首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Check of Gene Number during the Process of rDNA Magnification   总被引:1,自引:0,他引:1  
THE multiple sequences of rDNA (DNA complementary to ribosomal RNA) of the Drosophila genome are localized at the bobbed locus, located in the X chromosome, position 66 and in the short arm of the Y chromosome1,2. Wild bobbed (bb+) is that locus which, without a partner, gives rise to a normal phenotype. That locus which in similar conditions is incapable of giving rise to a normal phenotype is called a bobbed mutation (bb) and contains fewer genes for rRNA. The number of genes for rRNA in different individuals can vary considerably. One mechanism for rDNA variation is unequal crossing over3. Another mechanism, described by Tartof4, becomes apparent when individual flies, carrying only one bobbed locus, are constructed and only if such a locus is on the X chromosome; that is, if one constructs Xbb+/O males (and also Xbb/O males) or Xbb+/XNO- females. Such individuals show a higher rDNA content than expected from the analysis of the same locus in Xbb+/Xbb+ females or in Xbb+/Ybb+ males. The increase of rDNA in this case is not inheritable4.  相似文献   

2.
Black root rot (BRR), a disease caused by the hemibiotrophic fungus Thielaviopsis basicola, seriously compromises yield and leaf quality in tobacco (Nicotiana tabacum). Full resistance to black root rot, conferred by the resistance to BRR 1 (RBRR1) locus from Nicotiana debneyi Domin, was transferred to a burley tobacco cultivar through interspecific hybridization. Some undesirable traits potentially caused by linkage drag restrict wider application of RBRR1 in flue-cured tobacco. Therefore, user-friendly molecular markers are needed to assist selection for resistance to black root rot and to break the unfavorable linkage. Genotyping by sequencing (GBS) is a rapid and robust approach for reduced representation sequencing of multiplexed genomic DNA samples that combines genome-wide molecular marker discovery with genotyping. In the present study, we used GBS to identify single-nucleotide polymorphisms (SNPs) linked to the RBRR1 locus, and PCR-based assays for detection of these SNPs were also developed. Sequence analysis of the SNP markers suggested that RBRR1 is located on chromosome 17, providing a basis for map-based cloning of this valuable gene. Co-dominant CAPS markers that co-segregate with the disease-resistant phenotype offer user-friendly tools for tobacco breeding and variety improvement. Furthermore, tested with diverse N. tabacum germplasm, SS192650 displayed 100% selection accuracy for resistance to BRR, suggesting that this marker can be used in diverse tobacco populations.  相似文献   

3.
Autosomal dominant Emery–Dreifuss muscular dystrophy is caused by mutations in LMNA gene encoding lamins A and C. The disease is characterized by early onset joint contractures during childhood associated with humero-peroneal muscular wasting and weakness, and by the development of a cardiac disease in adulthood. Important intra-familial variability characterized by a wide range of age at onset of myopathic symptoms (AOMS) has been recurrently reported, suggesting the contribution of a modifier gene. Our objective was to identify a modifier locus of AOMS in relation with the LMNA mutation. To map the modifier locus, we genotyped 291 microsatellite markers in 59 individuals of a large French family, where 19 patients carrying the same LMNA mutation, exhibited wide range of AOMS. We performed Bayesian Markov Chain Monte Carlo-based joint segregation and linkage methods implemented in the Loki© software, and detected a strong linkage signal on chromosome 2 between markers D2S143 and D2S2244 (211 cM) with a Bayes factor of 28.7 (empirical p value = 0.0032). The linked region harbours two main candidate genes, DES and MYL1 encoding desmin and light chain of myosin. Importantly, the impact of the genotype on the phenotype for this locus showed an overdominant effect with AOMS 2 years earlier for the homozygotes of the rare allele and 37 years earlier for the heterozygotes than the homozygotes for the common allele. These results provide important highlights for the natural history and for the physiopathology of Emery–Dreifuss muscular dystrophy.  相似文献   

4.

Key message

A self-fertility locus was fine mapped to a 1.6 cM region on linkage group 5 in a perennial ryegrass population. This locus was the main determinant of pollen self-compatibility.

Abstract

In grasses, self-incompatibility (SI) is characterized by a two-loci gametophytic (S and Z) mechanism acting together in the recognition and inhibition of self-pollen. Mutations affecting the expression of SI have been reported in a few grass species. In perennial ryegrass (Lolium perenne L.), a mutation independent from S and Z, and mapping on linkage group 5 (LG 5), was previously reported to produce self-fertile plants. Here, we describe fine mapping of the self-fertility (SF) gene in a perennial ryegrass population and determine whether there is any effect of other genomic regions on the pollen compatibility. The phenotypic segregation of SF showed a bimodal distribution with one mean at 49% pollen compatibility and the other at 91%. Marker-trait association analysis showed that only markers on LG 5 were significantly associated with the trait. A single gene model explained 82% of the observed variability and no effects of the other regions were detected. Using segregation and linkage analysis, the SF locus was located to a 1.6 cM region on LG 5. The flanking marker sequences were aligned to rice and Brachypodium distachyon reference genomes to estimate the physical distance. We provide markers tightly linked to SF that can be used for introgression of this trait into advanced breeding germplasm. Moreover, our results represent a further step towards the identification of the SF gene in LG 5.
  相似文献   

5.
Cuticular wax on the aerial surface of plants has a protective function against many environmental stresses. The bluish–whitish appearance of wheat leaves and stems is called glaucousness. Most modern cultivars of polyploid wheat species exhibit the glaucous phenotype, while in a wild wheat progenitor, Ae. tauschii, both glaucous and non-glaucous accessions exist. Iw2, a wax inhibitor locus on the short arm of chromosome 2D, is the main contributor to this phenotypic variation in Ae. tauschii, and the glaucous/non-glaucous phenotype of Ae. tauschii is usually inherited by synthetic hexaploid wheat. However, a few synthetic lines show the glaucous phenotype although the parental Ae. tauschii accessions are non-glaucous. Molecular marker genotypes indicate that the exceptional non-glaucous Ae. tauschii accessions share the same genotype in the Iw2 chromosomal region as glaucous accessions, suggesting that these accessions have a different causal locus for their phenotype. This locus was assigned to the long arm of chromosome 3D using an F2 mapping population and designated W4, a novel glaucous locus in Ae. tauschii. The dominant W4 allele confers glaucousness, consistent with phenotypic observation of Ae. tauschii accessions and the derived synthetic lines. These results implied that glaucous accessions of Ae. tauschii with the W2W2iw2iw2W4W4 genotype could have been the D-genome donor of common wheat.  相似文献   

6.
Although it is well known that low-molecular-weight glutenin subunits (LMW-GS) from wheat affect bread and noodle processing quality, the function of specific LMW-GS proteins remains unclear. It is important to find the genes that correspond to individual LMW-GS proteins in order to understand the functions of specific proteins. The objective of this study was to link LMW-GS genes and haplotypes characterized using well known Glu-A3, Glu-B3, and Glu-D3 gene-specific primers to their protein products in a single wheat variety. A total of 36 LMW-GS genes and pseudogenes were amplified from the Korean cultivar Keumkang. These include 11 Glu-3 gene haplotypes, two from the Glu-A3 locus, two from the Glu-B3 locus, and seven from the Glu-D3 locus. To establish relationships between gene haplotypes and their protein products, a glutenin protein fraction was separated by two-dimensional gel electrophoresis (2-DGE) and 17 protein spots were analyzed by N-terminal amino acid sequencing and tandem mass spectrometry (MS/MS). LMW-GS proteins were identified that corresponded to all Glu-3 gene haplotypes except the pseudogenes. This is the first report of the comprehensive characterization of LMW-GS genes and their corresponding proteins in a single wheat cultivar. Our approach will be useful to understand the contributions of individual LMW-GS to the end-use quality of flour.  相似文献   

7.
Histocompatibility Gene Organization and Mixed Lymphocyte Reaction   总被引:3,自引:0,他引:3  
TRANSFORMATION of allogenic lymphocytes in mixed cultures depends chiefly on an incompatibility between the lymphocyte donors at the major histocompatibility locus in man (HL-A), mouse (H-2) and rat (H-l)1. Although the mouse H-2 locus can be divided into several regions each of which controls one or more antigenic specificities2 and two or more subloci control HL-A antigens in man3, it is not known whether all parts of the major histocompatibility locus are equally important in eliciting transformation in mixed lymphocyte cultures. We now show that capacity to elicit lymphocyte transformation is different for different parts of the mouse H-2 locus.  相似文献   

8.
In this study, frequencies of the polymorphic variants of the genes encoding antioxidant enzymes, GSTM1, GSTT1, GSTP1, CAT, GPX1, NQO1, SOD1, and SOD3 were examined in three ethnic groups of healthy subjects from the Republic of Bashkortostan (Russians, Tatars, and Bashkirs). An association of these markers with the development of chronic obstructive pulmonary disease (COPD) was tested. Interethnic differences relative to the distribution of the polymorphic variants of the GSTP1 locus Ile105Val and the NQO1 locus 609C/T were revealed. Relative to the genotype distribution at the Ile105Val locus of the GSTP1 gene, ethnic group of Bashkirs was found to be statistically significantly different from Tatars (χ2 = 8.819; d.f. = 2; P = 0.012). Relative to the genotype frequency distribution pattern at the NQO1 locus 609C/T, the group of Bashkirs differed from Russians (χ2 = 8.913; d.f. = 2; P = 0.012). An association of genotype Val/Val of the GSTP1 Ile105Val locus with the risk of COPD in Russians (χ2 = 5.25; P = 0.022; P cor = 0.044; OR = 4.09), and of the GSTP1 haplotype *D in Tatars, was demonstrated (χ2 = 11.575; P = 0.0014; P cor = 0.0042; OR = 3.178). Genotype TT of the CAT ?262C/T locus marked resistance to the COPD development in Russians (χ2 = 6.82; P = 0.0098; P cor = 0.0196; OR = 0.31; 95%CI, 0.119 to 0.77). The risk for COPD in the ethnic group of Tatars was associated with the CAT haplotype (?262)C/(1167)T (χ2 = 6.038; P = 0.0147; P cor = 0.044; OR = 1.71). Analysis of the NQO1 haplotypes at the 465C/T and 609C/T loci showed that haplotype 465C/609T was associated with COPD in Russians (χ2 = 4.571; P = 0.0328; P cor = 0.01; OR = 1.799). It was demonstrated that Gly allele of the Arg213Gly polymorphic locus of the SOD3 gene marked the risk for COPD in the ethnic group of Tatars (OR = 2.23; 95%CI, 1.22 to 4.1). Thus, GSTP1, CAT, NQO1, and SOD3 polymorphisms play an important role in the development of COPD among the population of Bashkortostan.  相似文献   

9.
The interaction of [PSI +] and [PIN +] factors in yeast Saccharomyces cerevisiae is known as the first evidence of prions networks. In [PIN +] cells, Rnq1p prion aggregates work as a template for Sup35p aggregation, which is essential for [PSI +] induction. No additional factors are required for subsequent Sup35p aggregation. Nevertheless, several recent reports provide data that indicate a more complex interplay between these prions. Our results show that the presence of Rnq1p in the cell significantly decreases the loss of [PSI +] prion, which is caused by a double mutation in SUP35 (Q61K, Q62K substitutions in the Sup35 protein). These observations support the existence of interaction networks that converge on a strong linkage of prionogenic and prion-like proteins, and the participation of Rnq1 protein in the maintenance of prion [PSI +].  相似文献   

10.
An agriculturally important insecticidal bacterium, Bacillus thuringiensis have been isolated from the soil samples of various part of Assam including the Kaziranga National Park. Previously, the isolates were characterized based on morphology, 16S rDNA sequencing, and the presence of the various classes’ crystal protein gene(s). In the present study, the phylogenetic analysis of a few selected isolates was performed by an unambiguous and quick method called the multiple locus sequence typing (MLST). A known B. thuringiensis strain kurstaki 4D4 have been used as a reference strain for MLST. A total of four the MLST locus of housekeeping genes, recF, sucC, gdpD and yhfL were selected. A total of 14 unique sequence types (STs) was identified. A total number of alleles identified for the locus gdpD and sucC was 12, followed by locus yhfL was 11, however, only 6 alleles were detected for the locus recF. The phylogenetic analysis using MEGA 7.0.26 showed three major lineages. Approximately, 87% of the isolates belonged to the STs corresponding to B. thuringiensis, whereas two isolates, BA07 and BA39, were clustered to B. cereus. The isolates were also screened for the diversity of vegetative insecticidal protein (vip) genes. In all, 8 isolates showed the presence of vip1, followed by 7 isolates having vip2 and 6 isolates for vip3 genes. The expression of Vip3A proteins was analyzed by western blot analyses and expression of the Vip3A protein was observed in the isolate BA20. Thus, the phylogenetic relationship and diversity of Bt isolates from Assam soil was established based on MLST, in addition, found isolates having vip genes, which could be used for crop improvement.  相似文献   

11.
Results from works involving the study of hetero-and homozygous interaction of the keeping quality genes alc, nor, and rin in tomato plants are presented. It is shown that cumulative polymery leading to the formation of a new “long ripening” phenotype is observed in the double heterozygotes alc/alc +//nor/nor +, nor/nor +//rin/rin +, and alc/alc +//rin/rin +. Strong inhibition of processes of ripeness and synthesis of carotenoids occurs with nonallelic interaction in the double homozygotes alc/alc//rin/rin, nor/nor//rin/rin, and alc/alc//nor/nor. This promotes the formation of a new “non-ripening” phenotype with the absence of visual signs of ripeness, i.e., a whitish-green coloring of the fruit.  相似文献   

12.
Modern plant breeding heavily relies on the use of molecular markers. In recent years, next generation sequencing (NGS) emerged as a powerful technology to discover DNA sequence polymorphisms and generate molecular markers very rapidly and cost effectively, accelerating the plant breeding programmes. A single dominant locus, Frl, in tomato provides resistance to the fungal pathogen Fusarium oxysporum f. sp. radicis-lycopersici (FORL), causative agent of Fusarium crown and root rot. In this study, we describe the generation of molecular markers associated with the Frl locus. An F2 mapping population between an FORL resistant and a susceptible cultivar was generated. NGS technology was then used to sequence the genomes of a susceptible and a resistant parent as well the genomes of bulked resistant and susceptible F2 lines. We zoomed into the Frl locus and mapped the locus to a 900 kb interval on chromosome 9. Polymorphic single-nucleotide polymorphisms (SNPs) within the interval were identified and markers co-segregating with the resistant phenotype were generated. Some of these markers were tested successfully with commercial tomato varieties indicating that they can be used for marker-assisted selection in large-scale breeding programmes.  相似文献   

13.

Background

The 46,XY female is characterised by a male karyotype and female phenotype arising due to any interruption in the sexual development pathways in utero. The cause is usually genetic and various genes are implicated.

Case presentation

Herein we describe a 46,XY woman who was first diagnosed with androgen insensitivity syndrome (testicular feminisation) at 18 years; however, this was later questioned due to the presence of intact Müllerian structures. The clinical phenotype suggested several susceptibility genes including SRY, DHH, NR5A1, NR0B1, AR, AMH, and AMHR2. To study candidate genes simultaneously, we performed whole genome sequencing. This revealed a novel and likely pathogenic missense variant (p.Arg130Pro, c.389G>C) in SRY, one of the major genes implicated in complete gonadal dysgenesis, hence securing this condition over androgen insensitivity syndrome as the cause of the patient’s disorder of sexual development.

Conclusion

This case highlights the emerging clinical utility of whole genome sequencing as a tool in differentiating disorders of sexual development.
  相似文献   

14.
Molecular cloning of the DIP1 gene located in the 20A4-5 region has been performed from the following strains with the flamenco phenotype: flam SS (SS) and flam MS (MS) characterized by a high transposition rate of retrotransposon gypsy (mdg4), flam py + (P) carrying the insertion of a construction based on the P element into the region of the flamenco gene, and flamenco +. The results of restriction analysis and sequencing cloned DNA fragments has shown that strains flam SS , flam MS considerably differ from flam py + (P), and flamenco + in the structure of DIP1. Strains flam SS and flam MS have no DraI restriction site at position 1765 in the coding region of the gene, specifically, in the domain determining the signal of the nuclear localization of the DIP1 protein. This mutation has been found to consist in a nucleotide substitution in the recognition site of DraI restriction endonuclease, which is transformed from TTTAAA into TTTAAG and, hence, is not recognized by the enzyme. This substitution changes codon AAA into AAG and is translationally insignificant, because both triplets encode the same amino acid, lysine. The DIP1 gene of strains flam SS and flam MS has been found to contain a 182-bp insertion denoted IdSS (insertion in DIP1 strain SS); it is located in the second intron of the gene. The IdSS sequence is part of the open reading frame encoding the putative transposase of the mobile genetic element HB1 belonging to the Tc1/mariner family. This insertion is presumed to disturb the conformations of DNA and the chromosome, in particular, by forming loops, which alters the expression of DIP1 and, probably, neighboring genes. In strains flamenco + and flam py + (P), the IdSS insertion within the HB1 sequence is deleted. The deletion encompasses five C-terminal amino acid residues of the conserved domain and the entire C-terminal region of the putative HB1 transposase. The obtained data suggest that DIP1 is involved in the control of gypsy transpositions either directly or through interaction with other elements of the genome.  相似文献   

15.
Group A saponins are thought to be the cause of bitter and astringent tastes in processed foods of soybean (Glycine max), and the elimination of group A saponins is an important breeding objective. The group A saponins include two main Aa and Ab types, controlled by codominant alleles at the Sg-1 locus that is one of several key loci responsible for saponin biosynthesis in the subgenus Glycine soja. However, A0 mutant lacking group A saponin is a useful gene resource for soybean quality breeding. Here, eight Chinese wild soybean A0 accessions were sequenced to reveal the mutational mechanisms, and the results showed that these mutants were caused by at least three kinds of mechanisms involving four allelic variants (sg-10-b2, sg-10-b3, Sg-1b-0, and Sg-1b-01). The sg-10-b2 had two nucleotide deletions at positions +?72 and +?73 involving in the 24th and 25th amino acids. The sg-10-b3 contained a stop codon (TGA) at the 254th residue. The Sg-1b-0 and Sg-1b-01 were two novel A0-type mutants, which likely carried normal structural alleles, and nevertheless did not encode group A saponin due to unknown mutations beyond the normal coding regions. In addition, to reveal the structural features, allelic polymorphism, and mechanisms of the abiogenetic absence of group A (i.e., A0 phenotype), nucleotide sequence analysis was performed for the Sg-1 locus in wild soybean (Glycine soja). The results showed that Sg-1 alleles had a lower conservatism in the coding region; as high as 18 sequences were found in Chinese wild soybeans in addition to the Sg-1a (Aa) and Sg-1b (Ab) alleles. Sg-1a and Sg-1b alleles were characterized by eight synonymous codons and nine amino acid substitutions. Two evolutionarily transitional allelic sequences (Sg-1a7 and Sg-1b2) from Sg-1a toward Sg-1b were detected.  相似文献   

16.

Key message

The method of graphical genotyping is applied to a panel of tetraploid potato cultivars to visualize haplotype sharing. The method allowed to map genes involved in virus and nematode resistance. The physical coordinates of the amount of linkage drag surrounding these genes are easily interpretable.

Abstract

Graphical genotyping is a visually attractive and easily interpretable method to represent genetic marker data. In this paper, the method is extended from diploids to a panel of tetraploid potato cultivars. Application of filters to select a subset of SNPs allows one to visualize haplotype sharing between individuals that also share a specific locus. The method is illustrated with cultivars resistant to Potato virus Y (PVY), while simultaneously selecting for the absence of the SNPs in susceptible clones. SNP data will then merge into an image which displays the coordinates of a distal genomic region on the northern arm of chromosome 11 where a specific haplotype is introgressed from the wild potato species S. stoloniferum (CPC 2093) carrying a gene (Ny (o,n)sto ) conferring resistance to two PVY strains, PVYO and PVYNTN. Graphical genotyping was also successful in showing the haplotypes on chromosome 12 carrying Ry-f sto , another resistance gene derived from S. stoloniferum conferring broad-spectrum resistance to PVY, as well as chromosome 5 haplotypes from S. vernei, with the Gpa5 locus involved in resistance against Globodera pallida cyst nematodes. The image also shows shortening of linkage drag by meiotic recombination of the introgression segment in more recent breeding material. Identity-by-descent was found to be a requirement for using graphical genotyping, which is proposed as a non-statistical alternative method for gene discovery, as compared with genome-wide association studies. The potential and limitations of the method are discussed.
  相似文献   

17.
OUR previous studies on the X-linked testicular feminization (Tfm) mutation1 of the mouse2–4 showed that the so-called cytosol and nuclear 5αx-dihydrotestosterone (DHT) receptor protein5–7 might be a regulatory protein specified by the Tfm locus. The dual role of being a translational repressor in the cytoplasma and a mediator of hypertrophy in the nucleus was envisaged8. We found, however, another class of androgen-receptor in the polysome fraction of kidney proximal tubule cells which seems better qualified to be a translational regulator. Since a single gene locus specifies only one kind of polypeptide chain, we re-examined whether the cytosol and nuclear DHT-receptor protein underwent a true mutational change in Tfm/Y individuals.  相似文献   

18.
Paocai is a traditional Chinese fermented food and typically produced via spontaneous fermentation. We have investigated the microbial community utilized for the fermentation of industrialized Qingcai paocai using the combination of Illumina MiSeq sequencing, PCR-mediated denaturing gradient gel electrophoresis (PCR-DGGE) and quantitative PCR (qPCR) assay. Three main phyla, namely Firmicutes, Proteobacteria and Bacteroidetes, were identified by both MiSeq sequencing and PCR-DGGE. The dominant genera observed in the fermentation were Lactobacillus, Pseudomonas, Vibrio and Halomonas. Most genera affiliated with Proteobacteria or Bacteroidetes were detected more often during the earlier part of the fermentation, while Lactobacillus (affiliated with Firmicutes) was dominant during the later fermentation stages. Fungal community analysis revealed that Debaryomyces, Pichia and Kazachstania were the main fungal genera present in industrialized Qingcai paocai, with Debaryomyces being the most dominant during the fermentation process. The quantities of dominant genera Lactobacillus and Debaryomyces were monitored using qPCR and shown to be 109–1012 and 106–1010 copies/mL, respectively. During the later fermentation process of industrialized Qingcai paocai, Lactobacillus and Debaryomyces were present at 1011 and 108 copies/mL, respectively. These results facilitate further understanding of the unique microbial ecosystem during the fermentation of industrialized Qingcai paocai and guide future improvement of the fermentation process.  相似文献   

19.

Background

Ruffs (Aves: Philomachus pugnax) possess a genetic polymorphism for male mating behaviour resulting in three permanent alternative male reproductive morphs: (i) territorial ‘Independents’, (ii) non-territorial ‘Satellites’, and (iii) female-mimicking ‘Faeders’. Development into independent or satellite morphs has previously been shown to be due to a single-locus, two-allele autosomal Mendelian mode of inheritance at the Satellite locus. Here, we use linkage analysis to map the chromosomal location of the Faeder locus, which controls development into the Faeder morph, and draw further conclusions about candidate genes, assuming shared synteny with other birds.

Results

Segregation data on the Faeder locus were obtained from captive-bred pedigrees comprising 64 multi-generation families (N?=?381). There was no evidence that the Faeder locus was linked to the Satellite locus, but it was linked with microsatellite marker Ppu020. Comparative mapping of ruff microsatellite markers against the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata) genomes places the Ppu020 and Faeder loci on a region of chromosome 11 that includes the Melanocortin-1 receptor (MC1R) gene, which regulates colour polymorphisms in numerous birds and other vertebrates. Melanin-based colouration varies with life-history strategies in ruffs and other species, thus the MC1R gene is a strong candidate to play a role in alternative male morph determination.

Conclusion

Two unlinked loci appear to control behavioural development in ruffs. The Faeder locus is linked to Ppu020, which, assuming synteny, is located on avian chromosome 11. MC1R is a candidate gene involved in alternative male morph determination in ruffs.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号