首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bene Israel Jewish community from West India is a unique population whose history before the 18th century remains largely unknown. Bene Israel members consider themselves as descendants of Jews, yet the identity of Jewish ancestors and their arrival time to India are unknown, with speculations on arrival time varying between the 8th century BCE and the 6th century CE. Here, we characterize the genetic history of Bene Israel by collecting and genotyping 18 Bene Israel individuals. Combining with 486 individuals from 41 other Jewish, Indian and Pakistani populations, and additional individuals from worldwide populations, we conducted comprehensive genome-wide analyses based on FST, principal component analysis, ADMIXTURE, identity-by-descent sharing, admixture linkage disequilibrium decay, haplotype sharing and allele sharing autocorrelation decay, as well as contrasted patterns between the X chromosome and the autosomes. The genetics of Bene Israel individuals resemble local Indian populations, while at the same time constituting a clearly separated and unique population in India. They are unique among Indian and Pakistani populations we analyzed in sharing considerable genetic ancestry with other Jewish populations. Putting together the results from all analyses point to Bene Israel being an admixed population with both Jewish and Indian ancestry, with the genetic contribution of each of these ancestral populations being substantial. The admixture took place in the last millennium, about 19–33 generations ago. It involved Middle-Eastern Jews and was sex-biased, with more male Jewish and local female contribution. It was followed by a population bottleneck and high endogamy, which can lead to increased prevalence of recessive diseases in this population. This study provides an example of how genetic analysis advances our knowledge of human history in cases where other disciplines lack the relevant data to do so.  相似文献   

2.
For more than a century, Jews and non-Jews alike have tried to define the relatedness of contemporary Jewish people. Previous genetic studies of blood group and serum markers suggested that Jewish groups had Middle Eastern origin with greater genetic similarity between paired Jewish populations. However, these and successor studies of monoallelic Y chromosomal and mitochondrial genetic markers did not resolve the issues of within and between-group Jewish genetic identity. Here, genome-wide analysis of seven Jewish groups (Iranian, Iraqi, Syrian, Italian, Turkish, Greek, and Ashkenazi) and comparison with non-Jewish groups demonstrated distinctive Jewish population clusters, each with shared Middle Eastern ancestry, proximity to contemporary Middle Eastern populations, and variable degrees of European and North African admixture. Two major groups were identified by principal component, phylogenetic, and identity by descent (IBD) analysis: Middle Eastern Jews and European/Syrian Jews. The IBD segment sharing and the proximity of European Jews to each other and to southern European populations suggested similar origins for European Jewry and refuted large-scale genetic contributions of Central and Eastern European and Slavic populations to the formation of Ashkenazi Jewry. Rapid decay of IBD in Ashkenazi Jewish genomes was consistent with a severe bottleneck followed by large expansion, such as occurred with the so-called demographic miracle of population expansion from 50,000 people at the beginning of the 15th century to 5,000,000 people at the beginning of the 19th century. Thus, this study demonstrates that European/Syrian and Middle Eastern Jews represent a series of geographical isolates or clusters woven together by shared IBD genetic threads.  相似文献   

3.
A nonparametric statistical methodology is used for the analysis of biochemical frequency data observed on a series of nine Jewish and six non-Jewish populations. Two categories of statistics are used: heterogeneity indices and various distance measures with respect to a standard. The latter are more discriminating in exploiting historical, geographical and culturally relevant information. A number of partial orderings and distance relationships among the populations are determined. Our concern in this study is to analyze similarities and differences among the Jewish populations, in terms of the gene frequency distributions for a number of genetic markers. Typical questions discussed are as follows: These Jewish populations differ in certain morphological and anthropometric traits. Are there corresponding differences in biochemical genetic constitution? How can we assess the extent of heterogeneity between and within groupings? Which class of markers (blood typings or protein loci) discriminates better among the separate populations? The results are quite surprising. For example, we found the Ashkenazi, Sephardi and Iraqi Jewish populations to be consistently close in genetic constitution and distant from all the other populations, namely the Yemenite and Cochin Jews, the Arabs, and the non-Jewish German and Russian populations. We found the Polish Jewish community the most heterogeneous among all Jewish populations. The blood loci discriminate better than the protein loci. A number of possible interpretations and hypotheses for these and other results are offered. The method devised for this analysis should prove useful in studying similarities and differences for other groups of populations for which substantial biochemical polymorphic data are available.  相似文献   

4.
South Asia harbors one of the highest levels genetic diversity in Eurasia, which could be interpreted as a result of its long-term large effective population size and of admixture during its complex demographic history. In contrast to Pakistani populations, populations of Indian origin have been underrepresented in previous genomic scans of positive selection and population structure. Here we report data for more than 600,000 SNP markers genotyped in 142 samples from 30 ethnic groups in India. Combining our results with other available genome-wide data, we show that Indian populations are characterized by two major ancestry components, one of which is spread at comparable frequency and haplotype diversity in populations of South and West Asia and the Caucasus. The second component is more restricted to South Asia and accounts for more than 50% of the ancestry in Indian populations. Haplotype diversity associated with these South Asian ancestry components is significantly higher than that of the components dominating the West Eurasian ancestry palette. Modeling of the observed haplotype diversities suggests that both Indian ancestry components are older than the purported Indo-Aryan invasion 3,500 YBP. Consistent with the results of pairwise genetic distances among world regions, Indians share more ancestry signals with West than with East Eurasians. However, compared to Pakistani populations, a higher proportion of their genes show regionally specific signals of high haplotype homozygosity. Among such candidates of positive selection in India are MSTN and DOK5, both of which have potential implications in lipid metabolism and the etiology of type 2 diabetes.  相似文献   

5.
Most studies of European genetic diversity have focused on large-scale variation and interpretations based on events in prehistory, but migrations and invasions in historical times could also have had profound effects on the genetic landscape. The Iberian Peninsula provides a suitable region for examination of the demographic impact of such recent events, because its complex recent history has involved the long-term residence of two very different populations with distinct geographical origins and their own particular cultural and religious characteristics—North African Muslims and Sephardic Jews. To address this issue, we analyzed Y chromosome haplotypes, which provide the necessary phylogeographic resolution, in 1140 males from the Iberian Peninsula and Balearic Islands. Admixture analysis based on binary and Y-STR haplotypes indicates a high mean proportion of ancestry from North African (10.6%) and Sephardic Jewish (19.8%) sources. Despite alternative possible sources for lineages ascribed a Sephardic Jewish origin, these proportions attest to a high level of religious conversion (whether voluntary or enforced), driven by historical episodes of social and religious intolerance, that ultimately led to the integration of descendants. In agreement with the historical record, analysis of haplotype sharing and diversity within specific haplogroups suggests that the Sephardic Jewish component is the more ancient. The geographical distribution of North African ancestry in the peninsula does not reflect the initial colonization and subsequent withdrawal and is likely to result from later enforced population movement—more marked in some regions than in others—plus the effects of genetic drift.  相似文献   

6.

Background  

The Kuki-Chin-Mizo population comprising traditionally endogamous tribal groups residing in the state of Mizoram, India claim their descent from the ten lost tribes of Israel that were exiled by the Assyrians. To ascertain their oral history, we analysed DNA markers comprising 15 autosomal microsatellite markers, 5 biallelic and 20 microsatellite markers on Y-chromosome and the maternally inherited mitochondrial DNA sequence variations on 414 individuals belonging to 5 tribal communities from Mizoram (Hmar, Kuki, Mara, Lai and Lusei). The genetic profiles obtained were compared either with populations sharing Jewish ancestry or with local populations along the probable route of migration of the Jewish ancestry claimant Mizoram tribes.  相似文献   

7.
European population genetic substructure was examined in a diverse set of >1,000 individuals of European descent, each genotyped with >300 K SNPs. Both STRUCTURE and principal component analyses (PCA) showed the largest division/principal component (PC) differentiated northern from southern European ancestry. A second PC further separated Italian, Spanish, and Greek individuals from those of Ashkenazi Jewish ancestry as well as distinguishing among northern European populations. In separate analyses of northern European participants other substructure relationships were discerned showing a west to east gradient. Application of this substructure information was critical in examining a real dataset in whole genome association (WGA) analyses for rheumatoid arthritis in European Americans to reduce false positive signals. In addition, two sets of European substructure ancestry informative markers (ESAIMs) were identified that provide substantial substructure information. The results provide further insight into European population genetic substructure and show that this information can be used for improving error rates in association testing of candidate genes and in replication studies of WGA scans.  相似文献   

8.

Background  

It was recently shown that the genetic distinction between self-identified Ashkenazi Jewish and non-Jewish individuals is a prominent component of genome-wide patterns of genetic variation in European Americans. No study however has yet assessed how accurately self-identified (Ashkenazi) Jewish ancestry can be inferred from genomic information, nor whether the degree of Jewish ancestry can be inferred among individuals with fewer than four Jewish grandparents.  相似文献   

9.
Gm typing on the serum specimens of 507 Ashkenazic Jews (pre-dominantly of Polish-Russian ancestry) from Toronto, Canada has established the presence of haplotypes Gm3;5, Gm1;21, Gm1,2;21, and Gm1,17;5, and the absence of haplotypes Gm1;13,15,16, Gm1;5,6, and Gm1;5,6,24 which have been found in other Jewish peoples. It is suggested that Ashkenazic populations have lower frequencies of haplotype Gm1,17;5 than non-European Jewish populations, and that some eastern European Jewish populations have acquired the Gm1;13,15,16 haplotype through gene flow from Central Asia. Thus Jewish populations show differences in the Gm system; many of the differences may be in the direction of similarities to neighbouring non-Jewish populations.  相似文献   

10.
Throughout human history, large-scale migrations have facilitated the formation of populations with ancestry from multiple previously separated populations. This process leads to subsequent shuffling of genetic ancestry through recombination, producing variation in ancestry between populations, among individuals in a population, and along the genome within an individual. Recent methodological and empirical developments have elucidated the genomic signatures of this admixture process, bringing previously understudied admixed populations to the forefront of population and medical genetics. Under this theme, we present a collection of recent PLOS Genetics publications that exemplify recent progress in human genetic admixture studies, and we discuss potential areas for future work.  相似文献   

11.
The Balearic archipelago (Majorca, Minorca, and Ibiza islands and the Chuetas, a small and inbred community of descendants of Sephardic Jews) and Valencia were studied by means of the sequencing of a 404-bp segment of hypervariable region I (HVRI) mtDNA in 231 individuals. In total, 127 different haplotypes defined by 92 variable positions were identified. The incidence of unique haplotypes was very low, especially in Ibiza and the Chuetas. A remarkable observation in the Chueta community was the high frequency (23%) of preHV-1, a Middle Eastern lineage that is closely related, though not identical, to many others found at high frequencies in different Jewish populations. The presence of this haplogroup convincingly supported the Jewish origin of the Chueta community. The studied populations showed a reduced African contribution, and no individuals were detected with North African haplogroup U6, indicating a lack of maternal contribution from the Moslem settlement to these populations. Only Ibiza showed a lower diversity, indicating a possible genetic drift effect, also supported by the historical information known about this island. The variability in the sequence of mtDNA hypervariable region I correlated well with the existing information from the populations, with the exception of that of the Y-chromosome, which could indicate a differential contribution of the maternal and paternal lineages to the genetic pool of the Balearic Islands. The phylogenetic trees showed the intermediate position of the Chueta population between the Middle Eastern and Majorcan samples, confirming the Jewish origin of this population and their Spanish admixture.  相似文献   

12.
Stocking is often used to supplement wild populations that are overexploited or have collapsed, yet it is unclear how this affects the genetic diversity of marine invertebrate populations. During the 1970s, a lobster stock enhancement program was carried out around the island of Corsica in the Mediterranean using individuals translocated from the Atlantic coast of France. This included the release of thousands of hatchery‐reared postlarval lobsters and several adult individuals, but no monitoring plan was established to assess whether these animals survived and recruited to the population. In this study, we sampled European lobster (Homarus gammarus) individuals caught around Corsica and tested whether they showed Atlantic ancestry. Due to a natural marked phylogeographic break between Atlantic and Mediterranean lobsters, we hypothesized that lobsters with dominant (>0.50) Atlantic ancestry were descended from historical stocking releases. Twenty Corsican lobsters were genotyped at 79 single nucleotide polymorphisms, and assignment analysis showed that the majority (13) had dominant Atlantic ancestry. This suggests that the hatchery stocking program carried out in Corsica during the 1970s, using individuals translocated from the Atlantic coast of France, has likely augmented local recruitment but at a cost of altering the genetic structure of the Corsican lobster population.  相似文献   

13.
Homologous long segments along the genomes of close or remote relatives that are identical by descent (IBD) from a common ancestor provide clues for recent events in human genetics. We set out to extensively map such IBD segments in large cohorts and investigate their distribution within and across different populations. We report analysis of several data sets, demonstrating that IBD is more common than expected by na?ve models of population genetics. We show that the frequency of IBD pairs is population dependent and can be used to cluster individuals into populations, detect a homogeneous subpopulation within a larger cohort, and infer bottleneck events in such a subpopulation. Specifically, we show that Ashkenazi Jewish individuals are all connected through transitive remote family ties evident by sharing of 50 cM IBD to a publicly available data set of less than 400 individuals. We further expose regions where long-range haplotypes are shared significantly more often than elsewhere in the genome, observed across multiple populations, and enriched for common long structural variation. These are inconsistent with recent relatedness and suggest ancient common ancestry, with limited recombination between haplotypes.  相似文献   

14.
The leucine-rich repeat kinase 2 (LRRK2) G2019S mutation is the most common genetic determinant of Parkinson disease (PD) identified to date. It accounts for 1%-7% of PD in patients of European origin and 20%-40% in Ashkenazi Jews and North African Arabs with PD. Previous studies concluded that patients from these populations all shared a common Middle Eastern founder who lived in the 13th century. We tested this hypothesis by genotyping 25 microsatellite and single-nucleotide-polymorphism markers in 22 families with G2019S and observed two distinct haplotypes. Haplotype 1 was present in 19 families of Ashkenazi Jewish and European ancestry, whereas haplotype 2 occurred in three European American families. Using a maximum-likelihood method, we estimated that the families with haplotype 1 shared a common ancestor 2,250 (95% confidence interval 1,650-3,120) years ago, whereas those with haplotype 2 appeared to share a more recent founder. Our data suggest two separate founding events for G2019S in these populations, beginning at a time that coincides with the Jewish Diasporas.  相似文献   

15.
The history of the Jewish Diaspora dates back to the Assyrian and Babylonian conquests in the Levant, followed by complex demographic and migratory trajectories over the ensuing millennia which pose a serious challenge to unraveling population genetic patterns. Here we ask whether phylogenetic analysis, based on highly resolved mitochondrial DNA (mtDNA) phylogenies can discern among maternal ancestries of the Diaspora. Accordingly, 1,142 samples from 14 different non-Ashkenazi Jewish communities were analyzed. A list of complete mtDNA sequences was established for all variants present at high frequency in the communities studied, along with high-resolution genotyping of all samples. Unlike the previously reported pattern observed among Ashkenazi Jews, the numerically major portion of the non-Ashkenazi Jews, currently estimated at 5 million people and comprised of the Moroccan, Iraqi, Iranian and Iberian Exile Jewish communities showed no evidence for a narrow founder effect, which did however characterize the smaller and more remote Belmonte, Indian and the two Caucasus communities. The Indian and Ethiopian Jewish sample sets suggested local female introgression, while mtDNAs in all other communities studied belong to a well-characterized West Eurasian pool of maternal lineages. Absence of sub-Saharan African mtDNA lineages among the North African Jewish communities suggests negligible or low level of admixture with females of the host populations among whom the African haplogroup (Hg) L0-L3 sub-clades variants are common. In contrast, the North African and Iberian Exile Jewish communities show influence of putative Iberian admixture as documented by mtDNA Hg HV0 variants. These findings highlight striking differences in the demographic history of the widespread Jewish Diaspora.  相似文献   

16.
The genetic structure of spatially separated populations of the Dory snapper, Lutjanus fulviflamma, was investigated in seven areas along the East African coast and one area in the Comoros archipelago in the western Indian Ocean, using amplified fragment length polymorphism (AFLP). Phylogenetic and multidimensional scaling analyses did not show any clear clustering of individuals into the spatially separated populations. The analysis of molecular variance clearly showed that the variation was partitioned within populations and not between populations, leading to low genetic differentiation among populations. No clear relationship between genetic distance and geographic distance between populations was observed. These observations suggest that populations of Lutjanus fulviflamma have an open structure and are possibly genetically connected on a large geographic scale in the western Indian Ocean.  相似文献   

17.
The ongoing interest in the interrelationships of Jewish populations justifies inclusion of the immunoglobulin allotypes in an ethnohistorical analysis. A total of 2,184 serum specimens obtained from unrelated Israeli Jewish and self-identified Milwaukee, WI, Jewish blood donors were classified as Ashkenazi, Sephardi, Asiatic, or North African and tested for G1m (a, x, z, and f), G3m (b0, b1, b3, b5, g), A2m (1 and 2), and Km (1). Selected sera were also tested for G3m (s, t, c3, c5). The estimated maximum likelihood Gm-Am haplotype frequencies were used in a heterogeneity chi-square analysis. The results indicate that there is less heterogeneity within Jewish populations from Europe, Middle East, and North Africa than in corresponding non-Jewish populations representing the same geographical areas. In order to avoid the hazards of a univariate focus, previously published data were incorporated into two additional analyses: 15 populations with information on 16 genetic loci and 24 populations with information on five genetic loci. Both sets of data were analyzed using principal-components and cluster analysis. In both sets of analyses, with the exception of the Yemenite Jews, Jewish populations grouped together. These analyses support the belief that Jewish populations appear to be derived from a common gene pool, and there has been some genetic drift and minimal gene flow with surrounding populations.  相似文献   

18.
Examining population genetic structure can reveal patterns of reproductive isolation or population mixing and inform conservation management. Some avian species are predicted to exhibit minimal genetic differentiation among populations as a result of the species high mobility, with habitat specialists tending to show greater fine‐scale genetic structure. To explore the relationship between habitat specialization and gene flow, we investigated the genetic structure of a saltmarsh specialist with high potential mobility across a wide geographical range of fragmented habitat. Little variation among mitochondrial sequences (620 bp from ND2) was observed among 149 individual Clapper Rails Rallus crepitans sampled along the Atlantic coast of the USA, with the majority of individuals at all sampling sites sharing a single haplotype. Genotyping of nine microsatellite loci across 136 individuals revealed moderate genetic diversity, no evidence of bottlenecks and a weak pattern of genetic differentiation that increased with geographical distance. Multivariate analyses, Bayesian clustering and an AMOVA all suggested a lack of genetic structuring across the Atlantic coast of the USA, with all individuals grouped into a single interbreeding population. Spatial autocorrelation analyses showed evidence of weak female philopatry and a lack of male philopatry. We conclude that high gene flow connecting populations of this habitat specialist may result from the interaction of ecological and behavioural factors that promote dispersal and limit natal philopatry and breeding‐site fidelity. As climate change threatens saltmarshes, the genetic diversity and population connectivity of Clapper Rails may promote resilience of their populations. This finding helps inform about potential fates of other similarly behaving saltmarsh specialists on the Atlantic coast.  相似文献   

19.
This article addresses contemporary social challenges created by new genetic research on Jews and by Jews, and its implications for the meanings of Jewish identity, on both the individual and the collective levels. The article begins with a brief overview of selective genetic studies of Jewish populations and the controversies they have generated. It continues with an examination of the emerging field of Jewish genetic demography, which employs genetic tests to identify lineages, claim kin, and support Jewish historical and political claims. Here the article explores how Jewish genetic demographers interpret genetic studies to reinforce oral tradition and Biblical prophecy about the origins of the Jews and their experience in the Diaspora. This research is then juxtaposed with debates that emerge from contemporary rabbinic deliberations over the appropriate uses of new reproductive technologies, debates that, contrary to the assertions of Jewish genetic demographers, suggest genes are believed to possess limited ability to confer or create Jewishness in the traditional rabbinic imagination. In the final section of this article, a debate is staged about contemporary biomedical practices that allow for the exchange and transfer of body parts and bodily substances, as a strategy for challenging genetic notions of Jewish identity.  相似文献   

20.
Ongoing modernization in India has elevated the prevalence of many complex genetic diseases associated with a western lifestyle and diet to near-epidemic proportions. However, although India comprises more than one sixth of the world's human population, it has largely been omitted from genomic surveys that provide the backdrop for association studies of genetic disease. Here, by genotyping India-born individuals sampled in the United States, we carry out an extensive study of Indian genetic variation. We analyze 1,200 genome-wide polymorphisms in 432 individuals from 15 Indian populations. We find that populations from India, and populations from South Asia more generally, constitute one of the major human subgroups with increased similarity of genetic ancestry. However, only a relatively small amount of genetic differentiation exists among the Indian populations. Although caution is warranted due to the fact that United States–sampled Indian populations do not represent a random sample from India, these results suggest that the frequencies of many genetic variants are distinctive in India compared to other parts of the world and that the effects of population heterogeneity on the production of false positives in association studies may be smaller in Indians (and particularly in Indian-Americans) than might be expected for such a geographically and linguistically diverse subset of the human population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号