首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Because calcium antagonist drugs increase contracture in both control and malignant hyperpyrexia susceptible (MHS) skeletal muscle, the effect of these drugs on the sarcoplasmic reticulum (SR) was investigated. 2. The calmodulin antagonist drugs inhibited the Ca2+ dependent ATPase activity and the ATP-dependent Ca2+ uptake, and accelerated the efflux of Ca2+ from isolated SR preparations from both control and MHS skeletal muscle. These effects of calmodulin antagonist drugs on SR Ca2+ transport functions were consistent with their in vitro pharmacological effects on control and MHS muscle.  相似文献   

2.
Abnormal ryanodine receptor channels in malignant hyperthermia.   总被引:14,自引:7,他引:7       下载免费PDF全文
Previous studies have demonstrated a defect associated with the calcium release mechanism of sarcoplasmic reticulum (SR) from individuals susceptible to malignant hyperthermia (MH). To examine whether SR calcium release channels were indeed altered in MH, SR vesicles were purified from normal and MH susceptible (MHS) porcine muscle. The Ca2+ dependence of calcium efflux rates from 45Ca2(+)-filled SR vesicles was then compared with the Ca2+ dependence of single-channel recordings of SR vesicles incorporated into planar lipid bilayers. The rate constants of 45Ca2+ efflux from MHS SR were two to threefold larger than from normal SR over a wide range of myoplasmic Ca2+. Normal and MHS single channels were progressively activated in a similar fashion by cis Ca2+ from pCa 7 to 4. However, below pCa 4, normal channels were inactivated by cis Ca2+, whereas MHS channels remained open for significantly longer times. The altered Ca2+ dependence of channel inactivation in MHS SR was also evident when Ca2+ was increased on the trans side while cis Ca2+ was held constant. We propose that a defect in a low-affinity Ca2+ binding site is responsible for the altered gating of MHS SR channels. Such a defect could logically result from a mutation in the gene encoding the calcium release channel, providing a testable hypothesis for the molecular basis of this inherited disorder.  相似文献   

3.
Malignant hyperthermia (MH) results from a defect of calcium release control in skeletal muscle that is often caused by point mutations in the ryanodine receptor gene (RYR1). In malignant hyperthermia-susceptible (MHS) muscle, calcium release responds more sensitively to drugs such as halothane and caffeine. In addition, experiments on the porcine homolog of malignant hyperthermia (mutation Arg615Cys in RYR1) indicated a higher sensitivity to membrane depolarization. Here, we investigated depolarization-dependent calcium release under voltage clamp conditions in human MHS muscle. Segments of muscle fibers dissected from biopsies of the vastus lateralis muscle of MHN (malignant hyperthermia negative) and MHS subjects were voltage-clamped in a double vaseline gap system. Free calcium was determined with the fluorescent indicator fura-2 and converted to an estimate of the rate of SR calcium release. Both MHN and MHS fibers showed an initial peak of the release rate, a subsequent decline, and rapid turn-off after repolarization. Neither the kinetics nor the voltage dependence of calcium release showed significant deviations from controls, but the average maximal peak rate of release was about threefold larger in MHS fibers.  相似文献   

4.
Using the rapid filtration technique to investigate Ca2+ movements across the sarcoplasmic reticulum (SR) membrane, we compare the initial phases of Ca2+ release and Ca2+ uptake in malignant hyperthermia susceptible (MHS) and normal (N) pig SR vesicles. Ca2+ release is measured from passively loaded SR vesicles. MHS SR vesicles present a 2-fold increase in the initial rate of calcium release induced by 0.3 microM Ca2+ (20.1 +/- 2.1 vs. 6.3 +/- 2.6 nmol mg-1 s-1). Maximal Ca2+ release is obtained with 3 microM Ca2+. At this optimal concentration, rate of Ca2+ efflux in absence of ATP is 55 and 25 nmol mg-1 s-1 for MHS and N SR, respectively. Ca(2+)-induced Ca2+ release is inhibited by Mg2+ in a dose-dependent manner for both MHS and N pig SR vesicles (K1/2 = 0.2 mM). Caffeine (5 mM) and halothane (0.01% v/v) increase the Ca2+ sensitivity of Ca(2+)-induced Ca2+ release. ATP (5 mM) strongly enhances the rate of Ca2+ efflux (to about 20-40-fold in both MHS and N pig SR vesicles). Furthermore, both types of vesicles do not differ in their high-affinity site for ryanodine (Kd = 12 nM and Bmax = 6 pmol/mg), lipid content, ATPase activity and initial rate of Ca2+ uptake (0.948 +/- 0.034 vs. 0.835 +/- 0.130 mumol mg-1 min-1 for MHS and N SR, respectively). Our results show that MH syndrome is associated to a higher rate of Ca2+ release in the earliest phase of the calcium efflux.  相似文献   

5.
Abnormal sarcoplasmic reticulum ryanodine receptor in malignant hyperthermia   总被引:17,自引:0,他引:17  
Previous studies have demonstrated that skeletal muscle from individuals susceptible to malignant hyperthermia (MH) has a defect associated with the mechanism of calcium release from its intracellular storage sites in the sarcoplasmic reticulum (SR). In this report we demonstrate that the [3H]ryanodine receptor of isolated MH-susceptible (MHS) porcine heavy SR exhibits an altered Ca2+ dependence of [3H]ryanodine binding at the low affinity Ca2+ site as well as a lower Kd for ryanodine (92 versus 265 nM) when compared to normal porcine SR. The Bmax of the normal and MHS [3H] ryanodine receptor (9.3-12.6 pmol/mg) was not significantly different, and analysis of MHS and normal SR proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis did not reveal a significant difference in the intensity of Coomassie Blue staining of the spanning protein/ryanodine receptor region of the gels (Mr greater than 300,000). We also find that MHS porcine muscle intact fiber bundles exhibit a 5-10-fold lower ryanodine threshold for twitch and tetanus inhibition, and contracture onset when compared to normal muscle. Since the SR ryanodine receptor is a calcium release channel as well as a component intimately involved in transverse tubule-SR communication, abnormalities in the skeletal muscle ryanodine receptor may be responsible for the abnormal SR calcium release and contractile properties demonstrated by MHS muscle.  相似文献   

6.
Sarcolemmal properties implicated in the skeletal muscle disorder, malignant hyperthermia (MH), were examined using sarcolemma-membrane vesicles isolated from normal and MH-susceptible (MHS) porcine skeletal muscle. MHS and normal sarcolemma did not differ in the distribution of the major proteins, cholesterol or phospholipid content, vesicle size and sidedness, (Na+ + K+)-ATPase activity, ouabain binding, or adenylate cyclase activity (total and isoproterenol sensitivity). The regulation of the initial rates of MHS and normal sarcolemmal ATP-dependent calcium transport (calcium uptake after 1 min) by Ca2+ (K1/2 = 0.64-0.81 microM), calmodulin, and cAMP-dependent protein kinase were similar. However, when sarcolemmal calcium content was measured at either 2 or 20 min after the initiation of active calcium transport, a significant difference between MHS and normal sarcolemmal calcium uptake became apparent, with MHS sarcolemma accumulating approximately 25% less calcium than normal sarcolemma. Calcium transport by MHS and normal sarcolemma, at 2 or 20 min, had a similar calmodulin dependence (C1/2 = 150 nM), and was stimulated to a similar extent by cAMP-dependent protein kinase or calmodulin. Halothane inhibited MHS and normal sarcolemmal active calcium uptake in a similar fashion (half-maximal inhibition at 10 mM halothane), while dantrolene (30 microM) and nitrendipine (1 microM) had little effect on either MHS or normal sarcolemmal calcium transport. After 20 min of ATP-supported calcium uptake, 2 mM EGTA plus 10 microM sodium orthovanadate were added to initiate sarcolemmal calcium efflux. Following an initial rapid phase of calcium release, an extended slow phase of calcium efflux (k = 0.012 min-1) was similar for both MHS and normal sarcolemma vesicles. We conclude that although a number of sarcolemmal properties, including passive calcium permeability, are normal in MH, a small but significant defect in MHS sarcolemmal ATP-dependent calcium transport may contribute to the abnormal calcium homeostasis and altered contractile properties of MHS skeletal muscle.  相似文献   

7.
The effect of intravesicular and extravesicular calcium concentration on the passive efflux from sarcoplasmic reticulum (SR) vesicles isolated from cardiac and skeletal muscle was determined by measuring net efflux of calcium after stopping pump-mediated fluxes. The apparent permeability, calculated as the passive efflux divided by the total intravesicular calcium, depended on calcium load. This dependence of the apparent permeability on calcium load could be explained by the presence of intravesicular calcium-binding sites with a dissociation constant less than 10(-3) M. When the intravesicular bound calcium was taken into account, passive calcium efflux was found to be linearly related to the difference in calcium concentration across the SR membrane. Thus the permeability of the SR membrane is independent of intravesicular and extravesicular calcium concentration in the ranges investigated. The average first order rate constant for passive calcium efflux for six preparations was 0.8 +/- 0.2 min-1 for skeletal and 0.7 +/- 0.1 min-1 for cardiac SR. The amount of intravesicular bound calcium for the same preparations was 33 +/- 6 nmol mg-1 for skeletal and 13 +/- 2 nmol mg-1 for cardiac SR. The first order rate constants were unaffected by Mg concentration between 0.1 +/- 15.1 mM and by the presence of an ATP-regenerating system. The results suggest that some minimal calcium load may be required in order to observe a substantial passive calcium efflux, the passive calcium efflux is not carrier mediated, and passive calcium efflux is not a likely route of calcium release during excitation-contraction coupling.  相似文献   

8.
We have proposed that the naturally occurring alkaloid ryanodine reduces the release of calcium from the sarcoplasmic reticulum (SR) in cardiac muscle cells. We summarize the data that support this hypothesis and discuss possible mechanisms for 1) the differences in sensitivity to ryanodine displayed by intact skeletal and cardiac muscle preparations vs. that of skinned cardiac cells and isolated SR membranes, 2) the ability of ryanodine to cause either an increase or a decrease in calcium accumulation by isolated skeletal muscle SR vesicles depending on experimental conditions, and 3) the positive inotropic effects produced by ryanodine in cardiac muscle preparations under certain experimental circumstances. In addition, we also show how ryanodine can be used to evaluate the contributions made by SR calcium release to cellular events in striated muscle.  相似文献   

9.
In this study, we report that sphingosine is a potent inhibitor of sarcoplasmic reticulum (SR) calcium release. Evidence is presented demonstrating a direct effect of sphingosine on the SR ryanodine receptor. Calcium release from "skinned" rabbit skeletal muscle fibers and isolated junctional SR derived from the terminal cisternae (TC) was measured in response to caffeine, doxorubicin, 5'-adenylyl-beta,gamma-imidodiphosphate or calcium. Sphingosine inhibited caffeine-induced release in a dose-dependent manner with an IC50 of 0.1 microM for the single muscle fibers and 0.5 microM for the isolated TC vesicles. Near complete blockage of TC calcium release rate was observed with 3 microM sphingosine. Neither sphingomyelin nor sphingosylphosphorylcholine had any effect at the 3 microM level, suggesting that the sphingosine effect was specific. Doxorubicin-induced calcium release and spontaneous calcium release were also blocked by sphingosine. Sphingosine was also capable of stimulating calcium transport in the isolated TC vesicles without an effect on Ca-ATPase activity. Ruthenium red was not capable of substantial additional stimulation of calcium transport nor inhibition of calcium release beyond the action of sphingosine. Sphingosine's blockage of calcium release was not reversed by the protein kinase inhibitor, 1-(5-isoquinolinesulfonyl)-2- methylpiperazine dihydrochloride, suggesting that the action of sphingosine on calcium release was not dependent on ryanodine receptor phosphorylation. Sphingosine significantly increased (8-fold) the Kd for specific [3H]ryanodine binding to TC membranes and decreased the Bmax with a dose dependence similar to the inhibition of calcium release, but sphingosine did not affect the pCa tension relationship of skinned skeletal muscle fibers. These data are consistent with a direct effect of submicromolar sphingosine on the ryanodine receptor. Substantially higher concentrations of sphingosine (30-50 microM) or sphingosylphosphorylcholine (10-20 microM) were capable of inducing calcium release by themselves. Preliminary data indicate that the transverse tubule and not the SR contain substantial sphingomyelinase activity consistent with a transverse tubule source of sphingosine production. Considering that sphingosine is found in micromolar concentrations in some cells, our data indicate that sphingosine generated by the transverse tubule membranes may be a physiologically relevant mechanism for modulating SR calcium release.  相似文献   

10.
The calcium-binding glycoprotein isolated from mitochondria can be shown to move from one mitochondrial compartment to another as a function of calcium and magnesium presence as well as calcium transport. The movement is reversible invitro and the possibility is therefore considered that the glycoprotein may behave as a mobile calcium-carrier. In the presence of acetate and phosphate, calcium-pre-loaded mitochondria release the cation upon addition of uncoupling concentrations of pentachlorophenol. The rate of calcium efflux can be modulated either by changing pentachlorophenol or phosphate concentrations. Simultaneously a release of calcium-binding glycoprotein can be detected and a negative linear relation has been found between amount of glycoprotein released and rate of calcium passive efflux. The data are interpreted to indicate that calcium efflux occurs only when the glycoprotein is bound to the mitochondrial membranes.  相似文献   

11.
Micromolar concentrations of copper (Cu2+) and cysteine induce rapid efflux of calcium from sarcoplasmic reticulum (SR) vesicles. This effect appears to be due to a Cu2+-catalyzed oxidation of the added cysteine to a critical sulfhydryl group on the release protein from sarcoplasmic reticulum (J. L. Trimm, G. Salama, and J. J. Abramson (1986) J. Biol. Chem. 261, 16092-16098). The data presented here indicate that adenine nucleotides synergistically stimulate copper/cysteine (oxidation)-induced calcium efflux from SR vesicles. The order of effectiveness in stimulating calcium efflux is ATP greater than AMP-PCP greater than cAMP greater than AMP greater than adenine approximately NAD approximately NADH. Non-adenine-containing nucleotides such as GTP, CTP, UTP, and ITP and the high energy phosphate compound, acetyl phosphate, were ineffective in stimulating oxidation-induced calcium efflux. The relative effectiveness of various adenine nucleotides in stimulating calcium-induced calcium efflux and oxidation-induced calcium efflux are identical, suggesting that a common mode of action is involved when calcium release is triggered by either method. The stimulatory effect of the adenine nucleotides on oxidation-induced efflux is independent of external magnesium concentration and independent of the magnesium gradient across the SR membrane.  相似文献   

12.
When compared to normal pig sarcoplasmic reticulum (SR), SR from malignant hyperthermia susceptible (MHS) porcine skeletal muscle has been shown to exhibit an increased rate of calcium release, as well as alterations in [3H]ryanodine-binding activity in the presence of microM Ca2+ (Mickelson et al., 1988, J. Biol. Chem. 263, 9310). In the present study, various stimulators (adenine nucleotides and caffeine) and inhibitors (ruthenium red and Mg2+) of the SR calcium release channel were examined for effects on MHS and normal SR [3H]ryanodine binding. The apparent affinity of the MHS SR receptor for ryanodine in the presence of 10 mM ATP (Kd = 6.0 nM) or 10 mM caffeine (Kd = 28 nM) was significantly greater than that of the normal SR (Kd = 8.5 and 65 nM in 10 mM ATP or caffeine, respectively), the Bmax (12-16 pmol/mg) was similar in all cases. The Ca2+(0.5) for inhibition of [3H]ryanodine binding in the presence of 5 mM AMPPNP (238 vs 74 microM for MHS and normal SR, respectively) and the Ca2+(0.5) for stimulation of [3H]ryanodine binding in the presence of 5 mM caffeine (0.049 vs 0.070 microM for MHS and normal SR, respectively) were also significantly different. Furthermore, in the presence of optimal Ca2+, MHS SR [3H]ryanodine binding was more sensitive to caffeine stimulation (C0.5 of 1.7 vs 3.4 mM) and was less sensitive to ruthenium red (C0.5 of 1.9 vs 1.2 microM) or Mg2+ inhibition (C0.5 of 0.34 vs 0.21 mM) than was normal SR. These results further support the hypothesis that differences in the ryanodine/receptor calcium release channel regulatory properties are responsible for the abnormal calcium releasing activity of MHS SR.  相似文献   

13.
The copper containing phthalocyanine dyes, alcian blue, copper phthalocyanine tetrasulfonic acid, and Luxol fast blue MBSN are found to induce rapid calcium efflux from actively loaded sarcoplasmic reticulum (SR) vesicles. Alcian blue (5 microM), with 1 mM free Mg2+ triggered Ca2+ efflux at rates greater than 20 nmol/mg of SR/s. As in the case of Ca2+ efflux induced by calcium, heavy metals, or SH oxidation with Cu2+/cysteine, efflux induced by phthalocyanines is also stimulated by adenine containing nucleotides and inhibited by millimolar Mg2+ and submicromolar ruthenium red (RR). In addition, analogs of RR, such as hexamminecobalt(III) chloride or hexammineruthenium(III) chloride also inhibit Ca2+ efflux but are effective at somewhat higher concentrations (approximately 50 microM). Calcium release stimulated by phthalocyanines is specific for SR derived from the terminal cisternae region rather than longitudinal SR. Preincubation of alcian blue with the reducing agents, sodium dithionite, dithiothreitol, or cysteine causes complete loss of Ca2+ release activity from SR vesicles. Reoxidation of the alcian blue leads to return of the Ca2+ release activity of the phthalocyanine dye. The copper containing phthalocyanine dyes appear to cause rapid Ca2+ release from SR vesicles by oxidizing sulfhydryl groups associated with the calcium release channel. Moreover, phthalocyanines appear to act by oxidizing a pair of neighboring sulfhydryls to a disulfide because subsequent additions of the reducing agent dithiothreitol promote the closure of the Ca2+ channel and calcium re-uptake.  相似文献   

14.
To elucidate the mechnism by which quercetin enhances the rate of tension development in skinned muscle fibers, effects on calcium release from longitudinal tubule-derived SR (LSR) after phosphate-supported calcium uptake were examined. In all studies, 100 μM quercetin (which inhibits initial calcium uptake velocity 85%) was added at or shortly after the time calcium content reached a maximum at various extravesicular Ca2+ concentrations (Cao). At moderate Cao (0.2–1.0 μM). where spontaneous calcium release rate depended on Cao, quercetin caused a marked stimulation of calcium release. This was accompanied by a 60% reduction in calcium influx and a 30-fold increase in calcium efflux. Thus, the previously reported quercetin-induced increase in the rate of tension development by skinned muscle fibers may result, at least in part, from sensitization of Ca2+-triggered calcium release to lower Cao.  相似文献   

15.
In striated muscle contraction is under the tight control of myoplasmic calcium concentration ([Ca2+]i): the elevation in [Ca2+]i and the consequent binding of calcium to troponin C enables, while the decrease in [Ca2+]i prevents the actin-myosin interaction. Calcium ions at rest are stored in the sarcoplasmic reticulum (SR) from which they are rapidly released upon the depolarisation of the sarcolemmal and transverse (T-) tubular membranes of the muscle cell. The protein responsible for this controlled and fast release of calcium is the calcium release channel found in the membrane of the terminal cisternae of the SR. This review focuses on the physiological and pharmacological modulators of the calcium release channel and tries to draw an up-to-date picture of the events that occur between T-tubular depolarisation and the release of calcium from the SR.  相似文献   

16.
Mechanisms of calcium release in sarcoplasmic reticulum.   总被引:2,自引:0,他引:2  
G Inesi  N Malan 《Life sciences》1976,18(8):773-779
The involvement of Sarcoplasmic Reticulum (SR) in relaxation of skeletal muscle has been studied extensively since vesicular fragments of SR membrane were found in the microsomal fraction of muscle homogenates (1,2). It was shown that the isolated SR vesicles exhibit ATP dependent calcium transport in vitro, reducing the Ca2+ concentration in the medium to levels (3) and at rates (4,5) compatible with relaxation of myofibrils in physiological conditions (6).The question of calcium release, however, has been elusive for a long time. In this regard it is known that skeletal muscle SR is able to store an amount of calcium which is sufficient for activation of myofibrils. Therefore, it is simply assumed that upon membrane excitation calcium is released from SR, thereby raising the Ca2+ concentration in the myoplasm and initiating contraction.Recently various experiments were performed demonstrating that calcium release from SR can occur by different mechanisms of great interest and possibly of physiological relevance. These mechanisms will be discussed here.  相似文献   

17.
A model is proposed to describe the interval-strength relationship in mammalian cardiac muscle in terms of "discrete" calcium movements associated with each cycle. The sarcoplasmic reticulum is assumed to be comprised of three functional sub-compartments: (1) The "main calcium store" which contains most of the calcium (predominantly bound) and is considered, due to its large buffering capacity, to account for the "long-term memory" lasting 7-10 beats. (2) The "releasable terminal" which contains the calcium readily available for release (all or most of it free) and accounts for the "short-term memory" which affects the subsequent beat. (3) The longitudinal network of the SR recirculating the myofibrillar calcium to the "main calcium store". The total content of calcium in the main store is determined by the transsarcolemmal influx and efflux. While influx occurs only during depolarization, efflux occurs during the whole cardiac cycle. The amount of free calcium in the main store is determined by an equilibrium equation. The release of calcium from the "releasable terminal" is governed by a "concentration-dependent" mechanism. This implies that when the concentration in the "releasable terminal" increases, the fraction released increases and the residual calcium left for the subsequent contraction decreases. The model predicts the following interval-strength relationships: steady state peak tension; changes from one steady rate to another; restitution curves; post-stimulation potentiation; paired stimulation; premature beats; post-extrasystolic potentiation following interpolated, basal or complimentary interval.  相似文献   

18.
Micromolar concentrations of cupric ion (Cu2+) and mercaptans such as cysteine, cysteamine, and homocysteine trigger large and rapid Ca2+ release from skeletal muscle sarcoplasmic reticulum (SR) vesicles. At the concentrations used, Cu2+ alone does not induce Ca2+ release nor does cysteine alone; both are required to induce Ca2+ release from SR. Cu2+ is known to catalyze the autooxidation of cysteine to its disulfide form cystine; Cu2+/mercaptan-induced Ca2+ release appears to be caused by Cu2+-catalyzed formation of a mixed disulfide between the exogenous mercaptan and a critical sulfhydryl on a transmembrane protein. In the oxidized state the SR is highly permeable to Ca2+. Supporting evidence for this interpretation is as follows. The order of Ca2+-releasing reactivity of the mercaptans is the same as the order in which these compounds undergo oxidation to disulfide forms in the presence of Cu2+. Ca2+ efflux induced by cysteine and Cu2+ can be reversed by the addition of the disulfide reducing agent dithiothreitol. Hypochlorous acid and plumbagin, both potential sulfhydryl oxidants, induce rapid Ca2+ efflux from SR vesicles; in addition, Cu2+, which catalyzes H2O2 oxidation of cysteine, enhances H2O2-induced release. Oxidation-induced Ca2+ release from SR can be partially reversed or blocked by ruthenium red or the local anesthetics procaine and tetracaine. The Ca2+ efflux rates are strongly Mg2+ dependent and are significantly higher in heavy SR than in light SR. These data suggest that the Ca2+ efflux thus induced is via the "Ca2+ release channel" and that the oxidation state of a critical sulfhydryl group on this protein may be the principal means by which the Ca2+ permeability of the SR is regulated in vivo.  相似文献   

19.
Excitation contraction (e-c) coupling in skeletal and cardiac muscles involves an interaction between specialized junctional domains of the sarcoplasmic reticulum (SR) and of exterior membranes (either surface membrane or transverse (T) tubules). This interaction occurs at special structures named calcium release units (CRUs). CRUs contain two proteins essential to e-c coupling: dihydropyridine receptors (DHPRs), L-type Ca(2+) channels of exterior membranes; and ryanodine receptors (RyRs), the Ca(2+) release channels of the SR. Special CRUs in cardiac muscle are constituted by SR domains bearing RyRs that are not associated with exterior membranes (the corbular and extended junctional SR or EjSR). Functional groupings of RyRs and DHPRs within calcium release units have been named couplons, and the term is also loosely applied to the EjSR of cardiac muscle. Knowledge of the structure, geometry, and disposition of couplons is essential to understand the mechanism of Ca(2+) release during muscle activation. This paper presents a compilation of quantitative data on couplons in a variety of skeletal and cardiac muscles, which is useful in modeling calcium release events, both macroscopic and microscopic ("sparks").  相似文献   

20.
Thapsigargin is a natural product that specifically inhibits all known SERCA calcium pumps with high affinity. We investigated the effects of thapsigargin on cardiac sarcoplasmic reticulum (SR) by measuring the oxalate-supported calcium uptake rate in the unfractionated homogenate and in the isolated SR fraction. The uptake rate in both the isolated SR and unfractionated homogenate are stimulated about two-fold by preincubation with high concentrations of ryanodine, which closes the SR efflux channel. Thapsigargin stoichiometrically and completely inhibited the calcium uptake rate in the isolated SR, both in the presence and absence of SR channel blockade. In contrast, thapsigargin nearly completely inhibited the homogenate calcium uptake only in the absence of SR channel blockade; in the presence of blockade, about 20% of the uptake activity was insensitive to thapsigargin. This result unmasks a thapsigargin-insensitive, ryanodine-sensitive component of calcium uptake in the heart. This activity is in an oxalate-permeable pool and is inhibited by cyclopiazonic acid, another inhibitor of the SERCA calcium pumps. There was no TG-insensitive activity in the rat EDL muscle homogenate. The absence of thapsigargin-insensitive uptake activity in the isolated SR can be attributed to its inactivation during the isolation of the SR. The oxalate permeability and ryanodine sensitivity suggest that the TG-insensitive calcium uptake activity is closely related to the classical SR. The different thapsigargin sensitivities suggests the existence of two kinds of intracellular calcium pumps in the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号