首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The effects of beet cryptic virus (BCV) infection on sugar beet crops were investigated in field trials in 1990. Two sugar beet breeding stock lines were screened for infection by BCV. Seed lots containing different proportions of seed infected with BCV1 & 2 were obtained by crossing the stock lines and used in field trials at five different sites. Five characteristics of the infected plants were assessed. BCV infection appeared to have no significant effects on the sugar beet crop at four locations which suffered from drought stress but significant effects were found at one site where the crop was grown on grade 1 land with good moisture retention properties. Root yield and sugar yield were reduced by up to 17% and 20%, respectively, by BCV infection.  相似文献   

2.
Longidorus elongatus attacks sugar beet on light sandy soils in the West Midlands. Severely damaged plants may die or recover, producing fanged roots. Up to 335 L. elongatus/200 g of soil were found around attacked seedling plants and were often visible to the unaided eye on the roots of freshly lifted plants. Five experiments were made and regressions computed of yield of beet, total numbers of plants and numbers of normal and fanged beet on L. elongatus numbers. Between 24% and 50% of roots per 100 L. elongatus/ 200 g were killed or became fanged. Corresponding figures for loss of plant were between 7.5% and 33%. Estimated loss of yield varied between 0.8 and 7.3 tons (2.0–18.3 t/ha)/acre/100 L. elongatus/200 g, the former where the potential yield was high and the latter where poor growing conditions hindered recovery. Large numbers of Trichodorus occurred in two trial sites and there is some evidence of competition between the two genera. Significant negative regressions for Trichodorus spp. were obtained in one trial suggesting a loss of 12% total and 17% normal roots per 100 Trichodorus spp./200 g.  相似文献   

3.
BNYVV concentration in the tap roots of sugar beet varieties grown in rhizomania-infested fields During plant development, the BNYVV concentration in several commercially available rhizomania-tolerant sugar beet varieties and one susceptible variety was examined as an index of the intensity of infection. The root weight, sugar content and sugar yield of the same varieties in fields naturally infested with rhizomania were also measured. Significant negative correlations were found between the average virus concentration in the tap root and yield parameters in infested fields. These were largely independent of the growth stage of beet plants used for virological investigations. However, the negative correlations between virus concentration and yield were not significant if rhizomania-tolerant varieties only were compared. The possibility that virus concentration might be used as a criterion for selection in addition to yield performance is discussed. This may lead to selection that is targeted more directly at rhizomania resistance and thereby accelerate breeding work.  相似文献   

4.
  • 1 Cixiid planthoppers (Hemiptera: Fulgoromorpha: Cixiidae) are considered to be important economic pests because of their ability to transmit phloem‐restricted prokaryotes causing emerging plant diseases worldwide. However, little information is available on the biology and ecology of such species. This is the case for Pentastiridius leporinus (Linnaeus), a cixiid planthopper reported to live on common reed across Countries of Central and Northern Europe. However, in the east of France, the same planthopper species appears to complete its life cycle in the sugar beet‐wheat cropping system and has been repeatedly shown to transmit prokaryotic plant pathogens that are associated with an emerging disease of sugar beet called syndrome ‘basses richesses'.
  • 2 To gather evidence on the biology of the planthopper in the cropping rotation, we analysed the flight activity of adults. We used transparent sticky traps for sampling migrating adults and quantified nymphs as well as emerging adults on the roots of wheat plants.
  • 3 Results showed a significant correlation between disappearance of nymphs and emerging adults from wheat roots and the occurrence of migrant adults in nearby sugar beet fields. Planthoppers migrated more abundantly and colonized sugar beet for longer periods than any other crop available. Flight activity was very pronounced during the migratory phase that was extended from the middle of June to the middle of July. A geographic information system and geostatical analysis revealed that planthoppers flew and colonized the centre of the sugar beet field rather than the borders.
  • 4 Overall, results obtained in the present study suggest that the ecology and biology of the planthopper vector in the cropping rotation is a primary factor that leads to the emergence of the syndrome ‘basses richesses' disease of sugar beet.
  相似文献   

5.
Sugar beet (Beta vulgaris) is an important arable crop, traditionally used for sugar extraction, but more recently, for biofuel production. A wide range of pests, including beet cyst nematode (Heterodera schachtii), root‐knot nematodes (Meloidogyne spp.), green peach aphids (Myzus persicae) and beet root maggot (Tetanops myopaeformis), infest the roots or leaves of sugar beet, which leads to yield loss directly or through transmission of beet pathogens such as viruses. Conventional pest control approaches based on chemical application have led to high economic costs. Development of pest‐resistant sugar beet varieties could play an important role towards sustainable crop production while minimising environmental impact. Intensive Beta germplasm screening has been fruitful, and genetic lines resistant to nematodes, aphids and root maggot have been identified and integrated into sugar beet breeding programmes. A small number of genes responding to pest attack have been cloned from sugar beet and wild Beta species. This trend will continue towards a detailed understanding of the molecular mechanism of insect–host plant interactions and host resistance. Molecular biotechnological techniques have shown promise in developing transgenic pest resistance varieties at an accelerated speed with high accuracy. The use of transgenic technology is discussed with regard to biodiversity and food safety.  相似文献   

6.
7.
8.
Abstract Investigations on fungal egg parasites of the sugar beet nematode ( Heterodera schachtii Schmidt) in two sugar beet-cereal-rotations
In two field trials with rotations of sugar beet-cereals-green manure the population dynamics of Heterodera schachtii was investigated as well as the frequency of its fungal egg parasites. During the rotation, highest rates of fungal parasitism (20–48%) were observed after years with sugar beet, independently of the nematode population density. In the interim parasitism decreased to about 10%. A highly significant correlation was found between nematode population density and the amount of parasitized eggs and larvae. The effect of resistant catch crops (oil radish'Pegletta and white mustard'Maxi') on fungal egg parasites was not different from the effect of Phacelia or fallow. There are indications, however, that a high nematode multiplication on a susceptible catch crop promotes antagonistic fungi and, in consequence, a nematode population decrease may occur in the following sugar beet crop.  相似文献   

9.
Rhizomania, one of the most devastating diseases in sugar beet, is caused by Beet Necrotic Yellow Vein Virus (BNYVV) belonging to the genus Benyvirus. Use of sugar beet varieties with resistance to BNYVV is generally considered as the only way to maintain a profitable yield on rhizomania-infested fields. As an alternative to natural resistance, we explored the transgenic expression of viral dsRNA for engineering resistance to rhizomania. Transgenic plants expressing an inverted repeat of a 0.4 kb fragment derived from the BNYVV replicase gene displayed high levels of resistance against different genetic strains of BNYVV when inoculated using the natural vector, Polymyxa betae. The resistance was maintained under high infection pressures and over prolonged growing periods in the greenhouse as well as in the field. Resistant plants accumulated extremely low amounts of transgene mRNA and high amounts of the corresponding siRNA in the roots, illustrative of RNA silencing as the underlying mechanism. The transgenic resistance compared very favourably to natural sources of resistance to rhizomania and thus offers an attractive alternative for breeding resistant sugar beet varieties.  相似文献   

10.
Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) is one of the most devastating sugar beet diseases. Sugar beet plants engineered to express a 0.4 kb inverted repeat construct based on the BNYVV replicase gene accumulated the transgene mRNA to similar levels in leaves and roots, whereas accumulation of the transgene-homologous siRNA was more pronounced in roots. The roots expressed high levels of resistance to BNYVV transmitted by the vector, Polymyxa betae. Resistance to BNYVV was not decreased following co-infection of the plants with Beet soil borne virus and Beet virus Q that share the same vector with BNYVV. Similarly, co-infection with the aphid-transmitted Beet mild yellowing virus, Beet yellows virus (BYV), or with all of the aforementioned viruses did not affect the resistance to BNYVV, while they accumulated in roots. These viruses are common in most of the sugar beet growing areas in Europe and world wide. However, there was a competitive interaction between BYV and BMYV in sugar beet leaves, as infection with BYV decreased the titres of BMYV. Other interactions between the viruses studied were not observed. The results suggest that the engineered resistance to BNYVV expressed in the sugar beets of this study is efficient in roots and not readily compromised following infection of the plants with heterologous viruses.  相似文献   

11.
Longidorus attenuatus produces galls at the tips of roots of field crops, including sugar beet, growing in alkaline, sandy soils in eastern England. L. elongatus produces similar, but often larger, galls on the roots of sugar beet and other crops in sandy soils in the W. Midlands and in Fen peats. Trichodorus spp. cause ‘stubby root’ of sugar beet and can feed on many field crops. Seven species of Trichodorus were found in sandy soils in eastern England. L. attenuatus, L. elongatus and Trichodorus spp. aggregate around roots and stunt sugar beet and other crop plants. L. attenuatus is commoner below plough depth than in the topsoil, whereas T. cylindricus, T. pachy-dermus and T. anemones are more abundant in the topsoil. These nematodes cause some forms of ‘Docking disorder’.  相似文献   

12.
In 1967 and 1968 plots of sugar beet in two identically grown crops were shaded for successive four week periods starting on 13 June, 18 July and 22 August, and the growth of the plants compared with that on unshaded plots. At the beginning of each period in 1967 some shaded and unshaded plants received additional nitrogen, and in 1968 plants continuously shaded from June to September were compared with unshaded plants irrigated to equalize their water losses with those of the shaded plants. The weather in 1967 was sunny and dry and that in 1968 dull and wet, but the yields of dry matter, and particularly of sugar, of the unshaded crop in the 2 years were similar because, although net assimilation rate (E) was greater in 1967 than 1968, mean leaf area index (L) in 1968 was almost double that in the 1967 crop. Shading decreased the incoming radiation by 56%; it decreased E proportionally in 1967, increasing L slightly, but it decreased both E (by 44%) and L in 1968. The weights of dry matter and sugar in the roots of the shaded crop were consistently smaller at the end of shading and at final harvest in October in both years, and their weights, but not those of the tops or the whole plant, at final harvest over all shading treatments in both years were proportional to the amount of radiation received by the crop between June and September. Although shading greatly decreased the supply of photosynthate to the roots, it did not change the sugar content percentage of dry matter, except in the early stages of growth when the sugar content was rapidly increasing. Sugar content percentage of fresh weight of the roots was consistently decreased by shading, wholly because water content was increased relative to dry matter. Therefore the sugar yield of shaded plants was less because the dry weights of the roots were less, not because the partition of photosynthate between sugar storage and root growth changed. There appears to be a mechanism within the root operating over a wide range of photosynthate supply that maintains a nearly constant proportion of sucrose to non-sugar, contrary to the hypothesis that sugar stored in the roots is photosynthate in excess of what can be used in growth of the plant. However, in the extreme condition of continuous shading which drastically decreased the dry weights of all parts of the plant, sugar percentage of dry matter in the roots was decreased, but only from 80 to 70%. In 1967 extra nitrogen applied at the start of shading increased L and the dry weight of the tops in all periods, but had no effect on the dry weight of roots. Because 1968 was a wet year the irrigation treatment had no effect on E or L except for a slight increase in L during the first period; it had no effect on plant dry weight. Both irrigation and additional nitrogen decreased the sugar content percentage of fresh weight of the roots only by altering their water content; sugar percentage of dry matter was unaffected. None of these changes persisted until the final harvest in October.  相似文献   

13.
The effect of sugar beet seed inoculation with the bacterium Pseudomonas fluorescens and treatment with the fungicides Thiram 42‐S and Dithane S‐60 with and without seed inoculation aiming to control the root decay agents Pythium ultimum and Pythium debarianum was studied during a 2‐year trial on two soil types (Mollic Gleysols and Eutric Cambisols). The influence of the treatments on parameters of sugar beet yield and quality such as root yield, sugar content, sugar in molasses, sugar yield as well as percentage of the infected and decayed plants as a consequence of parasitic oomycete infestation will be described.  相似文献   

14.
The control of rhizomania, one of the most important diseases of sugar beet caused by the Beet necrotic yellow vein virus, remains limited to varietal resistance. In this study, we investigated the putative action of Bacillus amylolequifaciens lipopeptides in achieving rhizomania biocontrol through the control of the virus vector Polymyxa betae. Some lipopeptides that are produced by bacteria, especially by plant growth-promoting rhizobacteria, have been found to induce systemic resistance in plants. We tested the impact of the elicitation of systemic resistance in sugar beet through lipopeptides on infection by P. betae. Lipopeptides were shown to effectively induce systemic resistance in both the roots and leaves of sugar beet, resulting in a significant reduction in P. betae infection. This article provides the first evidence that induced systemic resistance can reduce infection of sugar beet by P. betae.  相似文献   

15.
Leaves of virus-free sugar-beet plants rarely became infected with Alternaria spp. in two field experiments at Cambridge in 1965. Infection with beet yellows virus (BYV) increased susceptibility of plants to Alternaria only slightly but infection with beet mild yellowing virus (BMYV) increased it greatly. There was a close association between the severity of Alternaria symptoms, shown by different breeding lines and varieties of sugar beet, and the losses of sugar yield which they sustained after infection with BYV and BMYV. Many lines and varieties were resistant to Alternaria even when infected with BMYV and their resistance seemed to be inherited as a dominant character. Individual plants of any one line or variety differed greatly in resistance to Alternaria, suggesting that selection should improve the present level of resistance. Spraying the foliage of Alternaria-susceptible varieties with fungicides had little effect on the severity of Alternaria symptoms or on sugar yield. This was probably because the wet summer of 1965 was ideal for the spread of Alternaria and because rain washed the fungicide deposits from the sprayed leaves.  相似文献   

16.
The effect of crop rotation and monocropping on the occurrence of bacteria with antagonistic activity toward Pythium debaryanum and Fusarium oxysporum was shown. Arthrobacter spp., fluorescent Pseudomonas spp. and actinomycetes were isolated from winter rape, sugar beet and winter barley rhizosphere and bulk soil from the plots of a long-term crop rotation experiment (18 years). The occurrence of mycoantagonistic isolates and their antibiosis level exhibited specificity for the site, crop and crop rotation. Mycoantagonistic activity was common among actinomycetes and fluorescent Pseudomonas spp. and less frequent among Arthrobacter spp. Antibiosis of fluorescent Pseudomonas spp. and Arthrobacter spp. was in general stronger against P. debaryanum than F. oxysporum. The highest percentage of antagonistic Pseudomonas spp. against P. debaryanum was in the plots of barley crop, while plots of winter rape showed higher frequency of antagonists against F. oxysporum. The highest antibiosis activity of Arthrobacter spp. against both pathogens occurred in isolates from barley and winter rape monoculture, and there were no F. oxysporum antagonists among these bacteria in sugar beet monoculture. Most of actinomycete isolates strongly inhibited growth of P. debaryanum and F. oxysporum. The percentage of mycoantagonistic actinomycetes and their antibiosis level were the highest in the 6-year crop rotation system.  相似文献   

17.
Root responses to insect pests are an area of plant defense research that lacks much information. We have identified more than 150 sugar beet root ESTs enriched for genes responding to sugar beet root maggot feeding from both moderately resistant, F1016, and susceptible, F1010, genotypes using suppressive subtractive hybridization. The largest number of identified F1016 genes grouped into the defense/stress response (28%) and secondary metabolism (10%) categories with a polyphenol oxidase gene, from F1016, identified most often from the subtractive libraries. The differential expression of the root ESTs was confirmed with RT-PCR. The ESTs were further characterized using macroarray-generated expression profiles from F1016 sugar beet roots following mechanical wounding and treatment of roots with the signaling molecules methyl jasmonate, salicylic acid and ethylene. Of the examined root ESTs, 20, 17 and 11% were regulated by methyl jasmonate, salicylic acid and ethylene, respectively, suggesting these signaling pathways are involved in sugar beet root defense responses to insects. Identification of these sugar beet root ESTs provides knowledge in the field of plant root defense and will lead to the development of novel control strategies for control of the sugar beet root maggot.Electronic Supplementary Material Supplementary material is available in the online version of this article at and is accessible for authorized users  相似文献   

18.
Lucerne plants in the first crop year as well as plants of spring wheat from different sites of the respective experimental plots showed differences in sap exudation from detopped roots or from stumps of the main shoots, reflecting differences in properties of the soil profile. The differences in sap exudation were observed at a time when the plants did not show any visible differences in water availability. Differences in the water potential deficit of the leaf blades of lucerne plants in the second crop year and of sugar beet plants, related to differences in soil profile properties, were observed in another series of experiments. Sugar beet plants showed a higher physiological lability than lucerne plants. The sites characterized by unfavourable plant-water-relations usually gave lower yields. The coefficients of variability for the yields of lucerne fresh matter from irrigated plots were three times lower than those for yields from plots without irrigation, influenced by soil heterogeneity.  相似文献   

19.
Agrobacterium rhizogenes-transformed sugar beet hairy roots, expressing dsRNA from the Beet necrotic yellow vein virus replicase gene, were used as a novel approach to assess the efficacy of three intron-hairpin constructs at conferring resistance to rhizomania disease. Genetically engineered roots were similar in morphology to wild type roots but were characterized by a profound abundancy, rapid growth rate and, in some cases, plagiotropic development. Upon challenge inoculation, seedlings showed a considerable delay in symptom development compared to untransformed or vector-transformed seedlings, expressing dsRNA from an unrelated source. The transgenic root system of almost all seedlings contained no or very low virus titer while the non-transformed aerial parts of the same plants were found infected, leading to the conclusion that the hairy roots studied were effectively protected against the virus. This readily applicable novel method forms a plausible approach to preliminarily evaluate transgenic rhizomania resistance before proceeding in transformation and whole plant regeneration of sugar beet, a tedious and time consuming process for such a recalcitrant crop species.  相似文献   

20.
THE EFFECTS OF DEFOLIATION AND LOSS OF STAND UPON YIELD OF SUGAR BEET   总被引:2,自引:0,他引:2  
Seedling pests of sugar beet cause defoliation and loss of stand. Attempts were made to assess the effects of these types of injury by means of field trials in which the defoliation and loss of stand were produced artificially shortly after singling. The main effects of these treatments were to modify the size of the plants without greatly influencing their percentage sugar content. Little loss of crop resulted until 50% of the leaf area or 50% of the plant population had been destroyed. The yield from re-sowing after removal of all the plants was inferior to that from stands depleted of half or two-thirds of their initial plant population. The relation between the results of artificial injury and the injury produced by seedling pests is briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号