首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ly-6 superfamily members are present in many metazoans and are divided into two groups: secreted proteins and glycosylphosphatidyl inositol (GPI)-anchored membrane proteins. They both contain one or more conserved domain identified as Ly-6/uPAR (LU) domain and play key roles in cellular adhesion and signaling. Here, we identify a novel member, lymphocyte antigen-6 epidermis (lye), of Ly-6 superfamily in zebrafish. In silico analyses revealed that lye codes for a predicted GPI-anchored membrane protein containing a conserved LU domain and 10 position-specific conserved cysteines typical of known Ly-6 proteins. Whole mount in situ hybridization showed that lye is predominantly expressed in epidermis. We thus named the gene lye, highlighting it is expressed in epidermis. Lye exhibits a dynamic expression pattern during development, which is initially expressed in enveloping layer at gastrula stage, then expressed in epidermis at later stages. It is also expressed in olfactory placode at 24 h post-fertilization. Subsequently, epidermal expression of lye becomes weaker gradually, whereas the expression in pharyngeal arch and pectoral fin increases at 2 and 3 days post-fertilization. Our study lays a foundation for further investigation of lye roles in early developmental stages.  相似文献   

2.
3.
Schizophrenia is a severe and highly heritable neuropsychiatric disorder. Recent genetic analyses including genome-wide association studies (GWAS) have implicated multiple genome-wide significant variants for schizophrenia among European populations. However, many of these risk variants were not largely validated in other populations of different ancestry such as Asians. To validate whether these European GWAS significant loci are associated with schizophrenia in Asian populations, we conducted a systematic literature search and meta-analyses on 19 single nucleotide polymorphisms (SNPs) in Asian populations by combining all available case-control and family-based samples, including up to 30,000 individuals. We employed classical fixed (or random) effects inverse variance weighted methods to calculate summary odds ratios (ORs) and 95 % confidence intervals (CIs). Among the 19 GWAS loci, we replicated the risk associations of nine markers (e.g., SNPs at VRK2, ITIH3/4, NDST3, NOTCH4) surpassing significance level (two-tailed P?<?0.05), and three additional SNPs in MIR137 and ZNF804A also showed trend associations (one-tailed P?<?0.05). These risk associations are in the same directions of allelic effects between Asian replication samples and initial European GWAS findings, and the successful replications of these GWAS loci in a different ethnic group provide stronger evidence for their clinical associations with schizophrenia. Further studies, focusing on the molecular mechanisms of these GWAS significant loci, will become increasingly important for understanding of the pathogenesis to schizophrenia.  相似文献   

4.

Objective

To study the effects of CTNNB1 gene knockout by CRISPR-Cas9 technology on cell adhesion, proliferation, apoptosis, and Wnt/β-catenin signaling pathway.

Results

CTNNB1 gene of HEK 293T cells was knocked out by CRISPR-Cas9. This was confirmed by sequencing and western blotting. Methylthiazolyl-tetrazolium bromide assays indicated that deletion of β-catenin significantly weakened adhesion ability and inhibited proliferation rate (P < 0.01) of HEK 293T cells. Nevertheless, deletion of β-catenin did not affect apoptosis of HEK 293T cells, which was analyzed by flow cytometry with Annexin V-fluorescein isothiocyanate/propidium iodide double staining. In addition, expression level of GSK-, CCND1, and CCNE1 detected by qPCR and expression level of N-Cadherin and cyclin D1 detected by western blotting were significantly decreased (P < 0.01) while expression of γ-catenin detected by western blotting was significantly increased (P < 0.001).

Conclusions

Knockout of CTNNB1 disturbed Wnt/β-catenin signaling pathway and significantly inhibited adhesion and proliferation of HEK 293T cells.
  相似文献   

5.
Lignification is one of the most crucial factors affecting the edible value of the stem of wild Pteridium aquilinum. To investigate the probable mechanism of lignification, the changes in protein profiles in the stem of wild P. aquilinum during its development were investigated by means of two-dimensional electrophoresis technology. The two-dimensional electrophoresis results revealed that there were twenty-seven differential proteins, twenty-four proteins of which were identified by MALDI-TOF/TOF. We classified these twenty-four proteins into six functional categories: photosynthesis (8, 33.3 %); respiratory metabolism (4, 16.7 %); stress response and defence (6, 25.0 %); cell structure (1, 4.2 %); phenylpropanoid metabolism (4, 16.6 %) and unclassified protein (1, 4.2 %). According to the functional analysis of these differentially expressed proteins, we concluded that photosynthesis was enhanced during P. aquilinum’s development and sugars generated from photosynthesis were partially metabolized through the glycolysis pathway and phosphopentose pathway, respectively, thus producing the precursors for lignin biosynthesis. The up-regulation of caffeoyl-CoA-O-methyl-transferase and SAM synthetase in abundance and the down-regulation of chalcone synthase can be directly responsible for lignification during stem development. This experiment is useful for understanding the biochemical mechanisms of the lignification process of P. aquilinum during its development.  相似文献   

6.

Key message

Eight QTL for coleoptile length were identified in a genome-wide association study on a set of 893 wheat accessions, four of which are novel loci.

Abstract

Wheat cultivars with long coleoptiles are preferred in wheat-growing regions where deep planting is practiced. However, the wide use of gibberellic acid (GA)-insensitive dwarfing genes, Rht-B1b and Rht-D1b, makes it challenging to breed dwarf wheat cultivars with long coleoptiles. To understand the genetic basis of coleoptile length, we performed a genome-wide association study on a set of 893 landraces and historical cultivars using 5011 single nucleotide polymorphism (SNP) markers. Structure analysis revealed four subgroups in the association panel. Association analysis results suggested that Rht-B1b and Rht-D1b genes significantly reduced coleoptile length, and eight additional quantitative trait loci (QTL) for coleoptile length were also identified. These QTL explained 1.45–3.18 and 1.36–3.11% of the phenotypic variation in 2015 and 2016, respectively, and their allelic substitution effects ranged from 0.31 to 1.75 cm in 2015, and 0.63–1.55 cm in 2016. Of the eight QTL, QCL.stars-1BS1, QCL.stars-2DS1, QCL.stars-4BS2, and QCL.stars-5BL1 are likely novel loci for coleoptile length. The favorable alleles in each accession ranged from two to eight with an average of 5.8 at eight loci in the panel, and more favorable alleles were significantly associated with longer coleoptile, suggesting that QTL pyramiding is an effective approach to increase wheat coleoptile length.
  相似文献   

7.
Ascorbic acid (AsA) is an inevitable antioxidant found abundantly in higher plants. Despite the importance of AsA in plants, how AsA biosynthesis (ABGs; d-mannose/l-galactose pathway) and AsA recycling genes (ARGs) evolved through polyploidization has not been addressed to date. Here, we evaluated the impacts of whole genome triplication (WGT) on ABGs and ARGs in Chinese cabbage (Brassica rapa ssp. pekinensis), which diverged from Arabidopsis thaliana before the WGT event. Twenty-three ABGs coded in 13 loci representing nine different enzyme classes and 29 ARGs coded in 19 loci representing five different enzyme classes were identified in the B. rapa genome by whole-genome screening through comparative genomic analyses. Five of these loci maintained three gene copies, 10 loci maintained two gene copies and the majority of the loci (n = 17) maintained single gene copies. Segmental (62 %) and tandem duplication (6 %), and fragment (21 %) and large-scale recombination (10 %) events accelerated the diversification of ABGs and ARGs. Thirteen of the 52 (25 %) identified genes experienced intron losses and two (4 %) experienced intron gains implying that intron losses outnumbered intron gains. The expansion and the retention of ABGs and ARGs were similar to the whole genome gene expansion and retention (P > 0.05). These findings provide new insights into the structural characteristics and evolutionary trends of ABGs and ARGs. In addition, our data could become a useful resource to further the functional characterization of these genes.  相似文献   

8.
Analyzing chromosomal traits is one of the pragmatic ways to establish evolutionary and genetic database of plants that has complicated phylogenetic system. There are some conflicts on the exact phylogeny and evolutionary pathway of Lilium, and section martagon is the most complicated part among them. In this study, chromosomal traits of martagon lily species are described. All martagon lilies were analyzed with FISH (Fluorescence in situ hybridization) technique, followed by detailed karyotyping. Each species showed 2n = 2x = 24 of chromosome complement. Size of chromosomes ranged from 451.04 to 680.06 µm. 5S and 45S ribosomal DNA, general molecular markers in modern evolutionary research were used as probe in this study. Variation in rDNA loci and chromosome translocation were observed in Lilium hansonii; the highest number of 45S rDNA loci was detected in Lilium hansonii, followed by other martagon lilies, in similar locations but with differences, and chromosome translocation was observed from one individual of Lilium hansonii. Additionally, Lilium tsingtauense from Jeju-do Island, Korea was detected with two extra chromosomes. These kind of genetic variations through karyotyping indicate ongoing genetic variations in martagon lilies. In this study, precise analysis of chromosome traits in Lilium species belonging to section martagonperformed to contribute to better comprehension of the evolutionary pathway and establishment of cytogenetic database for further plant breeding research.  相似文献   

9.
Molecular markers derived from the complete chloroplast genome can provide effective tools for species identification and phylogenetic resolution. Complete chloroplast (cp) genome sequences of Capsicum species have been reported. We herein report the complete chloroplast genome sequence of Capsicum baccatum var. baccatum, a wild Capsicum species. The total length of the chloroplast genome is 157,145 bp with 37.7 % overall GC content. One pair of inverted repeats, 25,910 bp in length, was separated by a small single-copy region (17,974 bp) and large single-copy region (87,351 bp). This region contains 86 protein-coding genes, 30 tRNA genes, 4 rRNA genes, and 11 genes contain one or two introns. Pair-wise alignments of chloroplast genome were performed for genome-wide comparison. Analysis revealed a total of 134 simple sequence repeat (SSR) motifs and 282 insertions or deletions variants in the C. baccatum var. baccatum cp genome. The types and abundances of repeat units in Capsicum species were relatively conserved, and these loci could be used in future studies to investigate and conserve the genetic diversity of the Capsicum species.  相似文献   

10.
The genome of Candida versatilis was sequenced to understand its characteristics in soy sauce fermentation. The genome size of C. versatilis was 9.7 Mb, the content of G + C was 39.74 %, scaffolds of N50 were 1,229,640 bp in length, containing 4711 gene. There were predicted 269 tRNA genes and 2201 proteins with clear function. Moreover, the genome information of C. versatilis was compared with another salt-tolerant yeast Zygosaccharomyces rouxii and the model organism Saccharomyces cerevisiae. C. versatilis and Z. rouxii genome size was close and both smaller than 12.1 for the Mb of S. cerevisiae. Using the OrthoMCL protein, three genomes were divided into 4663 groups. There were about 3326 homologous proteins in C. versatilis, Z. rouxii and S. cerevisiae.  相似文献   

11.
12.
The modulation of N-methyl-D-aspartate receptor (NMDAR) and l-arginine/nitric oxide (NO) pathway is a therapeutic strategy for treating depression and neurologic disorders that involves excitotoxicity. Literature data have reported that creatine exhibits antidepressant and neuroprotective effects, but the implication of NMDAR and l-arginine/nitric oxide (NO) pathway in these effects is not established. This study evaluated the influence of pharmacological agents that modulate NMDAR/l-arginine-NO pathway in the anti-immobility effect of creatine in the tail suspension test (TST) in mice. The NOx levels and cellular viability in hippocampal and cerebrocortical slices of creatine-treated mice were also evaluated. The anti-immobility effect of creatine (10 mg/kg, po) in the TST was abolished by NMDA (0.1 pmol/mouse, icv), d-serine (30 µg/mouse, icv, glycine-site NMDAR agonist), arcaine (1 mg/kg, ip, polyamine site NMDAR antagonist), l-arginine (750 mg/kg, ip, NO precursor), SNAP (25 μg/mouse, icv, NO donor), L-NAME (175 mg/kg, ip, non-selective NOS inhibitor) or 7-nitroindazole (50 mg/kg, ip, neuronal NOS inhibitor), but not by DNQX (2.5 µg/mouse, icv, AMPA receptor antagonist). The combined administration of sub-effective doses of creatine (0.01 mg/kg, po) and NMDAR antagonists MK-801 (0.001 mg/kg, po) or ketamine (0.1 mg/kg, ip) reduced immobility time in the TST. Creatine (10 mg/kg, po) increased cellular viability in hippocampal and cerebrocortical slices and enhanced hippocampal and cerebrocortical NO x levels, an effect potentiated by l-arginine or SNAP and abolished by 7-nitroindazole or L-NAME. In conclusion, the anti-immobility effect of creatine in the TST involves NMDAR inhibition and enhancement of NO levels accompanied by an increase in neural viability.  相似文献   

13.
Chloroplast genome sequences are very useful for species identification and phylogenetics. Chuanminshen (Chuanminshen violaceum Sheh et Shan) is an important traditional Chinese medicinal plant, for which the phylogenetic position is still controversial. In this study, the complete chloroplast genome of Chuanminshen violaceum Sheh et Shan was determined. The total size of Chuanminshen chloroplast genome was 154,529 bp with 37.8% GC content. It has the typical quadripartite structure, a large single copy (17,800 bp) and a small single copy (84,171 bp) and a pair of inverted repeats (26,279 bp). The whole genome harbors 132 genes, which includes 85 protein coding genes, 37 tRNA genes, eight rRNA genes, and two pseudogenes. Thirty-nine SSR loci, 32 tandem repeats and 49 dispersed repeats were found. Phylogenetic analyses results with the help of MEGA showed a new insight for the Chuanminshen phylogenetic relationship with the reported chloroplast genomes in Apiales plants.  相似文献   

14.
Cryptomeria japonica pollinosis is one of the most serious allergic diseases in Japan; this is a social problem because C. japonica is the most important Japanese forestry species. In order to reduce the amount of pollen dispersed, breeding programs using trees with male-sterile genes have been implemented. High-density linkage maps with stable ordering of markers facilitate the localization of male-sterile genes and the construction of partial linkage maps around them in order to develop markers for use in marker-assisted selection. In this study, a high-density linkage map for C. japonica with 2560 markers was constructed. The observed map length was 1266.2 cM and the mean distance between adjacent markers was 0.49 cM. Using information from this high-density map, we newly located two male-sterile genes (ms3 and ms4) on the first and fourth linkage groups, respectively, and constructed partial linkage maps around these loci. We also constructed new partial linkage maps around the ms1 and ms2 loci using additional SNP markers. The closest markers to the ms1, ms2, ms3, and ms4 male-sterile loci were estSNP04188 (1.8 cM), estSNP00695 (7.0 cM), gSNP05415 (3.1 cM), and estSNP01408 (7.0 cM) respectively. These results allowed us to develop SNP markers tightly linked to the male sterile genes for use in MAS; this will accelerate the future isolation of these genes by map-based cloning approaches.  相似文献   

15.
Dystrophic cardiac calcinosis (DCC), also called epicardial and myocardial fibrosis and mineralization, has been detected in mice of a number of laboratory inbred strains, most commonly C3H/HeJ and DBA/2J. In previous mouse breeding studies between these DCC susceptible and the DCC-resistant strain C57BL/6J, 4 genetic loci harboring genes involved in DCC inheritance were identified and subsequently termed Dyscalc loci 1 through 4. Here, we report susceptibility to cardiac fibrosis, a sub-phenotype of DCC, at 12 and 20 months of age and close to natural death in a survey of 28 inbred mouse strains. Eight strains showed cardiac fibrosis with highest frequency and severity in the moribund mice. Using genotype and phenotype information of the 28 investigated strains, we performed genome-wide association studies (GWAS) and identified the most significant associations on chromosome (Chr) 15 at 72 million base pairs (Mb) (P < 10?13) and Chr 4 at 122 Mb (P < 10?11) and 134 Mb (P < 10?7). At the Chr 15 locus, Col22a1 and Kcnk9 were identified. Both have been reported to be morphologically and functionally important in the heart muscle. The strongest Chr 4 associations were located approximately 6 Mb away from the Dyscalc 2 quantitative trait locus peak within the boundaries of the Extl1 gene and in close proximity to the Trim63 and Cap1 genes. In addition, a single-nucleotide polymorphism association was found on chromosome 11. This study provides evidence for more than the previously reported 4 genetic loci determining cardiac fibrosis and DCC. The study also highlights the power of GWAS in the mouse for dissecting complex genetic traits.  相似文献   

16.
17.
?12 fatty acid desaturase (FAD2) is a key enzyme for linoleic acid and linolenic acid biosynthesis. Perilla frutescens is a special oil plant species with highest linolenic acid content. In this study, based on RACE, two alleles for one FAD2 gene were isolated from P. frutescens cultivar C2: the 3956 bp PfFAD2a and the 3959 bp PfFAD2b, both with a full-length cDNA of 1526 bp, and both encoding a 382aa basic protein. The alleles have identities of over 98%, and their encoded proteins differ only by substitution of a strongly similar residue. Saccharomyces cerevisiae heterologous expression suggested that PfFAD2a/b both encode a bio-functional FAD2 enzyme. Phylogenetic analyses indicated that PfFAD2 shows the highest homologies to FAD2 genes from dicots such as Boraginaceae and Burseraceae. PfFAD2a/b expressions are mainly restricted to developing seeds. PfFAD2a/b expression in the seedling leaf is upregulated by cold (4 °C) and repressed by heat (42 °C). Each of the eight cultivars contains two alleles for one PfFAD2 and 40 SNP sites are found. One allelic gene in cultivars C1 and P1 is pseudogene because of premature stop codon mutation in 5′ coding region. All other normal PfFAD2 genes/allelic genes encode identical or very similar proteins. PfFAD2a/b expression level in developing seeds also varies among the eight cultivars. This study provides systemic molecular and functional features of PfFAD2 and enables its application in the study of plant fatty acids traits.  相似文献   

18.
Flax (Linum usitatissimum L.), the richest crop source of omega-3 fatty acids (FAs), is a diploid plant with an estimated genome size of ~370 Mb and is well suited for studying genomic organization of agronomically important traits. In this study, 12 bacterial artificial chromosome clones harbouring the six FA desaturase loci sad1, sad2, fad2a, fad2b, fad3a and fad3b from the conventional variety CDC Bethune and the high linolenic acid line M5791 were sequenced, analysed and compared to determine the structural organization of these loci and to gain insights into the genetic mechanisms underlying FA composition in flax. With one gene every 3.2–4.6 kb, the desaturase loci have a higher gene density than the genome’s average of one gene per 7.8–8.2 kb. The gene order and orientation across the two genotypes were generally conserved with the exception of the sad1 locus that was predicted to have additional genes in CDC Bethune. High sequence conservation in both genic and intergenic regions of the sad and fad2b loci contrasted with the significant level of variation of the fad2a and fad3 loci, with SNPs being the most frequently observed mutation type. The fad2a locus had 297 SNPs and 36 indels over ~95 kb contrasting with the fad2b locus that had a mere seven SNPs and four indels in ~110 kb. Annotation of the gene-rich loci revealed other genes of known role in lipid or carbohydrate metabolic/catabolic pathways. The organization of the fad2b locus was particularly complex with seven copies of the fad2b gene in both genotypes. The presence of Gypsy, Copia, MITE, Mutator, hAT and other novel repeat elements at the desaturase loci was similar to that of the whole genome. This structural genomic analysis provided some insights into the genomic organization and composition of the main desaturase loci of linseed and of their complex evolution through both tandem and whole genome duplications.  相似文献   

19.
PHB biosynthesis pathway, consisting of three open reading frames (ORFs) that encode for β-ketothiolase (phaA Cma , 1179 bp), acetoacetyl-CoA reductase (phaB Cma , 738 bp), and PHA synthase (phaC Cma , 1694 bp), of Caldimonas manganoxidans was identified. The functions of PhaA, PhaB, and PhaC were demonstrated by successfully reconstructing PHB biosynthesis pathway of C. manganoxidans in Escherichia coli, where PHB production was confirmed by OD600, gas chromatography, Nile blue stain, and transmission electron microscope (TEM). The protein sequence alignment of PHB synthases revealed that phaC Cma shares at least 60% identity with those of class I PHB synthase. The effects of PhaA, PhaB, and PhaC expression levels on PHB production were investigated. While the overexpression of PhaB is found to be important in recombinant E. coli, performances of PHB production can be quantified as follows: PHB concentration of 16.8 ± 0.6 g/L, yield of 0.28 g/g glucose, content of 74%, productivity of 0.28 g/L/h, and Mw of 1.41 MDa.  相似文献   

20.
The stock characterization of wild populations of Silonia silondia is important for its scientific management. At present, the information on genetic parameters of S. silondia is very limited. The species-specific microsatellite markers were developed in current study. The validated markers were used to genotype individuals from four distant rivers. To develop de novo microsatellite loci, an enriched genomic library was constructed for S. silondia using affinity–capture approach. The markers were validated for utility in population genetics. A total number of 76 individuals from four natural riverine populations were used to generate data for population analysis. The screening of isolated repeat sequences yielded eleven novel polymorphic microsatellite loci. The microsatellite loci exhibited high level of polymorphism, with 6–24 alleles per locus and the PIC value ranged from 0.604 to 0.927. The observed (Ho) and expected (He) heterozygosities ranged from 0.081 to 0.84 and 0.66 to 0.938, respectively. The AMOVA analysis indicated significant genetic differentiation among riverine populations (overall FST = 0.075; P < 0.0001) with maximum variation (92.5 %) within populations. Cross-priming assessment revealed successful amplification (35–38 %) of heterologous loci in four related species viz. Clupisoma garua, C. taakree, Ailia coila and Eutropiichthys vacha. The results demonstrated that these de novo polymorphic microsatellite loci are promising for population genetic variation and diversity studies in S. silondia. Cross-priming results indicated that these primers can help to get polymorphic microsatellite loci in the related catfish species of family Schilbidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号