首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In pursuit of the characterization of the recently discovered flippase mode of operation of the anion transporter (band 3, AE1) of the human erythrocyte membrane, the transbilayer translocation (flip) of a fluorescently labeled, membrane-intercalated long-chain alkyl phosphate, 10-(α-napthyl)-1-decyl-phosphate (NDP) was investigated. In contrast to the alkyl sulfonates and esters of phosphatidic acid studied as yet, NDP moves exclusively via band 3. NDP is, however, dephosphorylated at the inner membrane surface by a cytoplasmic phosphatase likely to interact specifically with endofacial membrane structures of the erythrocyte. This phosphatase shares characteristic inhibitor sensitivities with protein tyrosine phosphatases present in the erythrocyte interior. Vanadate as an inhibitor of NDP dephosphorylation provided a means to study the kinetic properties and patterns of inhibition (by inhibitors of anion exchange) and stimulation (by proteolysis of band 3 and aliphatic alcohols) of the flip of NDP. NDP is also an inhibitor of the exchange of hydrophilic anions via band 3, while hydrophilic anions interfere with the flip of NDP. The results are compared with the characteristics of the flip, via Band 3, of other amphiphilic anions and of the exchange of hydrophilic anions. Attempts are presented to understand the low flip rate of long-chain amphiphilic anions on the basis of their molecular properties and the thermodynamics of the ``transition state' of the flip process. Received: 18 February 1998/Revised: 29 May 1998  相似文献   

2.
To study vacuolar chloride (Cl) transport in the halophilic plant Mesembryanthemum crystallinum L., Cl uptake into isolated tonoplast vesicles was measured using the Cl-sensitive fluorescent dye lucigenin (N,N′-dimethyl-9,9′-bisacridinium dinitrate). Lucigenin was used at excitation and emission wavelengths of 433 nm and 506 nm, respectively, and showed a high sensitivity towards Cl, with a Stern-Volmer constant of 173 m −1 in standard assay buffer. While lucigenin fluorescence was strongly quenched by all halides, it was only weakly quenched, if at all, by other anions. However, the fluorescence intensity and Cl-sensitivity of lucigenin was shown to be strongly affected by alkaline pH and was dependent on the conjugate base used as the buffering ion. Chloride transport into tonoplast vesicles of M. crystallinum loaded with 10 mm lucigenin showed saturation-type kinetics with an apparent K m of 17.2 mm and a V max of 4.8 mm min−1. Vacuolar Cl transport was not affected by sulfate, malate, or nitrate. In the presence of 250 μm p-chloromercuribenzene sulfonate, a known anion-transport inhibitor, vacuolar Cl transport was actually significantly increased by 24%. To determine absolute fluxes of Cl using this method, the average surface to volume ratio of the tonoplast vesicles was measured by electron microscopy to be 1.13 × 107 m−1. After correcting for a 4.4-fold lower apparent Stern-Volmer constant for intravesicular lucigenin, a maximum rate of Cl transport of 31 nmol m−2 sec−1 was calculated, in good agreement with values obtained for the plant vacuolar membrane using other techniques. Received: 18 February 2000/Revised: 30 June 2000  相似文献   

3.
Measurement of the transport parameters that govern the passage of urea and amides across the red cell membrane leads to important questions about transport of water. It had initially been thought that small protein channels, permeable to water and small solutes, traversed the membrane (see Solomon, 1987). Recently, however, very strong evidence has been presented that the 28 kDa protein, CHIP28, found in the red cell membrane, is the locus of the water channel (see Agre et al., 1993). CHIP28 transports water very rapidly but does not transport small nonelectrolytes such as urea. The irreversible thermodynamic parameter, σ i , the reflection coefficient, is a measure of the relationship between the permeability of the solute and that of water. If a solute permeates by dissolution in the membrane, σ i = 1.0; if it permeates by passage through an aqueous channel, σ i < 1.0. For urea, Goldstein and Solomon (1960) found that σurea= 0.62 ± 0.03 which meant that urea crosses the red cell membrane in a water-filled channel. This result and many subsequent observations that showed that σurea < 1.0 are at variance with the observation that CHIP28 is impermeable to urea. In view of this problem, we have made a new series of measurements of σ i for urea and other small solutes by a different method, which obviates many of the criticisms Macey and Karan (1993) have made of our earlier method. The new method (Chen et al., 1988), which relies upon fluorescence of the intracellular dye, fluorescein sulfonate, leads to the corrected value, σurea,corr= 0.64 ± 0.03 for ghosts, in good agreement with earlier data for red cells. Thus, the conclusion on irreversible thermodynamic and other grounds that urea and water share a common channel is in disagreement with the view that CHIP28 provides the sole channel for water entrance into the cell. Received: 6 February 1996/Revised: 20 May 1996  相似文献   

4.
The stimulation of glucose transport in response to various types of stress has been studied. There is no relationship between effects of stress-inducing agents on glucose transport and their effects on cellular protein synthesis. Although the effect of stress on glucose transport appears analogous to its stimulation by insulin, cells that are slightly insulin-sensitive in terms of glucose transport (BHK cells) show a similar degree of stimulation as highly insulin-sensitive cells (differentiated 3T3-L1 cells). External labeling of the transporter protein with a photoactivatable derivative of mannose, 2-N-4-(1-azi-2,2,2-trifluoroethyl) benzoyl-1, 3-bis-(D-mannos-4-yloxy)-propylamine, shows that most of the increased glucose transport activity correlates with an increase in the amount of the transporter on the cell surface. Cells subjected to K+-depletion, which inhibits endocytosis and results in an accumulation of receptors at the cell surface, show the same increase in glucose transport as cells exposed to stress; stressed cells show no further increase in glucose transport when subjected to K+ depletion. These results support the view (Widnell, C.C., Baldwin, S.A., Davies, A., Martin, S., Pasternak, C.A. 1990. FASEB J 4:1634–1637) that cellular stress increases glucose transport by promoting the accumulation of glucose transporter molecules at the cell surface. Received: 20 June 1995/Revised: 29 September 1995  相似文献   

5.
The cloned intestinal peptide transporter is capable of electrogenic H+-coupled cotransport of neutral di- and tripeptides and selected peptide mimetics. Since the mechanism by which PepT1 transports substrates that carry a net negative or positive charge at neutral pH is poorly understood, we determined in Xenopus oocytes expressing PepT1 the characteristics of transport of differently charged glycylpeptides. Transport function of PepT1 was assessed by flux studies employing a radiolabeled dipeptide and by the two-electrode voltage-clamp-technique. Our studies show, that the transporter is capable of translocating all substrates by an electrogenic process that follows Michaelis Menten kinetics. Whereas the apparent K0.5 value of a zwitterionic substrate is only moderately affected by alterations in pH or membrane potential, K0.5 values of charged substrates are strongly dependent on both, pH and membrane potential. Whereas the affinity of the anionic dipeptide increased dramatically by lowering the pH, a cationic substrate shows only a weak affinity for PepT1 at all pH values (5.5–8.0). The driving force for uptake is provided mainly by the inside negative transmembrane electrical potential. In addition, affinity for proton interaction with PepT1 was found to depend on membrane potential and proton binding subsequently affects the substrate affinity. Furthermore, our studies suggest, that uptake of the zwitterionic form of a charged substrate contributes to overall transport and that consequently the stoichiometry of the flux-coupling ratios for peptide: H+/H3O+ cotransport may vary depending on pH. Received: 19 August 1996/Revised: 10 October 1996  相似文献   

6.
Two Chinese hamster ovary cell (CHO-K1) mutants selected for defective glutamate transport via system X AG are also highly permeable to small neutral molecules. Light microscopy demonstrated that exposure of one of these mutants, Ed-A1, to hypo-osmotic medium led to extremely rapid swelling, presumably due to increased water flux. When placed in 20% saline, Ed-A1 cells swelled to three times their original volume within 15 sec, a sixfold larger increase than parental CHO-K1. In spite of this rapid volume increase, mutant and wild-type cells remained viable for 20 min in dilute saline. A regulatory volume decrease in Ed-A1, and the continual swelling of CHO-K1, resulted in the two cells achieving equal size after 5 min in 20% saline. The time course of these volume changes permitted analysis of large numbers of cells by a hydrodynamic technique, steric field flow fractionation (FFF). Steric FFF demonstrated the expected inhibition of osmotic swelling of human erythrocytes by the mercurial, p-chloromercuribenzenesulfonic acid (PCMBS). However, PCMBS increased the apparent swelling rate of Ed-A1 and CHO-K1, suggesting that an aquaporin-like molecule is not responsible for any significant fraction of the water fluxes into either line. PCMBS also strongly inhibited aspartate transport by system X AG. By taking advantage of their different swelling rates in hypotonic medium, steric FFF can separate mixtures of CHO-K1 and Ed-A1. Received: 2 August 1996/Revised: 25 October 1996  相似文献   

7.
The major facilitator superfamily (MFS) of transport proteins, which includes the lactose permease of Escherichia coli, contains a conserved motif G-X-X-X-D/E-R/K-X-G-R/K-R/K in the loops that connect transmembrane segments 2 and 3, and transmembrane segments 8 and 9. In three previous studies (Jessen-Marshall, A.E., & Brooker, R.J. 1996. J. Biol. Chem. 271:1400–1404; Jessen-Marshall, A.E., Parker, N., & Brooker, R.J. 1997. J. Bacteriol. 179:2616–2622; and Pazdernik, N., Cain, S.M., & Brooker, R.J. 1997. J. Biol. Chem. 272:26110–26116), suppressor mutations at twenty different sites were identified which restore function to mutant permeases that have deleterious mutations in the conserved loop 2/3 or loop 8/9 motif. In the current study, several of these second-site suppressor mutations have been separated from the original mutation in the conserved motif. The loop 2/3 suppressors were then coupled to a loop 8/9 mutation (P280L) and the loop 8/9 suppressors were coupled to a loop 2/3 mutation (i.e., G64S) to determine if the suppressors could restore function only to a loop 2/3 mutation, a loop 8/9 mutation, or both. The single parent mutations changing the first position in loop 2/3 (i.e., G64S) and loop 8/9 (i.e., P280L) had less than 4% lactose transport activity. Interestingly, most of the suppressors were very inhibitory when separated from the parent mutation. Two suppressors, A50T and G370V, restored substantial transport activity when individually coupled to the mutation in loop 2/3 and also when coupled to the corresponding mutation in loop 8/9. In other words, these suppressors could alleviate a defect imposed by mutations in either half of the permease. From a kinetic analysis, these suppressors were shown to exert their effects by increasing the V max values for lactose transport compared with the single G64S and P280L strains. These results are discussed within the context of our model in which the two halves of the lactose permease interact at a rotationally symmetrical interface, and that lactose transport is mediated by conformational changes at the interface. Received: 18 November 1999/Revised: 11 April 2000  相似文献   

8.
Homologues of the Na+/glucose cotransporter, the SGLT family, include sequences of mammalian, eubacterial, yeast, insect and nematode origin. The cotransported substrates are sugars, inositol, proline, pantothenate, iodide, urea and undetermined solutes. It is reasonable to expect that the SGLT family members share a similar or identical topology of membrane spanning elements, by virtue of their common ancestry and similar coupling of solute transport to downhill sodium flux. Here we examine their membrane topologies as deduced from diverse analyses of their primary sequences, and from their sequence correlations with the experimentally determined topology of the human Na+/glucose cotransporter SGLT1. Our analyses indicate that all family members share a common core of 13 transmembrane helices, but that some, like SGLT1 itself, have one additional span appended to the C-terminus, and still others, two. One bacterial member incorporates an additional span at the N-terminus. Sequence comparisons indicative of common ancestry of the SGLT and the [Na++ Cl] transporter families are introduced, and evaluated in light of their topologies. New evidence concerning the previously asserted common ancestry of SGLT1 and an N-acetylglucosamine permease of the bacterial phosphotransferase system is considered. Finally, we analyze observations which lead us to conjecture that the experimental strategy most commonly employed to reveal the topology of bacterial transporters (i.e., the fusion of reporter enzymes such as phoA alkaline phosphatase, beta-lactamase or beta-galactosidase, to progressively C-truncated fragments of the transporter) has often instead so perturbed local topology as to have entirely missed pairs of adjacent membrane spans. Received: 18 May 1996  相似文献   

9.
In vertebrates, cilia on the olfactory receptor neurons have a high density of cyclic-nucleotide-gated (CNG) channels. During transduction of odorous stimuli, cyclic AMP is formed. cAMP gates the CNG channels and this initiates the neuronal depolarization. Here it is shown that the ciliary CNG channels also open spontaneously. In the absence of odorants and second messengers, olfactory cilia have a small basal conductance to cations. Part of this conductance is similar to the cAMP-activated conductance in its sensitivity to channel inhibitors and divalent cations. The basal conductance may help to stabilize the neuronal membrane potential while limiting the sensitivity of odorant detection. Received: 30 May 2000/Revised: 8 August 2000  相似文献   

10.
The proximal tubule Na+-HCO 3 cotransporter is located in the basolateral plasma membrane and moves Na+, HCO 3, and net negative charge together out of the cell. The presence of charge transport implies that at least two HCO 3 anions are transported for each Na+ cation. The actual ratio is of physiological interest because it determines direction of net transport at a given membrane potential. To determine this ratio, a thermodynamic approach was employed that depends on measuring charge flux through the cotransporter under defined ion and electrical gradients across the basolateral plasma membrane. Cells from an immortalized rat proximal tubule line were grown as confluent monolayer on porous substrate and their luminal plasma membrane was permeabilized with amphotericin B. The electrical properties of these monolayers were measured in a Ussing chamber, and ion flux through the cotransporter was achieved by applying Na+ or HCO 3 concentration gradients across the basolateral plasma membrane. Charge flux through the cotransporter was identified as difference current due to the reversible inhibitor dinitro-stilbene disulfonate. The cotransporter activity was Cl independent; its conductance ranged between 0.12 and 0.23 mS/cm2 and was voltage independent between −60 and +40 mV. Reversal potentials obtained from current-voltage relations in the presence of Na+ gradients were fitted to the thermodynamic equivalent of the Nernst equation for coupled ion transport. The fit yielded a cotransport ratio of 3HCO 3:1Na+. Received: 19 January 1996/Revised: 24 April 1996  相似文献   

11.
Renal reabsorption appears to play a major role in d-mannose homeostasis. Here we show that in rat kidney, the transport of d-mannose by brush border membrane vesicles from tubular epithelial cells involves an uphill and rheogenic Na-dependent system, which is fully inhibited by d-mannose itself, incompletely inhibited by d-glucose, d-fructose, phloridzin, and phloretin, and noninhibited by l-mannose or disaccharides. In addition, this system exhibits both low capacity (112.9 ± 15.6 pmol/mg/second) and high affinity (0.18 ± 0.04 mm), with a 2:1 stoichiometry for the Na:d-mannose interaction, and low affinity for sodium (16.6 ± 3.67 mm). We also show expression of d-mannose transport by Xenopus laevis oocytes injected with rat renal polyA+ RNA. Kinetic analysis of the expressed transport was performed after RNA enrichment by fractionation through a sucrose density gradient and was shown to be identical to that measured in membrane vesicles. The RNA species encoding the expressed transport has a small mean size, 1 kb approximately, and shows no homology with the SGLT family of Na-dependent d-glucose transporters, as shown by low stringent RT-PCR and northern analysis. The expressed transport is specific for d-mannose, since in spite of a significant inhibition by d-glucose and d-fructose, neither of these two substrates was transported above the level of the water-injected oocytes. Received: 29 February 2000/Revised: 25 August 2000  相似文献   

12.
Due to their amphiphilic properties, detergents readily disrupt cellular membranes and cause rapid cytolysis. In this study we demonstrate that treatment of cells with sublytic concentrations of detergents such as Triton X-100, Nonidet P-40, n-octylglucoside and the bile salt sodium deoxycholate induce typical signs of apoptosis including DNA fragmentation and cleavage of poly(ADP-ribose) polymerase molecules. The detergent concentration required for apoptosis was below the critical micellar concentration. Induction of apoptosis was not restricted to human cells but similarly occurred in a variety of other vertebrate cell lines. Unstimulated peripheral blood mononuclear cells were susceptible to apoptosis induction by detergent suggesting that apoptosis in this circumstance is not mediated by CD95. Cell death was not due to influx of calcium from the medium. Apoptosis was blocked and cytolysis prevented by treatment with peptide inhibitors of caspases. These findings suggest a process of apoptosis that is initiated upon nonspecific alterations at the cell membrane level. Physiologic correlates of this process still have to be defined. Received: 12 November 1999/Revised: 6 March 2000  相似文献   

13.
RNA viruses and retroviruses fix substitutions approximately 1 million-fold faster than their hosts. This diversification could represent an inevitable drift under purifying selection, the majority of substitutions being phenotypically neutral. The alternative is to suppose that most fixed mutations are beneficial to the virus, allowing it to keep ahead of the host and/or host population. Here, relative sequence diversification of different proteins encoded by viral genomes is found to be linear. The examples encompass a wide variety of retroviruses and RNA viruses. The smoothness of relative divergence spans quasispeciation following clonal infection, to variation among different isolates of the same virus, to viruses from different species or those associated with different diseases, indicating that the majority of fixed mutations likely reflects drift. This held for both mammalian and plant viruses, indicating that adaptive immunity doesn't necessarily shape the relative accumulation of amino acid substitutions. When compared to their hosts RNA viruses evolution appears conservative. Received: 16 November 1999 / Accepted: 10 March 2000  相似文献   

14.
Regulation of Metabolite Flux through Voltage-Gating of VDAC Channels   总被引:7,自引:0,他引:7  
The mitochondrial outer membrane channel, VDAC, is thought to serve as the major permeability pathway for metabolite flux between the cytoplasm and mitochondria. The permeability of VDAC to citrate, succinate, and phosphate was studied in channels reconstituted into planar phospholipid membranes. All ions showed large changes in permeability depending on whether the channel was in the open or in the low conductance, ``closed' state, with the closed state always more cation selective. This was especially true for the divalent and trivalent anions. Additionally, the anion flux when the voltage was zero was shown to decrease to 5–11% of the open state flux depending on the anion studied. These results give the first rigorous examination of the ability of metabolites to permeate through VDAC channels and indicate that these channels can control the flux of these ions through the outer membrane. This lends more evidence to the growing body of experiments that suggest that the outer mitochondrial membrane has a much more important role in controlling mitochondrial activity than has been thought historically. Received: 4 November 1996/Revised: 8 January 1997  相似文献   

15.
In many bacterial genomes, the leading and lagging strands have different skews in base composition; for example, an excess of guanosine compared to cytosine on the leading strand. We find that Chlamydia genes that have switched their orientation relative to the direction of replication, for example by inversion, acquire the skew of their new ``host' strand. In contrast to most evolutionary processes, which have unpredictable effects on the sequence of a gene, replication-related skews reflect a directional evolutionary force that causes predictable changes in the base composition of switched genes, resulting in increased DNA and amino acid sequence divergence. Received: 27 April 2000 / Accepted: 1 August 2000  相似文献   

16.
Unilamellar liposomes with native phospholipid fatty acid composition were prepared from rat liver mitochondrial inner membrane phospholipids by extrusion in medium containing 50 mm potassium. They were diluted into low potassium medium to establish a transmembrane potassium gradient. A known membrane potential was imposed by addition of valinomycin, and proton flux into liposomes was measured. Valinomycin in the range 10 pm–1nm was sufficient to fully establish membrane potential. Valinomycin concentrations above 3 nm catalyzed additional proton flux and were avoided. At 300 pm valinomycin, proton flux depended nonlinearly on membrane potential. At 160 mV membrane potential the flux was 30 nmol H+/min/mg phospholipid—approximately 5% of the proton leak flux under comparable conditions in isolated mitochondria, indicating that leak pathways through bulk phospholipid bilayer account for only a small proportion of total mitochondrial proton leak. Received: 5 August 1996/Revised: 1 October 1996  相似文献   

17.
The sodium bicarbonate cotransporter (NBC1) is essential for bicarbonate transport across plasma membranes in epithelial and nonepithelial cells. The direction of the NaHCO3 movement in secretory epithelia is opposite to that in reabsorptive epithelia. In secretory epithelia (such as pancreatic duct cells) NBC is responsible for the transport of bicarbonate from blood to the cell for eventual secretion at the apical membrane. In reabsorptive epithelia (such as kidney proximal tubule cells) NBC is responsible for the reabsorption of bicarbonate from cell to the blood. In nonepithelial cells this transporter is mainly involved with cell pH regulation. Recent molecular cloning experiments have identified the existence of four NBC isoforms (NBC1, 2, 3 and 4) and two NBC-related proteins AE4 and NCBE (Anion Exchanger 4 and Na-dependent Chloride-Bicarbonate Exchanger). All but AE4 are presumed to mediate the cotransport of Na+ and HCO3 under normal conditions and may be functionally altered in certain pathologic states. NBC1 shows a limited tissue expression pattern, is electrogenic and plays an important role in bicarbonate reabsorption in kidney proximal tubule. In addition to the kidney, NBC1 is expressed in pancreatic duct cells, is activated by cystic fibrosis transmembrane conductance regulator (CFTR) and plays an important role in HCO3 secretion. NBC2 and NBC3 have a wider tissue distribution than NBC1, are electroneutral, and are involved with cell pH regulation. The characterization of NBC4 is incomplete. The NBC-related protein called NCBE mediates Na-dependent, Cl/Bicarbonate Exchange. The purpose of this review is to summarize recent advances on the cloning of NBC isoforms and related proteins and their role and regulation in physiologic and pathologic states. Received: 26 February 2001/Revised: 14 May 2001  相似文献   

18.
Osmotic swelling of fish erythrocytes activates a broad-specificity permeation pathway that mediates the volume-regulatory efflux of taurine and other intracellular osmolytes. This pathway is blocked by inhibitors of the erythrocyte band 3 anion exchanger, raising the possibility that band 3 is involved in the volume-regulatory response. In this study of eel erythrocytes, a quantitative comparison of the pharmacology of swelling-activated taurine transport with that of band 3-mediated SO2− 4 transport showed there to be significant differences between them. N-ethylmaleimide and quinine were effective inhibitors of swelling-activated taurine transport but caused little, if any, inhibition of band 3. Conversely, DIDS was a more potent inhibitor of band 3-mediated SO2− 4 flux than of swelling-activated taurine transport. In cells in isotonic medium, pretreated then co-incubated with 0.1 mm DIDS, the band 3-mediated transport of SO2− 4 and Cl was reduced to a low level. Exposure of these cells to a hypotonic medium containing 0.1 mm DIDS was followed by the activation of a Cl permeation pathway showing the same inhibitor sensitivity as swelling-activated taurine transport. The data are consistent with swelling-activated transport of taurine and Cl being via a common pathway. A comparison of the swelling-activated transport rates for taurine and Cl with those for several other solutes was consistent with the hypothesis that this pathway is an anion-selective channel, similar to those that mediate the volume-regulatory efflux of Cl and organic osmolytes from mammalian cells. Received: 7 July 1995/Revised: 2 September 1995  相似文献   

19.
Lactate transport was investigated in newborn rat muscle cells in culture. The aim was to study the lactate transport function at two stages of cell differentiation in culture: (i) during the proliferative phase characterized by myoblasts and myotubes (MyB/MyT2) obtained after 2–3 seedings, (ii) when myotubes (MyT1) grow old in culture after 8–9 seedings. In both developmental stages MyB/MyT2, lactate was carried following a saturable and sigmoidal velocity curve: the Hill and the Scatchard plot analyses confirmed an allosteric or multisite mechanism of lactate transport with two classes of carriers: one of low and one of high affinity i.e., 8.6 and 0.95 mm, respectively, which are associated with high and low transport capacities (V m ) i.e., 9.1 and 0.67 nm/min/mg, respectively. With MyT1, the velocity curve of lactate transport presented a hyperbolic profile, and the Hill plot analysis gave a Hill number near one suggesting that for cell aging in culture the decrease in cooperativity shows that lactate transport essentially occurs through the low affinity transport system. Inhibitor effects also contributed to evidence for at least two systems of transport. Results obtained from primary cells give evidence for the early activity of lactate transport system at the Myb/MyT2 stage and its evolution during cell aging in culture (MyT1). Sarcolemmal lactate transport in primary cultures of myocytes is accomplished by multiple carriers, neither of which are MCT1 or MCT2 as confirmed by immunoblots. Received: 31 March 1999/Revised: 22 September 1999  相似文献   

20.
Dinoflagellates are a trophically diverse group of protists with photosynthetic and non-photosynthetic members that appears to incorporate and lose endosymbionts relatively easily. To trace the gain and loss of plastids in dinoflagellates, we have sequenced the nuclear small subunit rRNA gene of 28 photosynthetic and four non-photosynthetic species, and produced phylogenetic trees with a total of 81 dinoflagellate sequences. Patterns of plastid gain, loss, and replacement were plotted onto this phylogeny. With the exception of the apparently early-diverging Syndiniales and Noctilucales, all non-photosynthetic dinoflagellates are very likely to have had photosynthetic ancestors with peridinin-containing plastids. The same is true for all dinoflagellates with plastids other than the peridinin-containing plastid: their ancestors have replaced one type of plastid for another, in some cases most likely through a non-photosynthetic intermediate. Eight independent instances of plastid loss and three of replacement can be inferred from existing data, but as more non-photosynthetic lineages are characterized these numbers will surely grow. Received: 25 September 2000 / Accepted: 24 April 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号