首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
NF-kappaB essential modulator (NEMO) plays an essential role in the nuclear factor kappaB (NF-kappaB) pathway as a modulator of the two other subunits of the IkappaB kinase (IKK) complex, i.e. the protein kinases, IKKalpha and IKKbeta. Previous reports all envision the IKK complex to be a static entity. Using glycerol-gradient ultracentrifugation, we observed stimulus-dependent dynamic IKK complex assembly. In wild-type fibroblasts, the kinases and a portion of cellular NEMO associate in a 350-kDa high-molecular-mass complex. In response to constitutive NF-kappaB stimulation by Tax, we observed NEMO recruitment and oligomerization to a shifted high-molecular-mass complex of 440 kDa which displayed increased IKK activity. This stimulus-dependent oligomerization of NEMO was also observed using fluorescence resonance energy transfer after a transient pulse with interleukin-1beta. In addition, fully activated, dimeric kinases not bound to NEMO were detected in these Tax-activated fibroblasts. By glycerol gradient ultracentrifugation, we also showed that: (a) in fibroblasts deficient in IKKalpha and IKKbeta, NEMO predominantly exists as a monomer; (b) in NEMO-deficient fibroblasts, IKKbeta dimers are present that are less stable than IKKalpha dimers. Intriguingly, in resting Rat-1 fibroblasts, 160-kDa IKKalpha-NEMO and IKKbeta-NEMO heterocomplexes were observed as well as a significant proportion of NEMO monomer. These results suggest that most NEMO molecules do not form a tripartite IKK complex with an IKKalpha-IKKbeta heterodimer as previously reported in the literature but, instead, NEMO is able to form a complex with the monomeric forms of IKKalpha and IKKbeta.  相似文献   

2.
3.
4.
The IkappaB kinase (IKK) complex includes the catalytic components IKKalpha and IKKbeta in addition to the scaffold protein IKKgamma/NEMO. Increases in the activity of the IKK complex result in the phosphorylation and subsequent degradation of IkappaB and the activation of the NF-kappaB pathway. Recent data indicate that the constitutive activation of the NF-kappaB pathway by the human T-cell lymphotrophic virus, type I, Tax protein leads to enhanced phosphorylation of IKKgamma/NEMO by IKKbeta. To address further the significance of IKKbeta-mediated phosphorylation of IKKgamma/NEMO, we determined the sites in IKKgamma/NEMO that were phosphorylated by IKKbeta, and we assayed whether IKKgamma/NEMO phosphorylation was involved in modulating IKKbeta activity. IKKgamma/NEMO is rapidly phosphorylated following treatment of cells with stimuli such as tumor necrosis factor-alpha and interleukin-1 that activate the NF-kappaB pathway. By using both in vitro and in vivo assays, IKKbeta was found to phosphorylate IKKgamma/NEMO predominantly in its carboxyl terminus on serine residue 369 in addition to sites in the central region of this protein. Surprisingly, mutation of these carboxyl-terminal serine residues increased the ability of IKKgamma/NEMO to stimulate IKKbeta kinase activity. These results indicate that the differential phosphorylation of IKKgamma/NEMO by IKKbeta and perhaps other kinases may be important in regulating IKK activity.  相似文献   

5.
6.
The human herpesvirus 8 (HHV8, also called Kaposi's sarcoma-associated herpesvirus) has been linked to Kaposi's sarcoma and primary effusion lymphoma (PEL) in immunocompromised individuals. We demonstrate that PEL cell lines have a constitutively active NF-kappaB pathway, which is associated with persistent phosphorylation of IkappaBalpha. To elucidate the mechanism of NF-kappaB activation in PEL cell lines, we have investigated the role of viral FLICE inhibitory protein (vFLIP) in this process. We report that stable expression of HHV8 vFLIP in a variety of cell lines is associated with persistent NF-kappaB activation caused by constitutive phosphorylation of IkappaBalpha. HHV8 vFLIP gets recruited to a approximately 700-kDa IkappaB kinase (IKK) complex and physically associates with IKKalpha, IKKbeta, NEMO/IKKgamma, and RIP. HHV8 vFLIP is incapable of activating NF-kappaB in cells deficient in NEMO/IKKgamma, thereby suggesting an essential role of an intact IKK complex in this process. Our results suggest that HHV8 vFLIP might contribute to the persistent NF-kappaB activation observed in PEL cells by associating with and stimulating the activity of the cellular IKK complex.  相似文献   

7.
Cytokine treatment stimulates the IkappaB kinases, IKKalpha and IKKbeta, which phosphorylate the IkappaB proteins, leading to their degradation and activation of NF-kappaB regulated genes. A clear definition of the specific roles of IKKalpha and IKKbeta in activating the NF-kappaB pathway and the upstream kinases that regulate IKK activity remain to be elucidated. Here, we utilized small interfering RNAs (siRNAs) directed against IKKalpha, IKKbeta and the upstream regulatory kinase TAK1 in order to better define their roles in cytokine-induced activation of the NF-kappaB pathway. In contrast to previous results with mouse embryo fibroblasts lacking either IKKalpha or IKKbeta, which indicated that only IKKbeta is involved in cytokine-induced NF-kappaB activation, we found that both IKKalpha and IKKbeta were important in activating the NF-kappaB pathway. Furthermore, we found that the MAP3K TAK1, which has been implicated in IL-1-induced activation of the NF-kappaB pathway, was also critical for TNFalpha-induced activation of the NF-kappaB pathway. TNFalpha activation of the NF-kappaB pathway is associated with the inducible binding of TAK1 to TRAF2 and both IKKalpha and IKKbeta. This analysis further defines the distinct in vivo roles of IKKalpha, IKKbeta and TAK1 in cytokine-induced activation of the NF-kappaB pathway.  相似文献   

8.
9.
10.
Kamata H  Manabe T  Oka Si  Kamata K  Hirata H 《FEBS letters》2002,519(1-3):231-237
The cellular redox state regulates nuclear factor-kappaB (NF-kappaB) signaling systems. We investigated the effects of H2O2 on inhibitor of NF-kappaB (IkappaB) kinases (IKKalpha and IKKbeta), which phosphorylate IkappaB leading to its degradation and NF-kappaB activation. Tumor necrosis factor (TNF) stimulation increased IKK activity within 10 min, and then IKK activity decreased gradually within 30 min in HeLa cells. Stimulation of the cells with H2O2 induced a slight activation of IKK within 30 min. Furthermore, co-stimulation with TNF suppressed the downregulation of IKK and sustained the activation for more than 30 min. H2O2 also markedly activated IKK in cells that were pretreated with TNF or phorbol myristate acetate. Electrophoretic mobility shift assay revealed that H2O2 enhanced TNF-induced NF-kappaB activation. Studies using IKK mutants and an antibody against phosphorylated IKK proteins revealed that phosphorylation of serine residues, Ser180 of IKKalpha and Ser181 of IKKbeta, in the activation loops was essential for the H2O2-mediated activation of IKK. H2O2-induced activation of IKKalpha and IKKbeta was reduced by IKKbeta and IKKalpha kinase-negative mutants, respectively, indicating that IKKalpha and IKKbeta were stimulated by H2O2 in an interdependent manner. These results suggest that oxidative radical stress has stimulatory effects on NF-kappaB through the activation of IKK, which is mediated by the phosphorylation of serine residues in the activation loops.  相似文献   

11.
Toxoplasma gondii activates the NF-kappaB pathway in the infected host cell resulting in upregulation of pro-survival genes and prevention of apoptosis. Manipulation of the NF-kappaB cascade by T. gondii correlates with the localization of phosphorylated IkappaB at the parasitophorous vacuole membrane (PVM). This suggests a parasite-mediated event, involving the recruitment and activation of the host IkappaB kinase (IKK) complex, as has been observed with the related protozoan Theileria parva. In contrast to Theileria, confocal microscopy studies showed no apparent hijacking of IKKalpha, IKKbeta, or their activated phosphorylated forms at the T. gondii PVM. Remarkably, phosphorylation of IkappaBalpha at Ser 32/36 was observed at the PVM of T. gondii-infected IKKalpha-/-, IKKbeta-/- and IKKalpha/beta double-knockout (IKKalpha/beta-/-) fibroblasts, suggesting the involvement of a parasite kinase activity independent of host IKK. The presence of a putative T. gondii IkappaB kinase was examined by in vitro kinase assays using GST-IkappaBalpha constructs and protein extracts from both extracellular parasites and PVM fractions. Interestingly, an activity capable of phosphorylating IkappaBalpha at the critical Ser 32/36 sites was identified in parasite extracts, a property restricted to the IKK signalosome. Taken together, our data support the role for a T. gondii kinase involved in phosphorylation of host cell IkappaBalpha and suggest an unusual mechanism utilized by an intracellular pathogen capable of manipulating the NF-kappaB pathway.  相似文献   

12.
Two related kinases, IkappaB kinase alpha (IKKalpha) and IKKbeta, phosphorylate the IkappaB proteins, leading to their degradation and the subsequent activation of gene expression by NF-kappaB. IKKbeta has a much higher level of kinase activity for the IkappaB proteins than does IKKalpha and is more critical than IKKalpha in modulating tumor necrosis factor alpha activation of the NF-kappaB pathway. These results indicate an important role for IKKbeta in activating the NF-kappaB pathway but leave open the question of the role of IKKalpha in regulating this pathway. In the current study, we demonstrate that IKKalpha directly phosphorylates IKKbeta. Moreover, IKKalpha either directly or indirectly enhances IKKbeta kinase activity for IkappaBalpha. Finally, transfection studies to analyze NF-kappaB-directed gene expression suggest that IKKalpha is upstream of IKKbeta in activating the NF-kappaB pathway. These results indicate that IKKalpha, in addition to its previously described ability to phosphorylate IkappaBalpha, can increase the ability of IKKbeta to phosphorylate IkappaBalpha.  相似文献   

13.
14.
IKKgamma/NEMO is a protein that is critical for the assembly of the high molecular weight IkappaB kinase (IKK) complex. To investigate the role of IKKgamma/NEMO in the assembly of the IKK complex, we conducted a series of experiments in which the chromatographic distribution of extracts prepared from cells transiently expressing epitope-tagged IKKgamma/NEMO and the IKKs were examined. When expressed alone following transfection, IKKalpha and IKKbeta were present in low molecular weight complexes migrating between 200 and 400 kDa. However, when coexpressed with IKKgamma/NEMO, both IKKalpha and IKKbeta migrated at approximately 600 kDa which was similar to the previously described IKK complex that is activated by cytokines such as tumor necrosis factor-alpha. When either IKKalpha or IKKbeta was expressed alone with IKKgamma/NEMO, IKKbeta but not IKKalpha migrated in the higher molecular weight IKK complex. Constitutively active or inactive forms of IKKbeta were both incorporated into the high molecular weight IKK complex in the presence of IKKgamma/NEMO. The amino-terminal region of IKKgamma/NEMO, which interacts directly with IKKbeta, was required for formation of the high molecular weight IKK complex and for stimulation of IKKbeta kinase activity. These results suggest that recruitment of the IKKs into a high molecular complex by IKKgamma/NEMO is a crucial step involved in IKK function.  相似文献   

15.
Activation of NF-kappaB by the pro-inflammatory cytokines tumor necrosis factor (TNF) and interleukin-1 (IL-1) requires the IkappaB kinase (IKK) complex, which contains two kinases named IKKalpha and IKKbeta and a critical regulatory subunit named NEMO. Although we have previously demonstrated that NEMO associates with both IKKs, genetic studies reveal that only its interaction with IKKbeta is required for TNF-induced NF-kappaB activation. To determine whether NEMO and IKKalpha can form a functional IKK complex capable of activating the classical NF-kappaB pathway in the absence of IKKbeta, we utilized a panel of mouse embryonic fibroblasts (MEFs) lacking each of the IKK complex subunits. This confirmed that TNF-induced IkappaBalpha degradation absolutely requires NEMO and IKKbeta. In contrast, we consistently observed intact IkappaBalpha degradation and NF-kappaB activation in response to IL-1 in two separate cell lines lacking IKKbeta. Furthermore, exogenously expressed, catalytically inactive IKKbeta blocked TNF- but not IL-1-induced IkappaBalpha degradation in wild-type MEFs, and reconstitution of IKKalpha/beta double knockout cells with IKKalpha rescued IL-1- but not TNF-induced NF-kappaB activation. Finally, we have shown that incubation of IKKbeta-deficient MEFs with a cell-permeable peptide that blocks the interaction of NEMO with the IKKs inhibits IL-1-induced NF-kappaB activation. Our results therefore demonstrate that NEMO and IKKalpha can form a functional IKK complex that activates the classical NF-kappaB pathway in response to IL-1 but not TNF. These findings further suggest NEMO differentially regulates the fidelity of the IKK subunits activated by distinct upstream signaling pathways.  相似文献   

16.
17.
18.
The IkappaB kinase (IKK) complex, composed of two catalytic subunits (IKKalpha and IKKbeta) and a regulatory subunit (IKKgamma), is the key enzyme in activation of nuclear factor kappaB (NF-kappaB). To study the mechanism and structure of the complex, we wanted to recombinantly express IKK in a model organism that lacks IKK. For this purpose, we have recombinantly reconstituted all three subunits together in yeast and have found that it is biochemically similar to IKK isolated from human cells. We show that there is one regulatory subunit per kinase subunit. Thus, the core subunit composition of IKKalpha.beta.gamma complex is alpha(1)beta(1)gamma(2), and the core subunit composition of IKKbeta.gamma is beta(2)gamma(2). The activity of the IKK complex (alpha+beta+gamma or beta+gamma) expressed in yeast (which lack NF-kappaB and IKK) is 4-5-fold higher than an equivalent amount of IKK from nonstimulated HeLa cells. In the absence of IKKgamma, IKKbeta shows a level of activity similar to that of IKK from nonstimulated HeLa cells. Thus, IKKgamma activates IKK complex in the absence of upstream stimuli. Deleting the gamma binding domain of IKKbeta or IKKalpha prevented IKKgamma induced activation of IKK complex in yeast, but it did not prevent the incorporation of IKKgamma into IKK and large complex formation. The possibility of IKK complex being under negative control in mammalian cells is discussed.  相似文献   

19.
Chen G  Cao P  Goeddel DV 《Molecular cell》2002,9(2):401-410
The IKK complex, containing two catalytic subunits IKKalpha and IKKbeta and a regulatory subunit NEMO, plays central roles in signal-dependent activation of NF-kappaB. We identify Cdc37 and Hsp90 as two additional components of the IKK complex. IKKalpha/IKKbeta/NEMO and Cdc37/Hsp90 form an approximately 900 kDa heterocomplex, which is assembled via direct interactions of Cdc37 with Hsp90 and with the kinase domain of IKKalpha/IKKbeta. Geldanamycin (GA), an antitumor agent that disrupts the formation of this heterocomplex, prevents TNF-induced activation of IKK and NF-kappaB. GA treatment reduces the size of the IKK complex and abolishes TNF-dependent recruitment of the IKK complex to TNF receptor 1 (TNF-R1). Therefore, heterocomplex formation with Cdc37/Hsp90 is a prerequisite for TNF-induced activation and trafficking of IKK from the cytoplasm to the membrane.  相似文献   

20.
This study presents a molecular inhibitory mechanism by Fas-associated factor 1 (FAF1) on IkappaB kinase (IKK) activation, where divergent NF-kappaB-activating stimuli converge. FAF1 interacts with IKKbeta in response to proinflammatory stimuli (such as tumor necrosis factor-alpha, interleukin-1beta, and lipopolysaccharide) and suppresses IKK activation. Interaction of the leucine-zipper domain of IKKbeta with FAF1 affected the IKK heterocomplex (IKKalpha/beta) and homocomplex (IKKalpha/alpha, IKKbeta/beta) formations and attenuated IKKgamma recruitment to IKKbeta. Overexpression of FAF1 reduced the level of IKKbeta activity, whereas FAF1 depletion increased the activity. These results indicate that FAF1 inhibits IKK activation and its downstream signaling by interrupting the IKK complex assembly through physical interaction with IKKbeta. Taken together, FAF1 robustly suppresses NF-kappaB activation through the inhibition of IKK activation in combination with previously reported cytoplasmic retention of NF-kappaB p65 (Park, M. Y., Jang, H. D., Lee, S. Y., Lee, K. J., and Kim, E. (2004) J. Biol. Chem. 279, 2544-2549). Such redundant suppression would prevent inadvertent activation of the NF-kappaB pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号