首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Necrotizing enterocolitis (NEC) is associated with the release of interferon-gamma (IFN) by enterocytes and delayed intestinal restitution. Our laboratory has recently demonstrated that IFN inhibits enterocyte migration by impairing enterocyte gap junctions, intercellular channels that are composed of connexin43 (Cx43) monomers and that are required for enterocyte migration to occur. The mechanisms by which IFN inhibits gap junctions are incompletely understood. Lipid rafts are cholesterol-sphingolipid-rich microdomains of the plasma membrane that play a central role in the trafficking and signaling of various proteins. We now hypothesize that Cx43 is present on enterocyte lipid rafts and that IFN inhibits enterocyte migration by displacing Cx43 from lipid rafts in enterocytes. We now confirm our previous observations that intestinal restitution is impaired in NEC and demonstrate that Cx43 is present on lipid rafts in IEC-6 enterocytes. We show that lipid rafts are required for enterocyte migration, that IFN displaces Cx43 from lipid rafts, and that the phorbol ester phorbol 12-myristate 13-acetate (PMA) restores Cx43 to lipid rafts after treatment with IFN in a protein kinase C-dependent manner. IFN also reversibly decreased the phosphorylation of Cx43 on lipid rafts, which was restored by PMA. Strikingly, restoration of Cx43 to lipid rafts by PMA or by transfection of enterocytes with adenoviruses expressing wild-type Cx43 but not mutant Cx43 is associated with the restoration of enterocyte migration after IFN treatment. Taken together, these findings suggest an important role for lipid raft-Cx43 interactions in the regulation of enterocyte migration during exposure to IFN, such as NEC.  相似文献   

2.
A positional analysis of enterocyte membrane potential has been carried out using in vitro preparations of rabbit distal ileum. Young enterocytes were found to possess a microvillar membrane potential significantly less than that seen in older enterocytes. The length of enterocyte microvilli was also found to be significantly less in younger enterocytes. It is suggested that developmental changes in membrane potential, occurring during the early stages of enterocyte differentiation, probably reflect a changed permeability to ions associated with the establishment of a fully developed microvillar membrane. Other explanations for the observed findings are also considered.  相似文献   

3.
Reactive oxygen species (ROS) are potent mediators of inflammatory disorders and may be of pathophysiological importance in S. typhimurium induced tissue damage. This study was carried out to investigate if ROS play a role in mediating the enterocyte damage during in vitro exposure to Salmonella typhimurium enterotoxin (S-LT). The ROS generation was detected by measuring the changes in the enterocyte arachidonic acid (AA) metabolism (measured indirectly by estimating the level of enterocyte damage in the absence and presence of the cyclooxygenase inhibitor, indomethacin) and xanthine oxidase activity. The enterocyte damage was estimated by measuring the changes in the level of lipid peroxidation and cell viability. The results obtained showed that the exposure of isolated rat enterocytes to S-LT resulted in an increased XO activity; an increased arachidonic acid metabolism, dose and time dependent increase in the level of lipid peroxidation and decreased cell viability. Lipid peroxidation decreased and cell viability increased in the presence of the antioxidant enzymes superoxide dismutase (SOD) or catalase. Thus the in vitro exposure of the enterocytes to S-LT is accompanied by an increased generation of ROS which may induce the lipid peroxidation of the enterocyte membrane thereby leading to a loss of cell viability.  相似文献   

4.
A technique is described allowing microelectrode impalement of enterocytes located at known positions along intestinal villi from rabbits and hamsters. Using this technique a 5 mV hyperpolarization in membrane potential is shown to occur as enterocytes migrate over the basal third of intestinal villi. The villus structure of the hamster ileum is similar to the rabbit, but the enterocyte lifespan in these two tissues differs considerably (enterocyte migration rates of 17.6 and 6.3 microns hr-1 for hamster and rabbit respectively). A correlation was found between the position an enterocyte occupied on the crypt-villus axis and the developmental state of the membrane potential. No such correlation existed when making comparisons on a time basis. These results are discussed both in terms of what is now known concerning different aspects of enterocyte development and in relation to what type of control mechanism might be generally responsible for initiating differentiation in this tissue.  相似文献   

5.
Iron is transported across intestinal brush border cells into the circulation in at least two distinct steps. Iron can enter the enterocyte via the apical surface through several paths. However, iron egress from the basolateral side of enterocytes converges on a single export pathway requiring the iron transporter, ferroportin1, and hephaestin, a ferroxidase. Copper deficiency leads to reduced hephaestin protein expression and activity in mouse enterocytes and intestinal cell lines. We tested the effect of copper deficiency on differentiated Caco2 cells grown in transwells and found decreased hephaestin protein expression and activity as well as reduced ferroportin1 protein levels. Furthermore, the decrease in hephaestin levels correlates with a decrease of 55Fe release from the basolateral side of Caco2 cells. Presence of ceruloplasmin, apo‐transferrin or holo‐transferrin did not significantly alter the results observed. Repletion of copper in Caco2 cells leads to reconstitution of hephaestin protein expression, activity, and transepithelial iron transport. J. Cell. Biochem. 107: 803–808, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Uptake of uridine was studied in isolated intestinal epithelial cells of guinea pig. Uptake was not severely influenced by metabolism. Free uridine was accumulated within cells 13-fold. Uptake was saturable with an apparent Km value of 46 μM and a Vmax of 0.9 nmol/mg protein per min. Uracil inhibited uptake only slightly; adenosine, guanosine and cytosine inhibited strongly. Antimycin A and ouabain inhibited almost 90%. If the extracellular Na+ concentration was decreased to 5 mM, the rate of uptake decreased 6.5-fold. The stimulatory effect of Na+ was related to the transmembraneous Na+-gradient. Cells from jejunum transported about 30% faster than cells from ileum. In conclusion, isolated enterocytes of guinea pig posses an active transport system for uridine.  相似文献   

7.
The luminal phase of zinc intestinal absorption has not been well characterized. This study was intended to elucidate the possible role of low molecular weight (LMW) ligands in zinc intestinal transport in an isolated rat enterocyte system. Under these in vitro conditions, zinc uptake by the isolated enterocytes was rapid, leveling off within 1 min. Kinetic analysis revealed that both a mediated and diffusion component were involved in zinc uptake in the absence of LMW ligands by the cells. For the mediated component of zinc transport, the Kt and Vmax were 64.1 microM and 13.9 nmol/20 sec/mg protein, respectively. Zinc uptake was not affected by the addition of metabolic inhibitors. In the presence of histidine or cysteine (2:1 ligand:zinc molar ratio), zinc uptake was greatly reduced and occurred solely via mediated transport. Zinc uptake was also significantly decreased upon the addition of EDTA to the assay media. Other amino acids tested had no effect on zinc uptake by the cells. Albumin markedly reduced zinc uptake by the cells. Histidine and other potential LMW ligands were unable to facilitate albumin-inhibited zinc uptake. The results of this study suggest that the intestinal absorption of zinc may not be effected in the form of chelates with LMW ligands. Amino acids such as histidine and cysteine significantly reduce the uptake of the metal by isolated rat enterocytes, making questionable their putative role as necessary vehicles in the luminal phase of zinc absorption.  相似文献   

8.
The increase in the prevalence of human obesity highlights the need to identify molecular and cellular mechanisms involved in control of feeding and energy balance. Oleoylethanolamide (OEA), an endogenous lipid produced primarily in the small intestine, has been identified to play an important role in the regulation of animal food intake and body weight. Previous studies indicated that OEA activates peroxisome proliferator-activated receptor-alpha, which is required to mediate the effects of appetite suppression, reduces blood lipid levels, and enhances peripheral fatty acid catabolism. However, the effect of OEA on enterocyte function is unclear. In this study, we have examined the effect of OEA on intestinal fatty acid uptake and FAT/CD36 expression in vivo and in vitro. We intraperitoneally administered OEA to rats and examined FAT/CD36 mRNA level and fatty acid uptake in enterocytes isolated from the proximal small intestine, as well as in adipocytes. Our results indicate that OEA treatment significantly increased FAT/CD36 mRNA expression in intestinal mucosa and isolated jejunal enterocytes. In addition, we also found that OEA treatment significantly increases fatty acid uptake in isolated enterocytes in vitro. These results suggest that in addition to appetite regulation, OEA may regulate body weight by altered peripheral lipid metabolism, including increased lipolysis in adipocytes and enhanced fatty acid uptake in enterocytes, both in conjunction with increased expression of FAT/CD36. This study may have important implications in understanding the mechanism of OEA in the regulation of fatty acid absorption in human physiological and pathophysiological conditions.  相似文献   

9.
Several peptides, including insulin, epidermal growth factor and vasoactive intestinal polypeptide bind to intestinal epithelial cells. However, it is unclear whether one binding site binds several peptides or whether separate sites exist for each peptide. These studies were designed to examine the specificity of peptide binding sites on intestinal epithelial cells. Peptide binding was measured directly with [125I]radiolabelled peptides to isolated enterocytes prepared from rabbit ileum. The characteristics of insulin and epidermal growth factor binding were similar. Both insulin and epidermal growth factor specific binding was saturable, directly correlated to cell concentration and temperature and pH dependent. The total number of insulin binding sites per cell was 4500, that for epidermal growth factor was 2280. Scatchard analysis for both peptides produced curvilinear plots. Dissociation of both peptides from the binding site was increased in the presence of their respective unlabelled peptide. However, insulin specific binding was not altered by epidermal growth factor, and epidermal growth factor specific binding was unaffected by insulin. Further, both insulin and epidermal growth factor failed to inhibit the specific binding of vasoactive intestinal polypeptide to ileal enterocytes, and vasoactive intestinal polypeptide did not inhibit insulin or epidermal growth factor specific binding. These studies demonstrate that insulin, epidermal growth factor and vasoactive intestinal polypeptide interact with three distinct membrane binding sites on the enterocyte.  相似文献   

10.
The distribution of alanine, lysine and methionine within the cytoplasm of functionally mature enterocytes in rabbit ileum was measured by autoradiography after a short period of contact with tritiated substrate. Pronounced intracellular concentration gradients were noted for alanine and lysine, the concentration of these amino acids in the apical part of the enterocyte being 2- to 3-times that found near the base of the cell. No such concentration gradient was seen for methionine. Subsequent superfusion of the mucosal surface of the tissue with substrate-free medium caused intracellular concentration gradients for alanine and lysine to disappear. There was also a decrease in the enterocyte content of all three amino acids unassociated with backflux into the intestinal lumen. The ease with which intracellular concentration gradients for alanine and lysine can be manipulated is used as an argument against the possibility that their creation results from selective attachment to cytoplasmic structures in the apical part of the enterocyte.  相似文献   

11.
1. The extent of lipid peroxidation in vitro, as indicated by the production of malonaldehyde, was significantly different in homogenates of bovine and mouse intestinal mucosa. 2. Mouse intestinal mucosa was resistant to non-enzymatic lipid peroxidation whereas bovine intestinal mucosa was not. 3. Iron-dependent lipid peroxidation in bovine intestinal mucosa depends on the position the cells occupy along the crypt-villus axis. 4. The addition of methanolic extracts from bovine intestine to mouse liver homogenates produced a considerable increase in non-enzymatic peroxidation whereas those from mouse intestinal mucosa had no effect.  相似文献   

12.
We have reported previously that a cinnamon extract (CE), high in type A polyphenols, prevents fructose feeding-induced decreases in insulin sensitivity and suggested that improvements of insulin sensitivity by CE were attributable, in part, to enhanced insulin signaling. In this study, we examined the effects of CE on postprandial apolipoprotein (apo) B-48 increase in fructose-fed rats, and the secretion of apoB48 in freshly isolated intestinal enterocytes of fructose-fed hamsters. In an olive oil loading study, a water-soluble CE (Cinnulin PF, 50 mg/kg body weight, orally) decreased serum triglyceride (TG) levels and the over production of total- and TG-rich lipoprotein-apoB48. In ex vivo 35S labeling study, significant decreases were also observed in apoB48 secretion into the media in enterocytes isolated from fructose-fed hamsters. We also investigated the molecular mechanisms of the effects of CE on the expression of genes of the insulin signaling pathway [insulin receptor (IR), IR substrate (IRS)1, IRS2 and Akt1], and lipoprotein metabolism [microsomal TG transfer protein (MTP), sterol regulatory element-binding protein (SREBP1c) in isolated primary enterocytes of fructose-fed hamsters, using quantitative real-time polymerase chain reaction. The CE reversed the expression of the impaired IR, IRS1, IRS2 and Akt1 mRNA levels and inhibited the overexpression of MTP and SREBP1c mRNA levels of enterocytes. Taken together, our data suggest that the postprandial hypertriglycerides and the overproduction of apoB48 can be acutely inhibited by a CE by a mechanism involving improvements of insulin sensitivity of intestinal enterocytes and regulation of MTP and SREBP1c levels. We present both in vivo and ex vivo evidence that a CE improves the postprandial overproduction of intestinal apoB48-containing lipoproteins by ameliorating intestinal insulin resistance and may be beneficial in the control of lipid metabolism.  相似文献   

13.
Background information. Intestinal absorption of alimentary lipids is a complex process ensured by enterocytes and leading to TRL [TAG (triacylglycerol)‐rich lipoprotein] assembly and secretion. The accumulation of circulating intestine‐derived TRL is associated with atherosclerosis, stressing the importance of the control of postprandial hypertriglyceridaemia. During the postprandial period, TAGs are also transiently stored as CLDs (cytosolic lipid droplets) in enterocytes. As a first step for determining whether CLDs could play a role in the control of enterocyte TRL secretion, we analysed the protein endowment of CLDs isolated by sucrose‐gradient centrifugation from differentiated Caco‐2/TC7 enterocytes, the only human model able to secrete TRL in culture and to store transiently TAGs as CLDs when supplied with lipids. Cells were analysed after a 24 h incubation with lipid micelles and thus in a state of CLD‐associated TAG mobilization. Results. Among the 105 proteins identified in the CLD fraction by LC‐MS/MS (liquid chromatography coupled with tandem MS), 27 were directly involved in lipid metabolism pathways potentially relevant to enterocyte‐specific functions. The transient feature of CLDs was consistent with the presence of proteins necessary for fatty acid activation (acyl‐CoA synthetases) and for TAG hydrolysis. In differentiated Caco‐2/TC7 enterocytes, we identified for the first time LPCAT2 (lysophosphatidylcholine acyltransferase 2), involved in PC (phosphatidylcholine) synthesis, and 3BHS1 (3‐β‐hydroxysteroid dehydrogenase 1), involved in steroid metabolism, and confirmed their partial CLD localization by immunofluorescence. In enterocytes, LPCAT2 may provide an economical source of PC, necessary for membrane synthesis and lipoprotein assembly, from the lysoPC present in the intestinal lumen. We also identified proteins involved in lipoprotein metabolism, such as ApoA‐IV (apolipoprotein A‐IV), which is specifically expressed by enterocytes and has been proposed to play many functions in vivo, including the formation of lipoproteins and the control of their size. The association of ApoA‐IV with CLD was confirmed by confocal and immunoelectron microscopy and validated in vivo in the jejunum of mice fed with a high‐fat diet. Conclusions. We report for the first time the protein endowment of Caco‐2/TC7 enterocyte CLDs. Our results suggest that their formation and mobilization may participate in the control of enterocyte TRL secretion in a cell‐specific manner.  相似文献   

14.
The mechanism for the cellular extrusion of organic anions across the intestinal basolateral membrane was examined using isolated membrane vesicles from rat jejunum, ileum, and colon. It was found that 17beta-estradiol 17beta-D-glucuronide (E217betaG) is taken up in an ATP-dependent manner into the basolateral membrane vesicles (BLMVs) but not into the brush-border or microsomal counterparts. The ATP-dependent uptake of E217betaG into BLMVs from jejunum and ileum was described by a single component with a Km value of 23.5 and 8.31 microM, respectively, whereas that into the BLMVs from colon was described by assuming the presence of high (Km=0.82 microM)- and low-affinity (Km=35.4 microM) components. Taurocholate, 6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole glucuronide and taurolithocholate sulfate, but not leukotriene C4, were significantly taken up by the BLMVs. In addition to such substrate specificity, the inhibitor sensitivity of the ATP-dependent transport in BLMVs was similar to that of rat multidrug resistance-associated protein 3 (Mrp3), which is located on the basolateral membrane of enterocytes. Together with the fact that the rank order of the extent of the expression of Mrp3 (jejunum < ileum < colon) is in parallel with that of the extent of the transport of ligands, these results suggest that the ATP-dependent uptake of organic anions into isolated intestinal BLMVs is at least partly mediated by Mrp3.  相似文献   

15.
We studied the effects of high temperature and paraquat on the rate of lipid peroxidation and activity of the H+-ATPase in the plasmalemma fraction isolated from pea leaves. We demonstrated a heat-induced increase in both indices. When lipid-peroxidation was inhibited by pretreatment with butylated hydroxytoluene, a synthetic antioxidant, the H+-ATPase activity increased to a lesser extent than after heat shock without pretreatment. Treatment of plants with paraquat, a prooxidant causing an oxidative stress, resulted in a dramatic increase in lipid peroxidation and H+-ATPase activity. We suggested that the enhanced lipid peroxidation could be one of the causes for the H+-ATPase activation in the plasmalemma under stress conditions.  相似文献   

16.
Two groups of weanling Sprague-Dawley rats were fed a low-selenium basal diet (Se 0.009 mg/kg) and the same diet supplemented with sodium selenite (Se 0.25 mg/kg), respectively, for 1, 2, and 3 months. At each feeding time, the Ca2+-ATPase activity, Ca2+ uptake rate and the capacity of Ca2+ uptake in isolated cardiac sacroplasmic reticulum from the Se-deficient rats were decreased significantly compared to those from the Se-supplemented rats, the contents of lipid peroxide in postmitochondrial supernatant and isolated sarcoplasmic reticulum from the Se-deficient rats were significantly higher than that from Se-supplemented rats. Compared to the Se-supplemented rats, the cytosolic glutathione peroxidase activity in Se-deficient rats decreased significantly. In addition, significant linear negative correlations of lipid peroxide in postmitochondrial supernatant to sarcoplasmic reticular Ca2+-ATPase activity, Ca2+ uptake rate and to whole blood selenium concentration were observed. The results suggest that the enhancement of lipid peroxidation via the depressed glutathione peroxidase activity might be responsible for the decrease of Ca2+-ATPase and Ca2+ uptake activities in sarcoplasmic reticulum in Se-deficient animals.  相似文献   

17.
Oral administration of vanadate to diabetic animals have been shown to stabilize the glucose homeostasis and restore altered metabolic pathways. However, vanadate exerts these effects at relatively high doses with several toxic effects. Low doses of vanadate are relatively safe but unable to elicit any antidiabetic effects. The present study explored the prospect of using low doses of vanadate with Trigonella foenum graecum, seed powder (TSP), another antidiabetic agent, and to evaluate their antidiabetic effect in diabetic rats. Alloxan diabetic rats were treated with insulin, vanadate, TSP and low doses of vanadate with TSP for three weeks. The effect of these antidiabetic compounds was examined on general physiological parameters, Na+/K+ ATPase activity, membrane lipid peroxidation and membrane fluidity in liver, kidney and heart tissues. Expression of glucose transporter (GLUT4) protein was also examined by immunoblotting method in experimental rat heart after three weeks of diabetes induction. Diabetic rats showed high blood glucose levels. Activity of Na+/K+ ATPase decreased in diabetic liver and heart. However, kidney showed a significant increase in Na+/K+ ATPase activity. Diabetic rats exhibited an increased level of lipid peroxidation and decreased membrane fluidity. GLUT4 distribution was also significantly lowered in heart of alloxan diabetic rats. Treatment of diabetic rats with insulin, TSP, vanadate and a combined therapy of lower dose of vanadate with TSP revived normoglycemia and restored the altered level of Na+/K+ ATPase, lipid peroxidation and membrane fluidity and also induced the redistribution of GLUT4 transporter. TSP treatment alone is partially effective in restoring the above diabetes-induced alterations. Combined therapy of vanadate and TSP was the most effective in normalization of altered membrane linked functions and GLUT4 distribution without any harmful side effect.  相似文献   

18.
The effect of modulators of protein kinase C (PKC) activity on Ca2+ translocation in retinal rod microsomes was studied. It is shown that PKC activators (phorbol 12-myristate-13-acetate (PMA) and diacylglycerol (DAG)) and inhibitors (chelerythrine chloride, polymyxin B, and phloretin) stimulate and inhibit ATP-dependent Ca2+ uptake in retinal rod microsomes, respectively. This effect is apparently due to an influence of PKC on Ca-ATPase contained in these vesicular structures. It was found that PKC inhibitors (chelerythrine chloride, polymyxin B, and phloretin) and activators (PMA and DAG) potentiate Ca2+ release from Ca2+ -loaded retinal rod microsomes. Specific and nonspecific mechanisms of Ca-release stimulation by the modulators of PKC activity are discussed.  相似文献   

19.
Enterocytes, the absorptive cells of the small intestine, mediate the process of dietary fat absorption by secreting triacylglycerol (TAG) into circulation. When levels of dietary fat are high, TAG is stored in cytoplasmic lipid droplets (CLDs) and sequentially hydrolyzed for ultimate secretion. Mice with deficiency in acyl CoA: diacylglycerol acyltransferase 1 (Dgat1−/− mice) were previously reported to have a reduced rate of intestinal TAG secretion and abnormal TAG accumulation in enterocyte CLDs. This unique intestinal phenotype is critical to their resistance to diet-induced obesity; however, the underlying mechanism remains unclear. Emerging evidence shows that lysosomal TAG hydrolysis contributes to autophagy-mediated CLD mobilization termed lipophagy, and when disrupted results in CLD accumulation. In order to study how lipophagy contributes to the unique intestinal phenotype of Dgat1−/− mice, enterocytes from wild-type (WT) and Dgat1−/− mice were examined at 2 and 6 h after oral oil gavage. Through ultrastructural analysis we observed TAG present within autophagic vesicles (AVs) in mouse enterocytes, suggesting the role of lipophagy in intestinal CLD mobilization during dietary fat absorption. Furthermore, we found that Dgat1−/− mice had abnormal TAG accumulation within AVs and less acidic lysosomes compared to WT mice. Together these findings suggest that the delayed dietary fat absorption seen in Dgat1−/− mice is, in part, due to the dysregulated flux of autophagy-mediated CLD mobilization and impairment of lysosomal acidification in enterocytes. The present study highlights the critical role of lysosome in enterocyte CLD mobilization for proper dietary fat absorption.  相似文献   

20.
For decades, enterocyte brush border microvilli have been viewed as passive cytoskeletal scaffolds that serve to increase apical membrane surface area. However, recent studies revealed that in the in vitro context of isolated brush borders, myosin-1a (myo1a) powers the sliding of microvillar membrane along core actin bundles. This activity also leads to the shedding of small vesicles from microvillar tips, suggesting that microvilli may function as vesicle-generating organelles in vivo. In this study, we present data in support of this hypothesis, showing that enterocyte microvilli release unilamellar vesicles into the intestinal lumen; these vesicles retain the right side out orientation of microvillar membrane, contain catalytically active brush border enzymes, and are specifically enriched in intestinal alkaline phosphatase. Moreover, myo1a knockout mice demonstrate striking perturbations in vesicle production, clearly implicating this motor in the in vivo regulation of this novel activity. In combination, these data show that microvilli function as vesicle-generating organelles, which enable enterocytes to deploy catalytic activities into the intestinal lumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号