首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ghrelin is produced mainly by endocrine cells in the stomach and is an endogenous ligand for the growth hormone secretagogue receptor (GHS-R). It also influences feeding behavior, metabolic regulation, and energy balance. It affects islet hormone secretion, and expression of ghrelin and GHS-R in the pancreas has been reported. In human islets, ghrelin expression is highest pre- and neonatally. We examined ghrelin and GHS-R in rat islets during development with immunocytochemistry and in situ hybridization. We also studied the effect of ghrelin on insulin secretion from INS-1 (832/13) cells and the expression of GHS-R in these cells. We found ghrelin expression in rat islet endocrine cells from mid-gestation to 1 month postnatally. Islet expression of GHS-R mRNA was detected from late fetal stages to adult. The onset of islet ghrelin expression preceded that of gastric ghrelin. Islet ghrelin cells constitute a separate and novel islet cell population throughout development. However, during a short perinatal period a minor subpopulation of the ghrelin cells co-expressed glucagon or pancreatic polypeptide. Markers for cell lineage, proliferation, and duct cells revealed that the ghrelin cells proliferate, originate from duct cells, and share lineage with glucagon cells. Ghrelin dose-dependently inhibited glucose-stimulated insulin secretion from INS-1 (832/13) cells, and GHS-R was detected in the cells. We conclude that ghrelin is expressed in a novel developmentally regulated endocrine islet cell type in the rat pancreas and that ghrelin inhibits glucose-stimulated insulin secretion via a direct effect on the beta-cell.  相似文献   

2.
OBJECTIVES: Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHS-R), was recently identified in the stomach. Ghrelin is produced in a population of endocrine cells in the gastric mucosa, but expression in intestine, hypothalamus and testis has also been reported. Recent data indicate that ghrelin affects insulin secretion and plays a direct role in metabolic regulation and energy balance. On the basis of these findings, we decided to examine whether ghrelin is expressed in human pancreas. Specimens from fetal to adult human pancreas and stomach were studied by immunocytochemistry, for ghrelin and islet hormones, and in situ hybridisation, for ghrelin mRNA. RESULTS: We identified ghrelin expression in a separate population of islet cells in human fetal, neonatal, and adult pancreas. Pancreatic ghrelin cells were numerous from midgestation to early postnatally (10% of all endocrine cells). The cells were few, but regularly seen in adults as single cells at the islet periphery, in exocrine tissue, in ducts, and in pancreatic ganglia. Ghrelin cells did not express any of the known islet hormones. In fetuses, at midgestation, ghrelin cells in the pancreas clearly outnumbered those in the stomach. CONCLUSIONS: Ghrelin is expressed in a quite prominent endocrine cell population in human fetal pancreas, and ghrelin expression in the pancreas precedes by far that in the stomach. Pancreatic ghrelin cells remain in adult islets at lower numbers. Ghrelin is not co-expressed with any known islet hormone, and the ghrelin cells may therefore constitute a new islet cell type.  相似文献   

3.
Ghrelin and its receptor, growth hormone secretagogue receptor (GHS-R), are produced by various cell types and affect feeding behavior, metabolic regulation, and energy balance. In the mammalian pancreas, the types of endocrine cells immunoreactive for ghrelin vary. Further, no study has clarified the type of endocrine cells producing ghrelin and GHS-R in the non-mammalian pancreas. We immunohistochemically investigated ghrelin-like and GHS-R-like immunoreactivities in the Xenopus pancreas. Ghrelin-immunoreactive cells were observed both in islets and extrainsular regions, and they corresponded to insulin-containing cells. GHS-R-immunoreactive cells were observed in the islets, and these immunoreactive cells corresponded to insulin- and somatostatin-containing cells. These observations suggest that ghrelin is co-secreted with insulin and that ghrelin may act in an autocrine fashion for insulin-containing cells and in a paracrine fashion for somatostatin-containing cells in this species.  相似文献   

4.
Ghrelin--not just another stomach hormone   总被引:14,自引:0,他引:14  
Growth hormone (GH) secretagogues (GHSs) are non-natural, synthetic substances that stimulate GH secretion via a G-protein-coupled receptor called the GHS-receptor (GHS-R). The natural ligand for the GHS-R has been identified recently; it is called ghrelin. Ghrelin and its receptor show a widespread distribution in the body; the greatest expression of ghrelin is in stomach endocrine cells. Administration of exogenous ghrelin has been shown to stimulate pituitary GH secretion, appetite, body growth and fat deposition. Ghrelin was probably designed to be a major anabolic hormone. Ghrelin also exerts several other activities in the stomach. The findings that ghrelin is produced in mucosal endocrine cells of the stomach and intestine, and that ghrelin is measurable in the general circulation indicate its hormonal nature. A maximal expression of ghrelin in the stomach suggests that there is a gastrointestinal hypothalamic-pituitary axis that influences GH secretion, body growth and appetite that is responsive to nutritional and caloric intakes.  相似文献   

5.
Ghrelin is an endocrine peptide that has been identified in gastric oxyntic glands and that induces growth hormone secretion in the pituitary gland. This growth hormone secretagogue is expressed in many tissues such as stomach, pituitary gland, thyroid, testis, placenta and pancreas. Initial studies of ghrelin focused on its role as a circulating orexigenic signal. However, ghrelin has also been found to be involved in the modulation of glucose homeostasis. Although a number of studies have reported ghrelin expression in developing pancreas, the location of ghrelin-immunoreactive cells in adult pancreas (epsilon cells) remains controversial. In this study, we have analysed the distribution of pancreatic epsilon cells in adult human and rat islets by immunohistochemistry and in situ hybridisation. In humans, our immunohistochemical analysis has shown that ghrelin is expressed in glucagon-secreting cells, whereas in rats, it is present in insulin-secreting cells. Similar observations have been revealed by in situ hybridisation.  相似文献   

6.
7.
Growth hormone (GH) secretagogues (GHSs), which stimulate GH secretion, are synthetic compounds that act through the GHS receptor (GHS-R) which has been recently cloned. We raised an antiserum in a rabbit against a synthetic peptide corresponding to amino acid residues 248-260 of the third intracellular loop of the rat GHS-R. A competitive immunoassay showed that the antiserum had a specific affinity for the target peptide. To confirm the specificity of the antiserum, the GHS-R cDNA was stably expressed in COS-7 cells. In Western blot analysis, the band was detected at 44 kDa in the extracts from COS-7 cells expressing GHS-R (COS-7/tf3-2) but not in those from wild-type COS-7 cells. Furthermore, while COS-7/tf3-2 cells were strongly immunostained for GHS-R, no GHS-R-like immunoreactivity was observed in wild-type COS-7 cells. Immunoreactive bands were also observed at approximately 46 kDa in the extracts from rat hypothalamus, pituitary and stomach by Western blot analysis. These studies are the first to show the existence of GHS-R protein in the stomach. The antiserum for the GHS-R is sensitive and specific, and it would be useful for clarifying the roles of GHS/ghrelin.  相似文献   

8.
The stomach hormone ghrelin is the endogenous ligand for the growth hormone secretagogue receptor (GHS-R). Systemic administration of ghrelin will cause elevations in growth hormone (GH) secretion, food intake, adiposity, and body growth. Ghrelin also affects insulin secretion, gastric acid secretion, and gastric motility. Several reports indicate that repeated or continuous activation of GHS-R by exogenous GHSs or ghrelin results in a diminished GH secretory response. The purpose of this study was to examine the extent to which the acute stimulation of food intake by exogenous ghrelin is altered by chronic hyperghrelinemia in transgenic mice that overexpress the human ghrelin gene. The present findings show that the orexigenic action of exogenous ghrelin is not diminished by a chronic hyperghrelinemia and indicate that the food ingestive pathway of the GHS-R is not susceptible to desensitization. In contrast, the epididymal fat pad growth response, like the GH response, to exogenous ghrelin is blunted in ghrelin transgenic mice with chronic hyperghrelinemia.  相似文献   

9.
Ghrelin is a peptide hormone that has been implicated in the regulation of food intake and energy homeostasis. Ghrelin is predominantly produced in the stomach, but is also expressed in many other tissues where its functions are not well characterized. In the rodent and human pancreas, ghrelin levels peak at late gestation and gradually decline postnatally. Several studies have suggested that ghrelin regulates beta cell function during embryonic development and in the adult. In addition, in a number of mouse models, ghrelin cells appear to replace insulin- and glucagon-producing cells in the islet. In this analysis, we investigated whether the absence or overexpression of ghrelin influenced the development and differentiation of the pancreatic islet during embryonic development. These studies revealed that ghrelin is dispensable for normal pancreas development during gestation. Conversely, we demonstrated that elevated ghrelin in the Nkx2.2 null islets is not responsible for the absence of insulin- and glucagon-producing cells. Finally, we have also determined that in the absence of insulin, ghrelin cells form in their normal numbers and ghrelin is expressed at wild type levels.  相似文献   

10.
The gastric and hypothalamic hormone ghrelin is the endogenous agonist of the growth hormone secretagogue receptor GHS-R1(a). Ghrelin stimulates growth hormone release and appetite via the hypothalamus. However, putative direct peripheral effects of ghrelin remain poorly understood. Rat adipose tissue expresses GHS-R1(a) mRNA, suggesting ghrelin may directly influence adipocyte function. We have investigated the effects of ghrelin on insulin-stimulated glucose uptake in isolated white adipocytes in vitro. RT-PCR confirmed the expression of GHS-R1(a) mRNA in epididymal adipose tissue. However, GHS-R1(a) expression was not detected in the peri-renal fat pads. Ghrelin increased insulin-stimulated deoxyglucose uptake in isolated white adipocytes extracted from the epididymal fat pads of male Wistar rats. Ghrelin 1000 nM significantly increased deoxyglucose uptake by 55% in the presence of 0.1 nM insulin. However, ghrelin administration in the absence of insulin had no effect on adipocyte deoxyglucose uptake, suggesting that ghrelin acts synergistically with insulin. Des-acyl ghrelin, a major circulating non-octanylated form of ghrelin, had no effect on insulin-stimulated glucose uptake. Furthermore, acylated ghrelin had no effect on deoxyglucose uptake in adipocytes from peri-renal fat pads suggesting that ghrelin may influence glucose uptake via the GHS-R1(a). Ghrelin therefore appears to directly potentiate adipocyte insulin-stimulated glucose uptake in selective adipocyte populations. Ghrelin may play a role in adipocyte regulation of glucose homeostasis.  相似文献   

11.
Ghrelin is a 28-amino-acid peptide that stimulates pituitary growth-hormone secretion and modulates food-intake and energy metabolism in mammals. It is mainly secreted by the stomach, but it is also expressed in many other tissues such as cartilage or the thyroid gland. In the present study we have analyzed by RT-PCR and using immunohistochemistry and immunofluorescence the expression and tissue distribution of ghrelin and its functional receptor (GHS-R type 1α) in thyroid cell-lines and in normal and pathological rat thyroid tissue. Additionally, by measuring the incorporation of BrdU, we have investigated if, as previously noted for FRTL-5 cells, ghrelin enhances the proliferation rate in the PC-Cl3 rat-thyrocyte cell-line. Finally, we have determined the stimulatory effect of ghrelin on TSH-induced expression of the tissue-specific key genes involved in the synthesis of thyroid hormone: thyroglobulin, thyroperoxidase and sodium-iodine symporter. Our data provide direct evidence that C-cell secreted ghrelin may be involved in the paracrine regulation of the thyroid follicular cell function.  相似文献   

12.
The orexigenic hormone ghrelin is important in diabetes because it has an inhibitory effect on insulin secretion. Ghrelin ablation in leptin-deficient ob/ob (Ghrelin(-/-):ob/ob) mice increases insulin secretion and improves hyperglycemia. The physiologically relevant ghrelin receptor is the growth hormone secretagogue receptor (GHS-R), and GHS-R antagonists are thought to be an effective strategy for treating diabetes. However, since some of ghrelin's effects are independent of GHS-R, we have utilized genetic approaches to determine whether ghrelin's effect on insulin secretion is mediated through GHS-R and whether GHS-R antagonism indeed inhibits insulin secretion. We investigated the effects of GHS-R on glucose homeostasis in Ghsr-ablated ob/ob mice (Ghsr(-/-):ob/ob). Ghsr ablation did not rescue the hyperphagia, obesity, or insulin resistance of ob/ob mice. Surprisingly, Ghsr ablation worsened the hyperglycemia, decreased insulin, and impaired glucose tolerance. Consistently, Ghsr ablation in ob/ob mice upregulated negative β-cell regulators (such as UCP-2, SREBP-1c, ChREBP, and MIF-1) and downregulated positive β-cell regulators (such as HIF-1α, FGF-21, and PDX-1) in whole pancreas; this suggests that Ghsr ablation impairs pancreatic β-cell function in leptin deficiency. Of note, Ghsr ablation in ob/ob mice did not affect the islet size; the average islet size of Ghsr(-/-):ob/ob mice is similar to that of ob/ob mice. In summary, because Ghsr ablation in leptin deficiency impairs insulin secretion and worsens hyperglycemia, this suggests that GHS-R antagonists may actually aggravate diabetes under certain conditions. The paradoxical effects of ghrelin ablation and Ghsr ablation in ob/ob mice highlight the complexity of the ghrelin-signaling pathway.  相似文献   

13.
BACKGROUND: Ghrelin and obestatin are encoded by the preproghrelin gene and originate from posttranslational processing of the preproghrelin peptide. The fetal rat pancreas contains acylated and desacylated ghrelin peptides, as well as growth hormone secretagogue receptor -1a mRNA. Acylated ghrelin inhibits insulin secretion. We investigated the plasma and tissue ontogeny of ghrelin and obestatin in the rat. METHODS: We measured obestatin and acylated and total ghrelin concentrations in plasma, pancreas and stomach from rat fetuses (F20) and neonates at postnatal day (PN) 1, 6, 12 and 21). RESULTS: Overall, obestatin concentrations were markedly lower than total ghrelin concentrations. In plasma, total ghrelin concentrations decreased abruptly after birth (p < 0.05), contrasting with a 3 times increase in the concentration of acylated ghrelin between F20 and PN1 (p < 0.05). In pancreas, total ghrelin and obestatin concentrations decreased progressively from PN1 to PN21 but acylated ghrelin concentrations increased 6-7 times from F20 (18 [6] pg/ml) to PN6 (122 [59] pg/ml). The percent of acylated ghrelin increased from 1.8 (0.6) at F20 to 39.7 (13.0) % of total ghrelin immunoreactivity at PN12 (p < 0.05). There were significant positive correlations between postnatal obestatin, acylated or total ghrelin and insulin concentrations in the pancreas (all p < 0.02, r(2) > 0.21) and between postnatal total ghrelin and obestatin (in pancreas, r(2) = 0.37) or acylated ghrelin (in stomach, r(2) = 0.27) (p < 0.001). CONCLUSION: Ghrelin and obestatin are present in the perinatal pancreas where they could potentially affect insulin secretion.  相似文献   

14.
Ghrelin was identified in the stomach as an endogenous ligand specific for the growth hormone secretagogue receptor (GHS-R). GHS-R is found in various tissues, but its function is unknown. Here we show that GHS-R is found in hepatoma cells. Exposure of these cells to ghrelin caused up-regulation of several insulin-induced activities including tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1), association of the adapter molecule growth factor receptor-bound protein 2 with IRS-1, mitogen-activated protein kinase activity, and cell proliferation. Unlike insulin, ghrelin inhibited Akt kinase activity as well as up-regulated gluconeogenesis. These findings raise the possibility that ghrelin modulates insulin activities in humans.  相似文献   

15.
Ghrelin is a hormone with a crucial role in the regulation of appetite, regulation of inflammation, glucose metabolism and cell proliferation. In the brain ghrelin neurons are located in the cortex (sensorimotor area, cingular gyrus), and the fibres of ghrelin neurons in hypothalamus project directly to the dorsal vagal complex (DVC). Ghrelin binds the growth hormone secretagogue receptor (GHS-R) a G-protein-coupled receptor with a widespread tissue distribution, indeed these receptors are localized both in nonnervous, organs/tissues (i.e. adipose tissue, myocardium, adrenals, gonads, lung, liver, arteries, stomach, pancreas, thyroid, and kidney) as well as in central nervous system (CNS) and higher levels of expression in the pituitary gland and the hypothalamus and lower levels of expression in other organs, including brain. A GHS-R specific monoclonal antibody has been developed and characterized and through it we demonstrate that GHS-R is expressed in primary neurons and that its expression is dependent upon their developmental stage and shows differences according to the brain region involved, with a more pronounced expression in hippocampal rather than cortical neurons. A characterization of GHS-R within the central nervous system is of extreme importance in order to gain insights on its role in the modulation of neurodegenerative events such as Alzheimer’s disease.  相似文献   

16.
Elevated ghrelin plasma levels in patients with polycystic ovary syndrome.   总被引:8,自引:0,他引:8  
Polycystic ovary syndrome is a common endocrine disorder in women. It is associated with hirsuitism, obesity, insulin resistance, abnormality in the growth hormone/insulin-like growth factor I (IGF-1) axis and polycystic ovaries. The etiology of PCOS has not been clarified. Ghrelin is an endogenous ligand of the growth hormone secretagogue receptor. It is mainly secreted by stomach cells but has also been shown to be present in hypothalamus, pituitary, pancreas and gonads. Ghrelin is a regulator of energy homeostasis and GH secretion. The influence of ghrelin on insulin secretion and gonadal function is known. Since ghrelin may play an important role in pathophysiology of PCOS, we studied ghrelin levels in a group of 52 women with PCOS and in 16 women in a control group. Plasma levels of insulin, total testosterone, SHBG, LH, and FSH were also measured. In conclusion, PCOS women have higher ghrelin levels than controls. Ghrelin negatively correlates with BMI and insulin levels in PCOS group. A relation between ghrelin and SHBG was observed. Our data suggest that ghrelin could be the possible link in PCOS etiology.  相似文献   

17.
Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor (GHS-R), was isolated from the rat stomach and determined to be n-octanoylated 28-amino-acid peptide. In this study, we studied the distribution of ghrelin-producing cells (ghrelin cells) in the gastrointestinal tract of male and female rainbow trout (Oncorhynchus mykiss) by immunohistochemistry using N-terminal region-recognizing antibody and also by in situ hybridization using a trout ghrelin-specific cRNA probe. Ghrelin cells were found in the mucosal layer of the stomach but not in the myenteric plexus, and no ghrelin cells were observed in other regions of the gastrointestinal tract. Ghrelin cells could be classified into two types: closed- and opened-type cells. The density of ghrelin cells increased gradually in the direction from the cardiac to pyloric portions of the stomach in both sexes. The number of ghrelin cells per unit area seemed to be higher in females than in males. In conclusion, trout ghrelin cells exist in the stomach and are classified into two types of cells, closed- and opened-type cells.  相似文献   

18.
Ghrelin, a GH-releasing and appetite-regulating peptide that is released from the stomach is an endogenous ligand for growth hormone secretagogue-receptor (GHS-R). Two types of GHS-R are accepted to be present, a functional GHS-R1a and GHS-R1b with unknown function. In this study, we identified cDNA that encodes protein with close sequence similarity to GHS-R and exon–intron organization of the GHS-R genes in rainbow trout, Oncorhynchus mykiss. Two variants of GHS-R1a proteins with 387-amino acids, namely DQTA/LN-type and ERAT/IS-type, were identified. In 3'-RACE PCR and genomic PCR, we also identified three GHS-R1b orthologs that are consisted of 297- or 300-amino acids with different amino acid sequence at the C-terminus, in addition to the DQTA/LN-type and ERAT/IS-type variations. Genomic PCR revealed that the genes are composed of two exons separated by an intron, and that two GHS-R1a and three GHS-R1b variants are generated by three distinct genes. GHS-R1a and GHSR-1b mRNA were predominantly expressed in the pituitary, followed by the brain. Identified DQTA/LN-type or ERAT/IS-type GHS-R1a cDNA was transfected into mammalian cells, and intracellular calcium ion mobilization assay was carried out. However, we did not find any response to rat ghrelin and a homologous ligand, des-VRQ trout ghrelin, of either receptor in vitro. We found that unexpected mRNA splicing had occurred in the transfected cells, suggesting that the full-length, functional receptor protein might not be generated in the cells. Gene structure and characterization of protein sequence identified in this study were closely similar to other GHS-R, but to conclude that it is a GHS-R for rainbow trout, further study is required to confirm activation of GHS-R1a by ghrelin or GHS. Thus we designated the identified receptor proteins in this study as GHS-R-like receptor (GHSR-LR).  相似文献   

19.
Ghrelin is a novel gut-brain peptide that binds to the growth hormone secretagogue receptor (GHS-R), thereby functioning in the regulation of growth hormone (GH) release and food intake. Ghrelin-producing cells are most abundant in the oxyntic glands of the stomach. The regulatory mechanism that governs the biosynthesis and secretion of ghrelin has not been clarified. We report that ghrelin mRNA expression in the gastric fundus was increased, but that ghrelin peptide content decreased after a 48-h fast. Both values returned to control levels after refeeding. The ghrelin plasma concentration in the gastric vein and systemic venous blood increased after 24- and 48-h fasts. Furthermore, des-octanoylated ghrelin and n-octanoylated ghrelin were found in rat stomach, with the ratio of des-octanoylated ghrelin to n-octanoylated ghrelin markedly increased after fasting. The ghrelin mRNA level in the stomach also increased after administration of insulin and leptin. Conversely, db/db mice, which are deficient in the leptin receptor, had lower ghrelin mRNA levels than control mice. These findings suggest that this novel gastrointestinal hormone plays a role in the regulation of energy balance.  相似文献   

20.
Ghrelin stimulates gastric motility in vivo in the guinea-pig through activation of growth hormone secretagogue receptor (GHS-R). In this study, we identified GHS-R1a in the guinea-pig, and examined its distribution and cellular function and compared them with those in the rat. Effects of ghrelin in different regions of gastrointestinal tract were also examined. GHS-R1a was identified in guinea-pig brain cDNA. Amino acid identities of guinea-pig GHS-R1a were 93% to horses and 85% to dogs. Expression levels of GHS-R1a mRNA were high in the pituitary and hypothalamus, moderate in the thalamus, cerebral cortex, pons, medulla oblongata and olfactory bulb, and low in the cerebellum and peripheral tissues including gastrointestinal tract. Comparison of GHS-R1a expression patterns showed that those in the brain were similar but the expression level in the gastrointestinal tract was higher in rats than in guinea-pigs. Guinea-pig GHS-R1a expressed in HEK 293 cells responded to rat ghrelin and GHS-R agonists. Rat ghrelin was ineffective in inducing mechanical changes in the stomach and colon but caused a slight contraction in the small intestine. 1,1-Dimethyl-4-phenylpiperazinium and electrical field stimulation (EFS) caused cholinergic contraction in the intestine, and these contractions were not affected by ghrelin. Ghrelin did not change spontaneous and EFS-evoked [3H]-efflux from [3H]-choline-loaded ileal strips. In summary, guinea-pig GHS-R1a was identified and its functions in isolated gastrointestinal strips were characterized. The distribution of GHS-R1a in peripheral tissues was different from that in rats, suggesting that the functional role of ghrelin in the guinea-pig is different from that in other animal species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号