi gene silencing) evidence, we find that these diTPSs nevertheless account for at least four different diterpenoid biosynthetic pathways, each dependent on a unique CPS, with the KS presumably involved in GA biosynthesis seeming to be responsible for alternative diterpenoid metabolism as well. In addition, our studies clarify the evolutionary basis for the observed functional diversity, with investigation of gene structure, positive selection, molecular docking, and mutational analysis used to explore the driving force for the functional divergence of these diTPSs. Moreover, we report metabolomic analysis, also carried out with SmCPS1 RNAi lines, which enables prediction of the downstream steps in tanshinone biosynthesis.  相似文献   

4.
5.
6.
Traditional rice landraces of coastal area in Bangladesh are distinct regarding their phenotype, response to salt stress and yield attributes. With characterization of these landraces, suitable candidate genes for salinity tolerance could be identified to introgress into modern rice varieties. Therefore, the aim of this experiment was to uncover prospective rice landraces tolerant to salinity. Relying on morphological, biochemical and molecular parameters 25 rice genotypes were tested for salt tolerance at germination and seedling stage. At germination stage 0 and 12 dSm?1 salinity were imposed on rice genotypes. Ward’s cluster analysis divided rice genotypes into three clusters (susceptible, moderately tolerant and tolerant) based on the physiological indices. The tolerant rice landraces to salinity were Sona Toly, Nakraji and Komol Bhog. At seedling stage screening was performed following IRRI standard protocol at 12 dSm?1 salinity level. Based on all morphological and biochemical parameters Komol Bhog was identified as the highly salinity tolerant landrace while Bolonga, Sona Toly, Dud Sail, Tal Mugur and Nakraji were found as tolerant to salinity. Molecular characterization using two simple sequence repeats (SSR) markers, viz. RM121 and RM337 displayed Bolonga, Til Kapor, Panbra, Sona Toly, Bina Sail, Komol Bhog, Nakraji, Tilkapur, Gajor Goria and Gota were tolerant landraces through genetic similarity in dendrogram. These identified salt-resistant landraces can be used as promising germplasm resources for breeding salt-tolerant high-yielding rice varieties in future.  相似文献   

7.
Cereal opaque-kernel mutants are ideal genetic materials for studying the mechanism of starch biosynthesis and amyloplast development. Here we isolated and identified two allelic floury endosperm 8 (flo8) mutants of rice, named flo8-1 and flo8-2. In the flo8 mutant, the starch content was decreased and the normal physicochemical features of starch were altered. Map-based cloning and subsequent DNA sequencing analysis revealed a single nucleotide substitution and an 8-bp insertion occurred in UDP-glucose pyrophosphorylase 1 (Ugp1) gene in flo8-1 and flo8-2, respectively. Complementation of the flo8-1 mutant restored normal seed appearance by expressing full length coding sequence of Ugp1. RT-qPCR analysis revealed that Ugp1 was ubiquitously expressed. Mutation caused the decreased UGPase activity and affected the expression of most of genes associated with starch biosynthesis. Meanwhile, western blot and enzyme activity analyses showed the comparability of protein levels and enzyme activity of most tested starch biosynthesis related genes. Our results demonstrate that Ugp1 plays an important role for starch biosynthesis in rice endosperm.  相似文献   

8.
The plastidic ATP/ADP transporter (AATP) imports adenosine triphosphate (ATP) from the cytosol into plastids, resulting in the increase of the ATP supply to facilitate anabolic synthesis in heterotrophic plastids of dicotyledonous plants. The regulatory role of GmAATP from soybean in increasing starch accumulation has not been investigated. In this study, a gene encoding the AATP protein, named GmAATP, was successfully isolated from soybean. Transient expression of GmAATP in Arabidopsis protoplasts and Nicotiana benthamiana leaf epidermal cells revealed the plastidic localization of GmAATP. Its expression was induced by exogenous sucrose treatment in soybean. The coding region of GmAATP was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis to obtain transgenic plants. Constitutive expression of GmAATP significantly increased the sucrose and starch accumulation in the transgenic plants. Real-time quantitative PCR (qRT-PCR) analysis showed that constitutive expression of GmAATP up-regulated the expression of phosphoglucomutase (AtPGM), ADP-glucose pyrophosphorylase (AGPase) small subunit (AtAGPase-S1 and AtAGPase-S2), AGPase large subunit (AtAGPase-L1 and AtAGPase-L2), granule-bound starch synthase (AtGBSS I and AtGBSS II), soluble starch synthases (AtSSS I, AtSSS II, AtSSS III, and AtSSS IV), and starch branching enzyme (AtSBE I and AtSBE II) genes involved in starch biosynthesis in the transgenic Arabidopsis plants. Meanwhile, enzymatic analyses indicated that the major enzymes (AGPase, GBSS, SSS, and SBE) involved in the starch biosynthesis exhibited higher activities in the transgenic plants compared to the wild type (WT). These findings suggest that GmAATP may improve starch content of Arabidopsis by up-regulating the expression of the related genes and increasing the activities of the major enzymes involved in starch biosynthesis. All these results suggest that GmAATP could be used as a candidate gene for developing high starch-accumulating plants as alternative energy crops.  相似文献   

9.
A plastidic ATP/ADP transporter (AATP) is responsible for importing ATP from the cytosol into plastids. Increasing the ATP supply is a potential way to facilitate anabolic synthesis in heterotrophic plastids of plants. In this work, a gene encoding the AATP protein, named SlAATP, was successfully isolated from tomato. Expression of SlAATP was induced by exogenous sucrose treatment in tomato. The coding region of SlAATP was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis to obtain transgenic plants. Constitutive expression of SlAATP significantly increased the starch accumulation in the transgenic plants. Real-time quantitative PCR (qRT-PCR) analysis showed that constitutive expression of StAATP up-regulated the expression of phosphoglucomutase (AtPGM), ADP-glucose pyrophosphorylase (AtAGPase), granule-bound starch synthase (AtGBSS I and AtGBSS II), soluble starch synthases (AtSSS I, AtSSS II, AtSSS III and AtSSS IV) and starch branching enzyme (AtSBE I and AtSBE II) genes involved in starch biosynthesis in the transgenic Arabidopsis plants. Meanwhile, enzymatic analyses indicated that the major enzymes (AGPase, GBSS, SSS and SBE) involved in the starch biosynthesis exhibited higher activities in the transgenic plants compared to the wild-type (WT). These findings suggest that SlAATP may improve starch content of Arabidopsis by up-regulating the expression of the related genes and increasing the activities of the major enzymes invovled in starch biosynthesis. The manipulation of SlAATP expression might be used for increasing starch accumulation of plants in the future.  相似文献   

10.
Previous studies showed that geraniol could be an upstream limiting factor in the monoterpenoid pathway towards the production of terpenoid indole alkaloid (TIA) in Catharanthus roseus cells and hairy root cultures. This shortage in precursor availability could be due to (1) limited expression of the plastidial geraniol synthase resulted in a low activity of the enzyme to catalyze the conversion of geranyl diphosphate to geraniol; or (2) the limitation of geraniol transport from plastids to cytosol. Therefore, in this study, C. roseus’s geraniol synthase (CrGES) gene was overexpressed in either plastids or cytosol of a non-TIA producing C. roseus cell line. The expression of CrGES in the plastids or cytosol was confirmed and the constitutive transformation lines were successfully established. A targeted metabolite analysis using HPLC shows that the transformed cell lines did not produce TIA or iridoid precursors unless elicited with jasmonic acid, as their parent cell line. This indicates a requirement for expression of additional, inducible pathway genes to reach production of TIA in this cell line. Interestingly, further analysis using NMR-based metabolomics reveals that the overexpression of CrGES impacts primary metabolism differently if expressed in the plastids or cytosol. The levels of valine, leucine, and some metabolites derived from the shikimate pathway, i.e. phenylalanine and tyrosine were significantly higher in the plastidial- but lower in the cytosolic-CrGES overexpressing cell lines. This result shows that overexpression of CrGES in the plastids or cytosol caused alteration of primary metabolism that associated to the plant cell growth and development. A comprehensive omics analysis is necessary to reveal the full effect of metabolic engineering.  相似文献   

11.
12.
13.
The plastidic thioredoxin F-type (TrxF) protein plays an important role in plant saccharide metabolism. In this study, a gene encoding the TrxF protein, named SlTrxF, was isolated from tomato. The coding region of SlTrxF was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana. The transgenic Arabidopsis plants exhibited increased starch accumulation compared to the wild-type (WT). Real-time quantitative PCR analysis showed that constitutive expression of SlTrxF up-regulated the expression of ADP-glucose pyrophosphorylase (AGPase) small subunit (AtAGPase-S1 and AtAGPase-S2), AGPase large subunit (AtAGPase-L1 and AtAGPase-L2) and soluble starch synthase (AtSSS I, AtSSS II, AtSSS III and AtSSS IV) genes involved in starch biosynthesis in the transgenic Arabidopsis plants. Meanwhile, enzymatic analyses showed that the major enzymes (AGPase and SSS) involved in the starch biosynthesis exhibited higher activities in the transgenic plants compared to WT. These results suggest that SlTrxF may improve starch content of Arabidopsis by regulating the expression of the related genes and increasing the activities of the major enzymes involved in starch biosynthesis.  相似文献   

14.
15.
16.
17.
18.
The gene NCED1 encodes 9-cis-epoxycarotenoid dioxygenase, which catalyzes oxidative cleavage of 9-cis-epoxycarotenoids neoxanthin and violaxanthin to xanthoxin, a key step in the biosynthesis of abscisic acid (ABA) in higher plants. In the present study, the complete NCED1 of 1 917 bp was cloned and characterized from rice (Oryza sativa L. cv. N22) as no earlier reports were available for its characterization from the indica cultivar. The NCED1 had no intron and encoded a protein of 639 amino acids with a predicted molecular mass of 68.62 kD and pI of 6.07. The aliphatic index and grand average of hydropathicity were found to be 77.04 and -0.148, respectively. Multiple alignment analysis revealed that the sequence shared a high identity with the Oryza sativa japonica group (100 %) followed by Triticum aestivum (90 %), Hordeum vulgare (90 %), and Zea mays (89 %). The enzyme had a RPE65 domain of 476 amino acid residues. The RPE65 domain requires Fe(II) as a cofactor coordinated with 4 histidine residues and 3 glutamic acid residues. The phylogenic tree shows that NCED1 of japonica rice and NCED1 of indica rice were in the same group. They might have been evolved from a common ancestor. Analysis with a PSORT III tool shows that NCED is a chloroplastic protein. The real-time quantitative PCR and RNA-sequencing studies show that the expression of NCED1 was progressively reduced with increasing water stress, and a negative correlation between expression of OsNCED1 and severity of stress was established. Further, NCED1 expression negatively correlated with ABA accumulation under water stress whereas in some other species, its expression increased along with ABA accumulation. This might be due to feedback inhibition of the ABA biosynthesis in rice.  相似文献   

19.
1-Deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), an important enzyme in the 2-c-methyl-d-erythritol-4-phosphate (MEP) pathway in plant plastids, provides the basic five-carbon units for isoprenoid biosynthesis. To investigate the roles of the MEP pathway in regulating growth, development and artemisinin biosynthesis of Artemisia annua L., we used RNA interference technology to generate transgenic plants with suppressed expression of DXR in A. annua (AaDXR). Suppression of AaDXR resulted in shorter stems, decreased branch numbers and leaf area, lower density of leaf trichomes. Although AaDXR-RNAi plants had no significant changes on the stomatal conductance, the net photosynthesis rate was decreased by 20.0–31.4% due to the marked decline in the contents of chlorophyll. Decreased levels of endogenous gibberellic acid (GA3) and abscisic acid were also detected in the transgenic lines. The artemisinin contents in leaves of all tested transgenic lines declined by 41.8–73.4% at the vegetative stage and 61.5–63.6% at the stages of flowering. The enhancement of artemisinin contents by methyl jasmonate at 300 µM has been abolished at seedling and vegetative stages in AaDXR-RNAi plants. These results demonstrate that AaDXR play import roles in the control of plan vegetative growth and artemisinin biosynthesis in A. annua.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号