首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specific language impairment (SLI) is defined as an unexplained failure to acquire normal language skills despite adequate intelligence and opportunity. We have reported elsewhere a full-genome scan in 98 nuclear families affected by this disorder, with the use of three quantitative traits of language ability (the expressive and receptive tests of the Clinical Evaluation of Language Fundamentals and a test of nonsense word repetition). This screen implicated two quantitative trait loci, one on chromosome 16q (SLI1) and a second on chromosome 19q (SLI2). However, a second independent genome screen performed by another group, with the use of parametric linkage analyses in extended pedigrees, found little evidence for the involvement of either of these regions in SLI. To investigate these loci further, we have collected a second sample, consisting of 86 families (367 individuals, 174 independent sib pairs), all with probands whose language skills are 1.5 SD below the mean for their age. Haseman-Elston linkage analysis resulted in a maximum LOD score (MLS) of 2.84 on chromosome 16 and an MLS of 2.31 on chromosome 19, both of which represent significant linkage at the 2% level. Amalgamation of the wave 2 sample with the cohort used for the genome screen generated a total of 184 families (840 individuals, 393 independent sib pairs). Analysis of linkage within this pooled group strengthened the evidence for linkage at SLI1 and yielded a highly significant LOD score (MLS = 7.46, interval empirical P<.0004). Furthermore, linkage at the same locus was also demonstrated to three reading-related measures (basic reading [MLS = 1.49], spelling [MLS = 2.67], and reading comprehension [MLS = 1.99] subtests of the Wechsler Objectives Reading Dimensions).  相似文献   

2.
Deficits in phonological short-term memory and aspects of verb grammar morphology have been proposed as phenotypic markers of specific language impairment (SLI) with the suggestion that these traits are likely to be under different genetic influences. This investigation in 300 first-degree relatives of 93 probands with SLI examined familial aggregation and genetic linkage of two measures thought to index these two traits, non-word repetition and tense marking. In particular, the involvement of chromosomes 16q and 19q was examined as previous studies found these two regions to be related to SLI. Results showed a strong association between relatives' and probands' scores on non-word repetition. In contrast, no association was found for tense marking when examined as a continuous measure. However, significant familial aggregation was found when tense marking was treated as a binary measure with a cut-off point of −1.5 SD, suggestive of the possibility that qualitative distinctions in the trait may be familial while quantitative variability may be more a consequence of non-familial factors. Linkage analyses supported previous findings of the SLI Consortium of linkage to chromosome 16q for phonological short-term memory and to chromosome 19q for expressive language. In addition, we report new findings that relate to the past tense phenotype. For the continuous measure, linkage was found on both chromosomes, but evidence was stronger on chromosome 19. For the binary measure, linkage was observed on chromosome 19 but not on chromosome 16.  相似文献   

3.
Specific language impairment (SLI) is a developmental language disorder that occurs for no known reason. The disorder affects 2-8% of children. Some scientific evidence suggests that genetic factors are implicated in the etiology of SLI. The disorder is genetically complex. Two novel loci, SLI1 on chromosome 16q24 (MIM 606711) and SLI2 on chromosome 19q13 (MIM 606712), have been found to be highly correlated with SLI. Four genes have been identified as susceptibility genes. SLI occurs at an unusually elevated incidence (35%) among the population of Robinson Crusoe Island (Chile), which also has a high consanguinity rate. This finding supports the influence of genetic mechanisms in the transmission of SLI based on a founder effect. To investigate further the genetic involvement in this population, we collected blood samples from 115 islanders from 13 families with a language-impaired proband and from 18 families with a normal-language proband. The analysis of micro satellite marker D16S515, located in locus SLI1, demonstrated that the 230-bp allele was correlated with SLI and that the 232-bp allele was correlated with normal language development. The domain containing the D16S515 marker, therefore, may play a role in language development.  相似文献   

4.
Approximately 4% of English-speaking children are affected by specific language impairment (SLI), a disorder in the development of language skills despite adequate opportunity and normal intelligence. Several studies have indicated the importance of genetic factors in SLI; a positive family history confers an increased risk of development, and concordance in monozygotic twins consistently exceeds that in dizygotic twins. However, like many behavioral traits, SLI is assumed to be genetically complex, with several loci contributing to the overall risk. We have compiled 98 families drawn from epidemiological and clinical populations, all with probands whose standard language scores fall 1.5 SD below the mean for their age. Systematic genomewide quantitative-trait–locus analysis of three language-related measures (i.e., the Clinical Evaluation of Language Fundamentals–Revised [CELF-R] receptive and expressive scales and the nonword repetition [NWR] test) yielded two regions, one on chromosome 16 and one on 19, that both had maximum LOD scores of 3.55. Simulations suggest that, of these two multipoint results, the NWR linkage to chromosome 16q is the most significant, with empirical P values reaching 10−5, under both Haseman-Elston (HE) analysis (LOD score 3.55; P=.00003) and variance-components (VC) analysis (LOD score 2.57; P=.00008). Single-point analyses provided further support for involvement of this locus, with three markers, under the peak of linkage, yielding LOD scores >1.9. The 19q locus was linked to the CELF-R expressive-language score and exceeds the threshold for suggestive linkage under all types of analysis performed—multipoint HE analysis (LOD score 3.55; empirical P=.00004) and VC (LOD score 2.84; empirical P=.00027) and single-point HE analysis (LOD score 2.49) and VC (LOD score 2.22). Furthermore, both the clinical and epidemiological samples showed independent evidence of linkage on both chromosome 16q and chromosome 19q, indicating that these may represent universally important loci in SLI and, thus, general risk factors for language impairment.  相似文献   

5.
While advances in network and pathway analysis have flourished in the era of genome-wide association analysis, understanding the genetic mechanism of individual loci on phenotypes is still readily accomplished using genetic modeling approaches. Here, we demonstrate two novel genotype-phenotype models implemented in a flexible genetic modeling platform. The examples come from analysis of families with specific language impairment (SLI), a failure to develop normal language without explanatory factors such as low IQ or inadequate environment. In previous genome-wide studies, we observed strong evidence for linkage to 13q21 with a reading phenotype in language-impaired families. First, we elucidate the genetic architecture of reading impairment and quantitative language variation in our samples using a bivariate analysis of reading impairment in affected individuals jointly with language quantitative phenotypes in unaffected individuals. This analysis largely recapitulates the baseline analysis using the categorical trait data (posterior probability of linkage (PPL) = 80%), indicating that our reading impairment phenotype captured poor readers who also have low language ability. Second, we performed epistasis analysis using a functional coding variant in the brain-derived neurotrophic factor (BDNF) gene previously associated with reduced performance on working memory tasks. Modeling epistasis doubled the evidence on 13q21 and raised the PPL to 99.9%, indicating that BDNF and 13q21 susceptibility alleles are jointly part of the genetic architecture of SLI. These analyses provide possible mechanistic insights for further cognitive neuroscience studies based on the models developed herein.  相似文献   

6.
7.
This study reports on the sensitivity of sentence repetition as a marker of specific language impairment (SLI) in different subgroups of children in middle childhood and examines the role of memory and grammatical knowledge in the performance of children with and without language difficulties on this task. Eleven year old children, 197 with a history of SLI and 75 typically developing (TD) peers were administered sentence repetition, phonological short term memory (PSTM) and grammatical morphology tasks. Children with a history of SLI were divided into four subgroups: specific language impairment, non-specific language impairment, low cognition with resolved language and resolved. Performance on the sentence repetition task was significantly impaired in all four subgroups of children with a history of SLI when compared to their age peers. Regression analyses revealed grammatical knowledge was predictive of performance for TD children and children with a history of SLI. However, memory abilities were significantly predictive of sentence repetition task performance for children with a history of SLI only. Processes involved in sentence repetition are more taxing of PSTM for individuals with a history of SLI in middle childhood in a way that does not appear to be the case for TD children.  相似文献   

8.
Children who fail to develop language normally-in the absence of explanatory factors such as neurological disorders, hearing impairment, or lack of adequate opportunity-are clinically described as having specific language impairment (SLI). SLI has a prevalence of approximately 7% in children entering school and is associated with later difficulties in learning to read. Research indicates that genetic factors are important in the etiology of SLI. Studies have consistently demonstrated that SLI aggregates in families. Increased monozygotic versus dizygotic twin concordance rates indicate that heredity, not just shared environment, is the cause of the familial clustering. We have collected five pedigrees of Celtic ancestry that segregate SLI, and we have conducted genomewide categorical linkage analysis, using model-based LOD score techniques. Analysis was conducted under both dominant and recessive models by use of three phenotypic classifications: clinical diagnosis, language impairment (spoken language quotient <85) and reading discrepancy (nonverbal IQ minus non-word reading >15). Chromosome 13 yielded a maximum multipoint LOD score of 3.92 under the recessive reading discrepancy model. Simulation to correct for multiple models and multiple phenotypes indicated that the genomewide empirical P value is <.01. As an alternative measure, we also computed the posterior probability of linkage (PPL), obtaining a PPL of 53% in the same region. One other genomic region yielded suggestive results on chromosome 2 (multipoint LOD score 2.86, genomic P value <.06 under the recessive language impairment model). Our findings underscore the utility of traditional LOD-score-based methods in finding genes for complex diseases, specifically, SLI.  相似文献   

9.
Autism spectrum disorder(ASD) is diagnosed on the basis of core impairments in pragmatic language skills, which are found across all ages and subtypes. In contrast, there is significant heterogeneity in language phenotypes, ranging from nonverbal to superior linguistic abilities, as defined on standardized tests of vocabulary and grammatical knowledge. The majority of children are verbal but impaired in language, relative to age-matched peers. One hypothesis is that this subgroup has ASD and co-morbid specific language impairment(SLI). An experiment was conducted comparing children with ASD to children with SLI and typically developing controls on aspects of language processing that have been shown to be impaired in children with SLI: repetition of nonsense words. Patterns of performance among the children with ASD and language impairment were similar to those with SLI, and contrasted with the children with ASD and no language impairment and typical controls, providing further evidence for the hypothesis that a subgroup of children with ASD has co-morbid SLI. The findings are discussed in the context of brain imaging studies that have explored the neural bases of language impairment in ASD and SLI, and overlap in the genes associated with elevated risk for these disorders.  相似文献   

10.
Association of specific language impairment (SLI) to the region of 7q31   总被引:16,自引:0,他引:16  
FOXP2 (forkhead box P2) was the first gene characterized in which a mutation affects human speech and language abilities. A common developmental language disorder, specific language impairment (SLI), affects 6%-7% of children with normal nonverbal intelligence and has evidence of a genetic basis in familial and twin studies. FOXP2 is located on chromosome 7q31, and studies of other disorders with speech and language impairment, including autism, have found linkage to this region. In the present study, samples from children with SLI and their family members were used to study linkage and association of SLI to markers within and around FOXP2, and samples from 96 probands with SLI were directly sequenced for the mutation in exon 14 of FOXP2. No mutations were found in exon 14 of FOXP2, but strong association was found to a marker within the CFTR gene and another marker on 7q31, D7S3052, both adjacent to FOXP2, suggesting that genetic factors for regulation of common language impairment reside in the vicinity of FOXP2.  相似文献   

11.
Genetic studies have previously assigned a quantitative trait locus (QTL) for hemoglobin F and F cells to a region of approximately 4 Mb between the markers D6S408 and D6S292 on chromosome 6q23. An initial yeast artificial chromosome contig of 13 clones spanning this region was generated. Further linkage analysis of an extended kindred refined the candidate interval to 1-2 cM, and key recombination events now place the QTL within a region of <800 kb. We describe a high-resolution bacterial clone contig spanning 3 Mb covering this critical region. The map consists of 223 bacterial artificial chromosome (BAC) and 100 P1 artificial chromosome (PAC) clones ordered by sequence-tagged site (STS) content and restriction fragment fingerprinting with a minimum tiling path of 22 BACs and 1 PAC. A total of 194 STSs map to this interval of 3 Mb, giving an average marker resolution of approximately one per 15 kb. About half of the markers were novel and were isolated in the present study, including three CA repeats and 13 single nucleotide polymorphisms. Altogether 24 expressed sequence tags, 6 of which are unique genes, have been mapped to the contig.  相似文献   

12.
Specific language impairment (SLI) is a neurodevelopmental disorder that affects linguistic abilities when development is otherwise normal. We report the results of a genome‐wide association study of SLI which included parent‐of‐origin effects and child genotype effects and used 278 families of language‐impaired children. The child genotype effects analysis did not identify significant associations. We found genome‐wide significant paternal parent‐of‐origin effects on chromosome 14q12 (P = 3.74 × 10?8) and suggestive maternal parent‐of‐origin effects on chromosome 5p13 (P = 1.16 × 10?7). A subsequent targeted association of six single‐nucleotide‐polymorphisms (SNPs) on chromosome 5 in 313 language‐impaired individuals and their mothers from the ALSPAC cohort replicated the maternal effects, albeit in the opposite direction (P = 0.001); as fathers' genotypes were not available in the ALSPAC study, the replication analysis did not include paternal parent‐of‐origin effects. The paternally‐associated SNP on chromosome 14 yields a non‐synonymous coding change within the NOP9 gene. This gene encodes an RNA‐binding protein that has been reported to be significantly dysregulated in individuals with schizophrenia. The region of maternal association on chromosome 5 falls between the PTGER4 and DAB2 genes, in a region previously implicated in autism and ADHD. The top SNP in this association locus is a potential expression QTL of ARHGEF19 (also called WGEF) on chromosome 1. Members of this protein family have been implicated in intellectual disability. In summary, this study implicates parent‐of‐origin effects in language impairment, and adds an interesting new dimension to the emerging picture of shared genetic etiology across various neurodevelopmental disorders .  相似文献   

13.
Specific language impairment is a neurodevelopmental disorder characterized by impairments essentially restricted to the domain of language and language learning skills. This contrasts with autism, which is a pervasive developmental disorder defined by multiple impairments in language, social reciprocity, narrow interests and/or repetitive behaviors. Genetic linkage studies and family data suggest that the two disorders may have genetic components in common. Two samples, from Canada and the US, selected for specific language impairment were genotyped at loci where such common genes are likely to reside. Significant evidence for linkage was previously observed at chromosome 13q21 in our Canadian sample (HLOD 3.56) and was confirmed in our US sample (HLOD 2.61). Using the posterior probability of linkage (PPL) to combine evidence for linkage across the two samples yielded a PPL over 92%. Two additional loci on chromosome 2 and 7 showed weak evidence for linkage. However, a marker in the cystic fibrosis transmembrane conductance regulator (7q31) showed evidence for association to SLI, confirming results from another group (O'Brien et al. 2003). Our results indicate that using samples selected for components of the autism phenotype may be a useful adjunct to autism genetics.  相似文献   

14.
Heritable risk factors associated with language impairments   总被引:3,自引:0,他引:3  
There is a strong genetic contribution to children's language and literacy impairments. The aim of this study was to determine which aspects of the phenotype are familial by comparing 34 parents of probands with language/literacy impairments and 33 parents of typically developing probands. The parents responded to questionnaires regarding previous history for language/reading impairment and participated in psychometric testing. The psychometric test battery consisted of tests assessing non-verbal IQ, short-term memory, articulation, receptive grammar, reading abilities and spelling. Self-report measures demonstrated a higher prevalence of language and literacy impairments in parents of affected probands (32%) compared with parents of unaffected probands (6%). The two groups of parents differed significantly in their performance on the non-word repetition, oromotor and digit span tasks. Non-word repetition gave the best discrimination between the parent groups even when the data from the parents who actually were impaired as ascertained by direct testing or self-report were removed from the analyses. This suggests that non-word repetition serves as a marker of a family risk for language impairment. The paper concludes with a discussion of issues associated with ascertainment of specific language impairment (SLI).  相似文献   

15.
Specific language impairment (SLI) is a common developmental disorder characterized by difficulties in language acquisition despite otherwise normal development and in the absence of any obvious explanatory factors. We performed a high-density screen of SLI1, a region of chromosome 16q that shows highly significant and consistent linkage to nonword repetition, a measure of phonological short-term memory that is commonly impaired in SLI. Using two independent language-impaired samples, one family-based (211 families) and another selected from a population cohort on the basis of extreme language measures (490 cases), we detected association to two genes in the SLI1 region: that encoding c-maf-inducing protein (CMIP, minP = 5.5 × 10−7 at rs6564903) and that encoding calcium-transporting ATPase, type2C, member2 (ATP2C2, minP = 2.0 × 10−5 at rs11860694). Regression modeling indicated that each of these loci exerts an independent effect upon nonword repetition ability. Despite the consistent findings in language-impaired samples, investigation in a large unselected cohort (n = 3612) did not detect association. We therefore propose that variants in CMIP and ATP2C2 act to modulate phonological short-term memory primarily in the context of language impairment. As such, this investigation supports the hypothesis that some causes of language impairment are distinct from factors that influence normal language variation. This work therefore implicates CMIP and ATP2C2 in the etiology of SLI and provides molecular evidence for the importance of phonological short-term memory in language acquisition.  相似文献   

16.
The aim was to study a broader phenotype of language‐related diagnoses and problems in three generations of relatives of children with specific language impairment (SLI). Our study is based on a family history interview of the parents of 59 children with SLI and of 100 matched control children, exploring the prevalence of problems related to language, reading, attention, school achievement and social communication as well as diagnoses such as attention‐deficit hyperactivity disorder (ADHD), autism, Asperger syndrome, dyslexia, mental retardation, cleft palate and stuttering. The results show a spectrum of language‐related problems in families of SLI children. In all three generations of SLI relatives, we found significantly higher prevalence rates of language, literacy and social communication problems. The risk of one or both parents having language‐related diagnoses or problems was approximately six times higher for the children with SLI (85%) than for the control children (13%) (odds ratio = 37.2). We did not find a significantly higher prevalence of the diagnoses ADHD, autism or Asperger syndrome in the relatives of the children with SLI. However, significantly more parents of the children with SLI had problems with attention/hyperactivity when compared with the parents of controls. Our findings suggest common underlying mechanisms for problems with language, literacy and social communication, and possibly also for attention/hyperactivity symptoms.  相似文献   

17.
Independent studies have shown that candidate genes for dyslexia and specific language impairment (SLI) impact upon reading/language-specific traits in the general population. To further explore the effect of disorder-associated genes on cognitive functions, we investigated whether they play a role in broader cognitive traits. We tested a panel of dyslexia and SLI genetic risk factors for association with two measures of general cognitive abilities, or IQ, (verbal and non-verbal) in the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort (N>5,000). Only the MRPL19/C2ORF3 locus showed statistically significant association (minimum P = 0.00009) which was further supported by independent replications following analysis in four other cohorts. In addition, a fifth independent sample showed association between the MRPL19/C2ORF3 locus and white matter structure in the posterior part of the corpus callosum and cingulum, connecting large parts of the cortex in the parietal, occipital and temporal lobes. These findings suggest that this locus, originally identified as being associated with dyslexia, is likely to harbour genetic variants associated with general cognitive abilities by influencing white matter structure in localised neuronal regions.  相似文献   

18.
In a sporadic case of autism and language deficit due to auditory processing defects, molecular genetic studies revealed that a chromosomal deletion occurred in the 13q12-->q13 region. No chromosome abnormalities were detected in the parents. We determined that the deletion occurred on the paternally derived chromosome 13. There are two previous reports of chromosome 13 abnormalities in patients with autism. The deletion in the subject described in this paper maps between the two chromosome 13 linkage peaks described by Bradford et al. (2001) in studies of subjects with autism and language deficits. The 9-Mb region deleted in the patient described here contains at least four genes that are expressed in brain and that play a role in brain development. They are NBEA, MAB21L1, DCAMKL1 and MADH9. These genes therefore represent candidate genes for autism and specific language deficits.  相似文献   

19.
Isolation of a polymorphic genomic clone from chromosome 7   总被引:1,自引:1,他引:0  
Summary A peptide prepared from purified factor 13B (F13B) was sequenced, and a single, long oligonucleotide corresponding to its cognate DNA sequence was constructed and used to screen a chromosome 7 specific genomic library. The positive clone isolated, designated pKV13, was only related to F13B at the oligonucleotide region, but has proved to be a valuable chromosome 7 marker. pKV13 maps to 7pter-q22 in hybrid cell lines, and is present in a chromosome-mediated gene transfer (CMGT) cell line that also contains met and other 7q probes. pKV13 defines a common MspI restriction fragment length polymorphism (RFLP), and is genetically linked to two markers on the long arm of chromosome 7, B79a and COL1A2, both themselves linked to the cystic fibrosis locus. Multipoint linkage analysis demonstrates that KV13 maps centromeric to both B79a and COLIA2. pKV13 has been used to demonstrate the existence of rearrangements within CMGT hybrisd, and will also prove valuable in multipoint linkage studies of other 7q markers. Finally, pKV13 provides a new polymorphic locus for the characterisation of 7q deletions in myeloid disorders such as myelodysplastic syndrome.  相似文献   

20.
Speech-sound disorder (SSD) is a complex behavioral disorder characterized by speech-sound production errors associated with deficits in articulation, phonological processes, and cognitive linguistic processes. SSD is prevalent in childhood and is comorbid with disorders of language, spelling, and reading disability, or dyslexia. Previous research suggests that developmental problems in domains associated with speech and language acquisition place a child at risk for dyslexia. Recent genetic studies have identified several candidate regions for dyslexia, including one on chromosome 3 segregating in a large Finnish pedigree. To explore common genetic influences on SSD and reading, we examined linkage for several quantitative traits to markers in the pericentrometric region of chromosome 3 in 77 families ascertained through a child with SSD. The quantitative scores measured several processes underlying speech-sound production, including phonological memory, phonological representation, articulation, receptive and expressive vocabulary, and reading decoding and comprehension skills. Model-free linkage analysis was followed by identification of sib pairs with linkage and construction of core shared haplotypes. In our multipoint analyses, measures of phonological memory demonstrated the strongest linkage (marker D3S2465, P=5.6 x 10(-5), and marker D3S3716, P=6.8 x 10(-4)). Tests for single-word decoding also demonstrated linkage (real word reading: marker D3S2465, P=.004; nonsense word reading: marker D3S1595, P=.005). The minimum shared haplotype in sib pairs with similar trait values spans 4.9 cM and is bounded by markers D3S3049 and D3S3045. Our results suggest that domains common to SSD and dyslexia are pleiotropically influenced by a putative quantitative trait locus on chromosome 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号