首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The potential for mycorrhizal formation and Frankia nodulation were studied in soils from six sites in the Pacific Northwest. The sites included young and old alder stands, a 1-year-old conifer clear-cut, a young conifer plantation, and rotation-aged and old-growth conifer stands. A bioassay procedure was used with both red alder and Douglas fir seedlings as hosts. After 6 weeks growth, seedlings of both hosts were harvested every 3 weeks for 21 weeks and numbers of nodules and ectomycorrhizal types estimated. Nodules formed on red alder and ectomycorrhizae formed on both alder and Douglas fir in soil from all sites. Nodulation potential was highest in soil from the alder stands and the conifer plantation. Seven morphologically distinct ectomycorrhizal types were recovered on Douglas fir and five on alder. Only Thelephora terrestris, a broad-host-range mycobiont, formed mycorrhizae on both hosts. New ectomycorrhizal types formed on both hosts throughout the bioassay. Ectomycorrhizal colonization of alder was greatest in the alder and clear-cut soils. Low ectomycorrhizal colonization on alder was found in soils from sites where conifers were actively growing. Ectomycorrhizal colonization of Douglas fir was highest in the young alder and conifer plantation soils and was low in the rotation-aged conifer soil. The highest diversity of ectomycorrhizal types was found on alder in the conifer clear-cut soil and on Douglas fir in the rotation-aged conifer soil. Effects of host specificity, nodulation and mycorrhiza-forming potential and nodule-mycorrhiza interactions on seedling establishment are discussed in relation to seral stage dynamics and attributes of pioneer ectomycorrhizal fungal species.  相似文献   

2.
Red alder (Alnus rubra Bong.) and sitka alder (A. viridis ssp. sinuata [Regel] Löve & Löve) are nitrogen-fixing woody species that grow sympatrically along the Pacific coast of North America. Red alder is found in poorly drained lowlands, as well as in soils of moist upland slopes, whereas sitka alder generally colonizes well-drained soils. To identify factors that contribute to flood tolerance, we conducted greenhouse experiments subjecting both species to a 20-day flood and 10-day recovery and red alder to a 50-day flood and 20-day recovery. We determined the effect of this stress on nitrogenase activity, root and nodule alcohol dehydrogenase (ADH) activity, lenticel and adventitious root development, relative growth rate (RGR), and leaf gas exchange. After 24 h of flooding, nitrogenase activity could not be detected in either species. Limited nitrogenase activity did return in red alder at the end of a 10-day recovery following the 20-day flood, but sitka alder showed no recovery of nitrogenase activity. After 50 days of continuous flooding, red alder nitrogenase activity returned to pretreatment levels. Red alder root and nodule ADH activity was more than twice that of sitka alder under flooded conditions. Sitka alder showed extensive root mortality and leaf abscission over the same 20-day flooding period. Flooded red alder exhibited an initial decline in root RGR, but recovered between days 10 and 20 with the formation of adventitious roots. Furthermore, initiation of adventitious roots in red alder coincided with an increase in stomatal conductance without a similar recovery of carbon dioxide exchange rate. Sitka alder formed few adventitious roots, lost much of its root and leaf biomass, and showed no restoration of growth during flooding or recovery. Different responses of red and sitka alder to flooding serve as a partial explanation for the different patterns of distribution of these species and suggest some adaptations of red alder that permit flood tolerance.  相似文献   

3.
Red alder (Alnus rubra Bong.) stands in the Pacific Northwest are the common first stage in succession following disturbance. These stands are highly productive and contribute a large amount of N to the soils as a result of their N2-fixing symbiosis with Frankia. As these alder stands age, the soils not only increase in total N, but concentrations of NO 3 increase and pH decreases as a result of nitrification. The objective of this study was to determine how the nodulation capacity of Frankia varies as red alder stands age and if differences in nodulation capacity are related to changes in soil properties. Nodulation capacity was determined by a red alder seedling bioassay for soils from red alder stands in the Oregon coast range covering a wide range of ages. Six chronosequences were sampled, each containing a young, an intermediate, and an older alder stand. Soil total N, total C, NO 3, NH+ 4, and pH were measured on the same soil samples. These factors as well as alder stand characteristics were compared with nodulation capacity in an attempt to identify soil characteristics typical in developing alder stands that most strongly affect nodulation capacity. Soil pH and NO 3 concentration were highly correlated with nodulation capacity and with each other. Cluster analysis of the sites using these two variables identified two groups with distinctly different nodulation capacities. The cluster with the higher nodulation capacity was lower in NO 3 and higher in pH than the other cluster, which included the majority of sites. There was substantial overlap in the age ranges for the two clusters and there was no significant correlation between age and nodulation capacity. Thus nodulation capacity appears to be most closely related to soil properties than to stand age.  相似文献   

4.
Communities of archaea, bacteria, and fungi were examined in forest soils located in the Oregon Coast Range and the inland Cascade Mountains. Soils from replicated plots of Douglas-fir (Pseudotsuga menziesii) and red alder (Alnus rubra) were characterized using fungal ITS (internal transcribed spacer region), eubacterial 16S rRNA, and archaeal 16S rRNA primers. Population size was measured with quantitative (Q)-PCR and composition was examined using length heterogeneity (LH)-PCR for fungal composition, terminal restriction fragment length (T-RFLP) profiles for bacterial and archaeal composition, and sequencing to identify dominant community members. Whereas fungal and archaeal composition varied between sites and dominant tree species, bacterial communities only varied between sites. The abundance of archaeal gene copy numbers was found to be greater in coastal compared to montane soils accounting for 11% of the prokaryotic community. Crenarchaea groups 1.1a-associated, 1.1b, 1.1c, and 1.1c-associated were putatively identified. A greater abundance of Crenarchaea 1.1b indicator fragments was found in acidic (pH 4) soils with low C:N ratios under red alder. In coastal soils, 25% of fungal sequences were putatively identified as basidiomycetous yeasts belonging to the genus Cryptococcus. Although the function of these yeasts in soil is not known, they could significantly contribute to decomposition processes in coastal soils distinguished by rapid tree growth, high N content, low pH, and frequent water-saturation events.  相似文献   

5.
This study determined nitrification activity and nitrifier community composition in soils under stands of red alder (Alnus rubra) and Douglas fir (Pseudotsuga menziesii) at two sites in Oregon. The H.J. Andrews Experimental Forest, located in the Cascade Mountains of Oregon, has low net N mineralization and gross nitrification rates. Cascade Head Experimental Forest, in the Coast Range, has higher net N mineralization and nitrification rates and soil pH is lower. Communities of putative bacterial [ammonia-oxidizing bacteria (AOB)] and archaeal [ammonia-oxidizing archaea (AOA)] ammonia oxidizers were examined by targeting the gene amoA, which codes for subunit A of ammonia monooxygenase. Nitrification potential was significantly higher in red alder compared with Douglas-fir soil and greater at Cascade Head than H.J. Andrews. Ammonia-oxidizing bacteria amoA genes were amplified from all soils, but AOA amoA genes could only be amplified at Cascade Head. Gene copy numbers of AOB and AOA amoA were similar at Cascade Head regardless of tree type (2.3-6.0 x 10(6)amoA gene copies g(-1) of soil). DNA sequences of amoA revealed that AOB were members of Nitrosospira clusters 1, 2 and 4. Ammonia-oxidizing bacteria community composition, determined by terminal restriction fragment length polymorphism (T-RFLP) profiles, varied among sites and between tree types. Many of the AOA amoA sequences clustered with environmental clones previously obtained from soil; however, several sequences were more similar to clones previously recovered from marine and estuarine sediments. As with AOB, the AOA community composition differed between red alder and Douglas-fir soils.  相似文献   

6.
根据中国的标本材料对中国多孔菌一新记录种———韦氏小针层孔菌 [Phellinidiumweirii(Murrill)Y .C .Dai]进行了详细描述 ,并讨论了该种与其相似种硫色小针层孔菌的区别 :该种担子果多年生 ,管孔较小 ( 5~ 7vs 4~ 5permm) ,管口全缘 ,担孢子不嗜蓝 ,只生长在柏树上。该种分布于青海省祁连山地区 ,生长在祁连圆柏上 ,造成祁连圆柏根部白色腐朽。  相似文献   

7.
We investigated the influence of red alder (Alnus rubra) stand density in upland, riparian forests on invertebrate and detritus transport from fishless headwater streams to downstream, salmonid habitats in southeastern Alaska. Red alder commonly regenerates after soil disturbance (such as from natural landsliding or timber harvesting), and is common along streams in varying densities, but its effect on food delivery from headwater channels to downstream salmonid habitats is not clear. Fluvial transport of invertebrates and detritus was measured at 13 sites in spring, summer and fall during two years (2000–2001). The 13 streams encompassed a riparian red alder density gradient (1–82% canopy cover or 0–53% basal area) growing amongst young-growth conifer (45-yr-old stands that regenerated after forest clearcutting). Sites with more riparian red alder exported significantly more invertebrates than did sites with little alder (mean range across 1–82% alder gradient was about 1–4 invertebrates m?3 water, and 0.1–1 mg invertebrates m?3 water, respectively). Three-quarters of the invertebrates were of aquatic origin; the remainder was of terrestrial origin. Aquatic taxa were positively related to the alder density gradient, while terrestrially-derived taxa were not. Streams with more riparian alder also exported significantly more detritus than streams with less alder (mean range across 1–82% alder gradient was 0.01–0.06 g detritus m?3 water). Based on these data, we predict that headwater streams with more riparian alder will provide more invertebrates and support more downstream fish biomass than those basins with little or no riparian alder, provided these downstream food webs fully utilize this resource subsidy.  相似文献   

8.
Two-year-old coppice of black cottonwood and red alder, grown in pure culture and in mixture, were compared using terminal twigs and leafless shoots harvested in the winter. Terminal twigs were taken with buds intact; they were about 15 cm long. Leafless shoot samples included all above-ground components. In pure culture, dry weights of the leafless shoots per plant were similar for the two species. In mixture with alder, however, weight of the cottonwood plants was enhanced and that of alder was reduced, but neither response was statistically significant. Nutrient concentration, content per plant, and utilization varied by the plant tissues analyzed, cultural treatment (purevs. mixed), and species. In general, nutrient concentrations were higher in the terminal twigs than in the leafless shoots of both species. Cultural treatment did not significantly affect nutrient concentration in cottonwood twigs or in the leafless shoots of either species. Concentrations of N and Fe were significantly higher and those of Mn were lower in twigs of mixed alder than in twigs of pure alder. Twigs of cottonwood were significantly higher than those of alder in concentration of P and Zn, and lower in N, Mn, and Cu. Compared with alder, cottonwood leafless shoots were significantly higher in concentration of Ca, but lower in N, S, Cu, and Mn. With few exceptions, nutrient content was highest in the shoots of the large plants of mixed cottonwood, intermediate in medium-sized pure cottonwood and pure alder, and lowest in the small mixed alder. Cottonwood was significantly more efficient than alder in use of N, S, and Cu, and less efficient in use of Ca. Some of the differences between cultural treatments and species may be associated directly or indirectly with the N2-fixing ability of red alder. Mixed culture of the two species appears promising because of the increased growth of cottonwood. Planted separately in pure culture, the choice between cottonwood and alder may be determined, in part, by the nutritional status of the soil where plantations are established.  相似文献   

9.
Small woody debris in streams is abundant, and may be a food source or may provide a substrate on which other food sources such as biofilm may develop, both of which may be significant to invertebrates in times of food scarcity. We examined patterns of invertebrate colonisation of small woody debris (veneers of red alder, Douglas‐fir, and western red cedar), red alder leaves, and plastic (as an inert substrate to mimic leaves). Invertebrate colonisation was high on alder leaves, but low on wood substrates and plastic, controlling for the available surface area. Detritivorous invertebrates had significantly higher colonisation rates of alder leaves versus the other four substrates, whereas predators and collectors did not (consistent with their use of these as substrates and not food). All wood decreased in mass by <15% and leaves by ∼50% over the 75 days of the experiment. For all taxa tested, there was no significant difference in their colonisation of the wood veneers versus the plastic sheets. These results suggest that wood was not directly used by these invertebrates as a food source, or that there could be similar biofilm development on the surfaces of these substrates. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
赤杨对辽东落叶松人工林土壤氨基糖积累的影响   总被引:3,自引:0,他引:3  
微生物残留物是土壤稳定性碳库的重要组成部分,然而其对固氮树种的响应还不清楚。以辽东山区日本落叶松(Larix kaempferi)人工纯林和落叶松-赤杨混交林为研究对象,以氨基糖作为微生物残留物的生物标识物,研究了赤杨对落叶松人工林根际和非根际土壤氨基糖积累的影响。结果表明,混交林中落叶松根际和非根际各氨基糖单体含量均显著高于纯林,说明赤杨引入有利于土壤微生物残留物的积累。其中,混交林落叶松根际及非根际土壤氨基糖葡萄糖含量分别比纯林高出99.5%(P0.01)和154%(P0.01);胞壁酸含量分别比纯林高出66.1%(P0.01)和132.3%(P0.01)。赤杨引入对氨基葡萄糖/胞壁酸比值的影响不显著,但显著增加氨基糖对土壤有机碳的贡献。冗余度分析表明全氮是驱动土壤中氨基糖发生变化的主要因子。表明赤杨引入显著提高微生物固持的土壤碳库和有机碳稳定性,这对落叶松人工林合理经营具有重要意义。  相似文献   

11.
Mycelial growth of Phellinus weirii (Murr.) Gilb., a root pathogen of conifers in the Pacific Northwest, was studied in defined liquid media with different carbon and nitrogen sources and vitamins. The fungus grew significantly more on glucose, xylose, maltose, or fructose than on other carbon sources. Starch did not support growth. Maximum growth occurred in 4 weeks on all carbon sources except dextrin and sucrose, with which maximum growth occurred in 3 weeks. Of the nitrogen sources, peptone supported the best growth of the fungus; glutamic acid, serine, aspartic acid, alanine, leucine, ammonium sulphate, and urea supported significantly better growth than tyrosine, arginine, methionine, threonine, and glycine. Potassium nitrate, phenylalanine, sodium nitrate, lysine, proline, and cysteine inhibited growth. Thiamine hydrochloride was not absolutely required for growth of P. weirii, but better growth was obtained with its addition. The fungus showed no significant responses to a range of other vitamins.  相似文献   

12.
Changes to the primary successional environment caused by colonizing plants that present symbiotic associations with nitrogen-fixing bacteria were investigated at two areas on Mount St. Helens. One area was occupied by alder (Alnus viridis) thickets and old lupine (Lupinus lepidus) patches and the other area by young lupine patches and pumice barrens. Alder thicket soils had higher levels for a few soil nutrients and had greater cover by other pioneer species as compared to old lupine patches. Many soil nutrients, including nitrogen and soil organic matter, were below detection limits in old lupine patches but not in alder thicket soils. Young lupine patch soils were generally not different from barren site soils but had greater cover by other pioneer species. Below detection nitrogen and soil organic matter levels also occurred in many barren soil samples but not in young lupine patch soils. Barren soils were moister than were the other sites. The apparent increase in soil fertility has not led to invasion by later successional species, perhaps due to dry conditions or to other inhibitory factors. Seedbanks, composed of early successional species, appear to be developing in these areas.  相似文献   

13.
Responses of red alder and black cottonwood seedlings to flooding   总被引:1,自引:0,他引:1  
Red alder ( Alnus rubra Bong.) and black cottonwood ( Populus trichocarpa Torr. & Gray) seedlings were monitored to evaluate response during a 20-day period of artificial flooding and a 20-day recovery period following flooding. During the flooding period, both species showed changes in nutrient uptake and transport, initiated stemderived adventitious roots that became aerenchymatous, and exhibited hypertrophied lenticels. Flooded red alder seedlings also showed reduced height and leaf area growth and developed lower-stem hypertrophy. Flooded black cottonwood seedlings exhibited root dieback, aerenchyma in below ground root tips, and changes in root hydraulic conductance and xylem pressure potential. Contrary to expectations, however, stomatal closure following flooding was not observed in either species. Flooded red alder seedlings increased growth rapidly when drained, and by the end of the recovery period, formerly flooded and non-flooded red alder seedlings differed only minimally in this respect. In contrast, several characteristics of black cottonwood – including growth rate and nutrient content – still differed between formerly flooded and non-flooded seedlings at the end of the recovery period. Based on observed treatment differences at the end of the experiment, red alder seedlings were judged to be more tolerant of flooding than black cottonwood.  相似文献   

14.
Summary The alder has a perennial nodule cluster. The nodule amount on the roots increases with tree age. The N2-fixing activity of nodules decreases with nodule age. Purple coloured soils with various soil pHs and CaCO3 contents are, in the main, the ones which influence nodulation and N2-fixing. Higher N2-fixing capacity existed in the neutral and low calcium soils. High calcium soils and acid soils can restrain nodulation and the N2-fixing rate significantly. On the slope, where calcarous light loams are found, the annual nitrogen fixation capacity of alder and cypress mixed plantations, less than 10 years old, is 16 or 17 kg/ha yr, but in the valley, a pure alder plantation can reach 40 kg/ha yr.  相似文献   

15.
The ability of 23 year old volcanic soils from Mount St. Helens, USA, to nodulate actinorhizal Sitka alder (Alnus viridis ssp. sinuata) was studied by estimating Frankia Inoculation Unit density (FIU) in four types of primary successional communities using a host-plant bioassay. Rhizospheric Mycelial Inoculation Unit (MIU) density and the effects of inoculation with alder soil and phosphorus (P) on seedling growth were also examined. FIU and MIU were highest in alder thickets, lower in lupin patch and riparian zone sites, and lowest, with no FIUs, in bare areas. Seedling dry mass was higher in treatments inoculated with alder soil but not with P addition, while root:shoot mass ratios decreased with both inoculation and P. The extremely low densities of suitable symbionts in sparsely vegetated primary successional areas at Mount St. Helens may explain the surprisingly slow rate of spread of alder from nearby seed sources.  相似文献   

16.
Abstract Exposure of the aquatic hyphomycete Heliscus lugdunensis to the herbicide Mecoprop did not significantly affect production of the antigen recognized by the specific monoclonal antibody NG-CF10. Therefore, an ELISA method, developed in a previous study, could be used to quantify the biomass of H. lugdunensis colonizing leaves exposed to this herbicide. Exposure to Mecoprop significantly reduced the mycelial biomass associated with alder leaves. This was shown to be a threshold response rather than a dose response, with higher biomass recorded on control leaves. No significant differences were found over the range of Mecoprop concentrations used. In laboratory experiments, Gammarus pseudolimnaeus was offered a choice of alder leaves exposed to a range of Mecoprop concentrations. The animals were able to discriminate between the exposed and control leaves, and between inoculated and sterile leaves. Presence of the fungus resulted in increased leaf consumption, but no interaction between the Mecoprop concentrations and fungal colonization was observed. The major factor affecting food choice was the concentration of Mecoprop that the leaves were exposed to—not the Mecoprop-mediated effects on fungal biomass. Received: 10 February 1997; Accepted: 8 May 1997  相似文献   

17.
American chestnut (Castanea dentata) was once a dominant overstory tree in eastern USA but was decimated by chestnut blight (Cryphonectria parasitica). Blight-resistant chestnut is being developed as part of a concerted restoration effort to bring this heritage tree back. Here, we evaluate the potential of field soils in the northern portion of the chestnut's former range to provide ectomycorrhizal (EM) fungus inoculum for American chestnut. In our first study, chestnut seedlings were grown in a growth chamber using soil collected from three sites dominated by red oak (Quercus rubra) as inoculum and harvested after 5 months. Of the 14 EM fungi recovered on these seedlings, four species dominated in soils from all three sites: Laccaria laccata, a Tuber sp., Cenococcum geophilum, and a thelephoroid type. Seedlings grown in the nonsterilized soils were smaller than those growing in sterilized soils. In the second study, chestnut seedlings were grown from seed planted directly into soils at the same three sites. Seedlings with intermingling roots of established trees of various species were harvested after 5 months. Seventy-one EM fungi were found on the root tips of the hosts, with 38 occurring on chestnut seedlings. Multiple versus single host EM fungi were significantly more abundant and frequently encountered. The fungi observed dominating on seedlings in the laboratory bioassay were not frequently encountered in the field bioassay, suggesting that they may not have been active in mycelial networks in the field setting but were in the soils as resistant propagules that became active in the bioassay. These results show that soil from red oak stands can be used to inoculate American chestnut with locally adapted ectomycorrhizal fungi prior to outplanting, a relatively cost effective approach for restoration efforts.  相似文献   

18.
宋勇春  李晓林  冯固 《生态学报》2001,21(7):1130-1135
利用PVC分室培养装置研究了菌根际和菌丝际磷酸酶活性变化与土壤有机磷亏缺间的关系,结果表明,施用有机磷(植酸钠)能促进菌根根系侵染、提高土壤磷酸酶尤其是酸性磷酸酶的活性,使菌丝际范围变宽。菌丝际的存在使土壤有机磷亏缺范围加大,与非菌根植物相比,由于菌根真菌的作用,植物能更容易地从有机磷中获得磷营养以满足植物生长的需要,从而使其干物重和磷吸收量更高。  相似文献   

19.
Buds and staminate catkins of alder (Alnus spp) form an important winter food for hazel grouse Bonasa bonasia in the Fennoscandian boreal forest Alder was found to be highly preferred over other deciduous trees, particularly alders ≥ 10 m tall and ≤15 m from spruce forest Winter territories were probably feeding territories, as size was correlated negatively with alder density and almost significantly correlated negatively with competitor density All winter territories were found to contain ample winter food resources for hazel grouse However, the distribution of territories was associated significantly with the distribution of alders at two levels of scale, the territory level and the landscape level Moreover, relationships between the abundance of alders and hazel grouse were found at two additional levels of scale the local patch level and the biogeographic region level This agreement of the results from four levels of scale strongly suggested that the abundance and distribution of alder was a major factor limiting hazel grouse winter territories within dense Norway spruce Picea abies forests in the boreal zone of Fennoscandia Alder was relatively uncommon and exhibited a clumped dispersion pattern at the local and landscape scales, being associated with wet and rich soils The close relationship to alder implies that hazel grouse winter habitats, even in natural forests, also should be distributed patchily Hazel grouse may select the catkins and buds of alder because it is a very nutntous food source, and small species, such as the hazel grouse, require more nutritious food than larger species  相似文献   

20.
A Gram-positive bacterium that inhibits several root-rot pathogens was isolated from alder forest soil on the Oregon coast. This organism, similar toBacillus cereus, produces in culture media a heat-stable, broad-spectrum antibiotic which inhibits growth of four important Northwest conifer root disease fungi:Phellinus weirii (Murr.) Gilbertson,Fomes annosus (Fr.) Cke.,Armillariella mellea (Fr.) Karst., andPhytophthora cinnamomi Rands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号