首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Eukaryotic chromosomes are duplicated during S phase and transmitted to progeny during mitosis with high fidelity. Chromosome duplication is controlled at the level of replication initiation, which occurs at cis-acting replicator sequences that are spaced at intervals of approximately 40 kb along the chromosomes of the budding yeast Saccharomyces cerevisiae. Surprisingly, we found that derivatives of yeast chromosome III that lack known replicators were replicated and segregated properly in at least 96% of cell divisions. To gain insight into the mechanisms that maintain these "originless" chromosome fragments, we screened for mutants defective in the maintenance of an "originless" chromosome fragment, but proficient in the maintenance of the same fragment that carries its normal complement of replicators (originless fragment maintenance mutants, or ofm). We show that three of these Ofm mutations appear to disrupt different processes involved in chromosome transmission. The OFM1-1 mutant seems to disrupt an alternative initiation mechanism, and the ofm6 mutant appears to be defective in replication fork progression. ofm14 is an allele of RAD9, which is required for the activation of the DNA damage checkpoint, suggesting that this checkpoint plays a key role in the maintenance of the "originless" fragment.  相似文献   

2.
Prediction of Saccharomyces cerevisiae replication origins   总被引:2,自引:0,他引:2       下载免费PDF全文

Background  

Autonomously replicating sequences (ARSs) function as replication origins in Saccharomyces cerevisiae. ARSs contain the 17 bp ARS consensus sequence (ACS), which binds the origin recognition complex. The yeast genome contains more than 10,000 ACS matches, but there are only a few hundred origins, and little flanking sequence similarity has been found. Thus, identification of origins by sequence alone has not been possible.  相似文献   

3.
4.
5.
6.
Using two-dimensional agarose gel electrophoresis, we determined the replication map of a 61-kb circular derivative of Saccharomyces cerevisiae chromosome III. The three sites of DNA replication initiation on the ring chromosome are specific and coincide with ARS elements. The three origins are active to different degrees; two are used > 90% of the time, whereas the third is used only 10-20% of the time. The specificity of these origins is shown by the fact that only ARS elements were competent for origin function, and deletion of one of the ARS elements removed the corresponding replication origin. The activity of the least active origin was not increased by deletion of the nearby highly active origin, demonstrating that the highly active origin does not repress function of the relatively inactive origin. Replication termination on the ring chromosome does not occur at specific sites but rather occurs over stretches of DNA ranging from 3 to 10 kb. A new region of termination was created by altering the sites of initiation. The position of the new termination site indicates that termination is not controlled by specific cis-acting DNA sequences, but rather that replication termination is determined primarily by the positions at which replication initiates. In addition, two sites on the ring chromosome were found to slow the progression of replication forks through the molecule: one is at the centromere and one at the 3' end of a yeast transposable element.  相似文献   

7.

Background  

Replication initiation at origins of replication in the yeast genome takes place on chromatin as a template, raising the question how histone modifications, for instance histone acetylation, influence origin firing. Initiation requires binding of the replication initiator, the Origin Recognition Complex (ORC), to a consensus sequence within origins. In addition, other proteins bind to recognition sites in the vicinity of ORC and support initiation. In previous work, we identified Sum1 as an origin-binding protein that contributes to efficient replication initiation. Sum1 is part of the Sum1/Rfm1/Hst1 complex that represses meiotic genes during vegetative growth via histone deacetylation by the histone deacetylase (HDAC) Hst1.  相似文献   

8.
Two-dimensional gel electrophoretic replicon mapping techniques were used to identify all functional DNA replication origins and termini in a 26.5-kbp stretch in the left arm of yeast chromosome III. Only one origin was detected; it coincided with an ARS element (ARS306), as have all previously mapped yeast origins. A replication termination region was identified in a 4.3-kbp stretch at the telomere-proximal end of the investigated region, between the origin identified in this paper and the neighboring, previously mapped, ARS305-associated origin (previously called the A6C origin). Termination does not occur at a specific site; instead, it appears to be the consequence of replication forks converging in a stretch of DNA of at least 4.3 kbp.  相似文献   

9.
Cost GJ  Cozzarelli NR 《Genetics》2006,172(4):2185-2200
Heterodimers of structural maintenance of chromosomes (SMC) proteins form the core of several protein complexes involved in the organization of DNA, including condensation and cohesion of the chromosomes at metaphase. The functions of the complexes with a heterodimer of Smc5p and Smc6p are less clear. To better understand them, we created two S. cerevisiae strains bearing temperature-sensitive alleles of SMC5. When shifted to the restrictive temperature, both mutants lose viability gradually, concomitant with the appearance of nuclear abnormalities and phosphorylation of the Rad53p DNA damage checkpoint protein. Removal of Rad52p or overexpression of the SUMO ligase Mms21p partially suppresses the temperature sensitivity of smc5 strains and increases their survival at the restrictive temperature. At the permissive temperature, smc5-31 but not smc5-33 cells exhibit hypersensitivity to several DNA-damaging agents despite induction of the DNA damage checkpoint. Similarly, smc5-31 but not smc5-33 cells are killed by overexpression of the SUMO ligase-defective Mms21-SAp but not by overexpression of wild-type Mms21p. Both smc5 alleles are synthetically lethal with mms21-SA and exhibit Rad52p-independent chromosome fragmentation and loss at semipermissive temperatures. Our data indicate a critical role for the S. cerevisiae Smc5/6-containing complexes in both DNA repair and chromosome segregation.  相似文献   

10.
11.
In Saccharomyces cerevisiae at least five genes, EST1, EST2, EST3, TLC1 and CDC13, are required for telomerase activity in vivo. The telomerase catalytic subunit Est2p and telomerase RNA subunit Tlc1 constitute the telomerase core enzyme. Est1p and Est3p are the other subunits of telomerase holoenzyme. In order to dissect the function of Est3p in telomere replication, we over-expressed and purified recombinant wild-type and mutant Est3 proteins. The wild-type protein, as well as the K71A, E104A and T115A mutants were able to dimerize in vitro, while the Est3p-D49A, -K68A or -D166A mutant showed reduced ability to dimerize. Mutations in Est3p that decreased dimerization also appeared to cause telomere shortening in vivo. Double point mutation of Est3p-D49A-K68A and single point mutation of Est3p-K68A showed similar telomere shortening, suggesting that the K68 residue might be more important for telomerase activity. The ectopic co-expression of K71A or T115A mutant with wild-type Est3p using centromere plasmids caused telomere shortening, while co-expression of the D49A, K68A, D86A or F103A mutants with wild-type Est3p had no effect on telomere length regulation. These data suggested that dimerization is important for Est3p function in vivo.  相似文献   

12.
SIN3 gene product operates as a repressor for a huge amount of genes in Saccharomyces cerevisiae. Sin3 protein with a mass of about 175 kDa is a member of the RPD3 protein complex with an assessed mass of greater than 2 million Da. It was previously shown that RPD3 gene mutations influence recombination and repair processes in S. cerevisiae yeasts. We studied the impacts of the sin3 mutation on UV-light sensitivity and UV-induced mutagenesis in budding yeast cells. The deletion of the SIN3 gene causes weak UV-sensitivity of mutant budding cells as compared to the wild-type strain. These results show that the sin3 mutation decreases both spontaneous and UV-induced levels of levels. This fact is hypothetically related to the malfunction of ribonucleotide reductase activity regulation, which leads to a decrease in the dNTP pool and the inaccurate error-prone damage bypass postreplication repair pathway, which in turn provokes a reduction in the incidence of mutations.  相似文献   

13.
14.
The centromeric histone H3 variant (CenH3) is essential for chromosome segregation in eukaryotes. We identify posttranslational modifications of Saccharomyces cerevisiae CenH3, Cse4. Functional characterization of cse4 phosphorylation mutants shows growth and chromosome segregation defects when combined with kinetochore mutants okp1 and ame1. Using a phosphoserine-specific antibody, we show that the association of phosphorylated Cse4 with centromeres increases in response to defective microtubule attachment or reduced cohesion. We determine that evolutionarily conserved Ipl1/Aurora B contributes to phosphorylation of Cse4, as levels of phosphorylated Cse4 are reduced at centromeres in ipl1 strains in vivo, and in vitro assays show phosphorylation of Cse4 by Ipl1. Consistent with these results, we observe that a phosphomimetic cse4-4SD mutant suppresses the temperature-sensitive growth of ipl1-2 and Ipl1 substrate mutants dam1 spc34 and ndc80, which are defective for chromosome biorientation. Furthermore, cell biology approaches using a green fluorescent protein–labeled chromosome show that cse4-4SD suppresses chromosome segregation defects in dam1 spc34 strains. On the basis of these results, we propose that phosphorylation of Cse4 destabilizes defective kinetochores to promote biorientation and ensure faithful chromosome segregation. Taken together, our results provide a detailed analysis, in vivo and in vitro, of Cse4 phosphorylation and its role in promoting faithful chromosome segregation.  相似文献   

15.
Au WC  Crisp MJ  DeLuca SZ  Rando OJ  Basrai MA 《Genetics》2008,179(1):263-275
Cse4p is an essential histone H3 variant in Saccharomyces cerevisiae that defines centromere identity and is required for proper segregation of chromosomes. In this study, we investigated phenotypic consequences of Cse4p mislocalization and increased dosage of histone H3 and Cse4p, and established a direct link between histone stoichiometry, mislocalization of Cse4p, and chromosome segregation. Overexpression of the stable Cse4p mutant, cse4(K16R), resulted in its mislocalization, increased association with chromatin, and a high rate of chromosome loss, all of which were suppressed by constitutive expression of histone H3 (delta 16H3). We determined that delta 16H3 did not lead to increased chromosome loss; however, increasing the dosage of histone H3 (GALH3) resulted in significant chromosome loss due to reduced levels of centromere (CEN)-associated Cse4p and synthetic dosage lethality (SDL) in kinetochore mutants. These phenotypes were suppressed by GALCSE4. We conclude that the chromosome missegregation of GALcse4(K16R) and GALH3 strains is due to mislocalization and a functionally compromised kinetochore, respectively. Suppression of these phenotypes by histone delta 16H3 and GALCSE4 supports the conclusion that proper stoichiometry affects the localization of histone H3 and Cse4p and is thus essential for accurate chromosome segregation.  相似文献   

16.
Werner syndrome (WS) is marked by early onset of features resembling aging, and is caused by loss of the RecQ family DNA helicase WRN. Precisely how loss of WRN leads to the phenotypes of WS is unknown. Cultured WS fibroblasts shorten their telomeres at an increased rate per population doubling and the premature senescence this loss induces can be bypassed by telomerase. Here we show that WRN co-localizes with telomeric factors in telomerase-independent immortalized human cells, and further that the budding yeast RecQ family helicase Sgs1p influences telomere metabolism in yeast cells lacking telomerase. Telomerase-deficient sgs1 mutants show increased rates of growth arrest in the G2/M phase of the cell cycle as telomeres shorten. In addition, telomerase-deficient sgs1 mutants have a defect in their ability to generate survivors of senescence that amplify telomeric TG1-3 repeats, and SGS1 functions in parallel with the recombination gene RAD51 to generate survivors. Our findings indicate that Sgs1p and WRN function in telomere maintenance, and suggest that telomere defects contribute to the pathogenesis of WS and perhaps other RecQ helicase diseases.  相似文献   

17.
18.
Two dimensional gel electrophoretic techniques were used to locate all functional DNA replication origins in a 22.5 kb stretch of yeast chromosome III. Only one origin was detected, and that origin is located within several hundred bp of an ARS element.  相似文献   

19.
NAD+ is a cellular redox cofactor involved in many essential processes. The regulation of NAD+ metabolism and the signaling networks reciprocally interacting with NAD+-producing metabolic pathways are not yet fully understood. The NAD+-dependent histone deacetylase (HDAC) Hst1 has been shown to inhibit de novo NAD+ synthesis by repressing biosynthesis of nicotinic acid (BNA) gene expression. Here, we alternatively identify HDAC Rpd3 as a positive regulator of de novo NAD+ metabolism in the budding yeast Saccharomyces cerevisiae. We reveal that deletion of RPD3 causes marked decreases in the production of de novo pathway metabolites, in direct contrast to deletion of HST1. We determined the BNA expression profiles of rpd3Δ and hst1Δ cells to be similarly opposed, suggesting the two HDACs may regulate the BNA genes in an antagonistic fashion. Our chromatin immunoprecipitation analysis revealed that Rpd3 and Hst1 mutually influence each other’s binding distribution at the BNA2 promoter. We demonstrate Hst1 to be the main deacetylase active at the BNA2 promoter, with hst1Δ cells displaying increased acetylation of the N-terminal tail lysine residues of histone H4, H4K5, and H4K12. Conversely, we show that deletion of RPD3 reduces the acetylation of these residues in an Hst1-dependent manner. This suggests that Rpd3 may function to oppose spreading of Hst1-dependent heterochromatin and represents a unique form of antagonism between HDACs in regulating gene expression. Moreover, we found that Rpd3 and Hst1 also coregulate additional targets involved in other branches of NAD+ metabolism. These findings help elucidate the complex interconnections involved in effecting the regulation of NAD+ metabolism.  相似文献   

20.
How duplicate genes provide genetic robustness remains an unresolved question. We have examined the duplicated histone deacetylases Sir2p and Hst1p in Saccharomyces cerevisiae and find that these paralogs with non-overlapping functions can provide genetic robustness against null mutations through a substitution mechanism. Hst1p is an NAD+-dependent histone deacetylase that acts with Sum1p to repress a subset of midsporulation genes. However, hst1Δ mutants show much weaker derepression of target loci than sum1Δ mutants. We show that this modest derepression of target loci in hst1Δ strains occurs in part because Sir2p substitutes for Hst1p. Sir2p contributes to repression of the midsporulation genes only in the absence of Hst1p and is recruited to target promoters by a physical interaction with the Sum1 complex. Furthermore, when Sir2p associates with the Sum1 complex, the complex continues to repress in a promoter-specific manner and does not spread. Our results imply that after the duplication, SIR2 and HST1 subfunctionalized. The single SIR2/HST1 gene from Kluyveromyces lactis, a closely related species that diverged prior to the duplication, can suppress an hst1Δ mutation in S. cerevisiae as well as interact with Sir4p in S. cerevisiae. In addition, the existence of two distinct protein interaction domains for the Sir and Sum1 complexes was revealed through the analysis of a chimeric Sir2–Hst1 molecule. Therefore, the ability of Sir2p to substitute for Hst1p probably results from a retained but reduced affinity for the Sum1 complex that is a consequence of subfunctionalization via the duplication, degeneration, and complementation mechanism. These results suggest that the evolutionary path of duplicate gene preservation may be an important indicator for the ability of duplicated genes to contribute to genetic robustness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号