首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The response of Thellungiella (Thellungiella holophila) and Arabidopsis (Arabidopsis thaliana) callus to salt stress was investigated. The relative growth rate of Arabidopsis calli decreased with increased levels of NaCl. However, the relative growth rate of Thellungiella calli increased with higher levels of NaCl, reaching maximal growth at 100 mM NaCl, but then subsequently declined. A similar pattern of accumulation of proline, glycine betaine, and total flavonoid was observed; whereas, accumulation of treholase continued to increase with increasing NaCl levels in both Thellungiella and Arabidopsis calli. Overall, with increasing NaCl levels, accumulation of glycine betaine, total flavonoid, and treholase was higher in Thellungiella than in Arabidopsis calli; while, proline and sucrose contents were higher in Arabidopsis than in Thellungiella calli. These results indicated that compatible solutes were involved in the response of plant calli to salt stress, and that the halophyte Thellungiella and glycophyte Arabidopsis selected different compatible solutes to adapt to salt stress environments. X. Zhao and H. J. Tan have contributed equally to the paper.  相似文献   

2.
Compatible solute biosynthesis in cyanobacteria   总被引:1,自引:0,他引:1  
Compatible solutes are a functional group of small, highly soluble organic molecules that demonstrate compatibility in high amounts with cellular metabolism. The accumulation of compatible solutes is often observed during the acclimation of organisms to adverse environmental conditions, particularly to salt and drought stress. Among cyanobacteria, sucrose, trehalose, glucosylglycerol and glycine betaine are used as major compatible solutes. Interestingly, a close correlation has been discovered between the final salt tolerance limit and the primary compatible solute in these organisms. In addition to the dominant compatible solutes, many strains accumulate mixtures of these compounds, including minor compounds such as glucosylglycerate or proline as secondary or tertiary solutes. In particular, the accumulation of sucrose and trehalose results in an increase in tolerance to general stresses such as desiccation and high temperatures. During recent years, the biochemical and molecular basis of compatible solute accumulation has been characterized using cyanobacterial model strains that comprise different salt tolerance groups. Based on these data, the distribution of genes involved in compatible solute synthesis among sequenced cyanobacterial genomes is reviewed, and thereby, the major compatible solutes and potential salt tolerance of these strains can be predicted. Knowledge regarding cyanobacterial salt tolerance is not only useful to characterize strain-specific adaptations to ecological niches, but it can also be used to generate cells with increased tolerance to adverse environmental conditions for biotechnological purposes.  相似文献   

3.
With the aim to differentiate the ionic and osmotic components of salt stress, short and long-term changes in free polyamines and proline induced by iso-osmotic concentrations of NaCl (0.1 mol/L and 0.2 mol/L) and mannitol (0.2 mol/L and 0.4 mol/L) were determined in Fraxinus angustifolia callus. The peculiarities of the short-term responses were: i) a very early (30 min) and temporary increase in Putrescine (Pu) and Spermine (Spm) as a consequence of salt treatment, and ii) a continuous accumulation of Spermidine (Spd) and Spm in response to mannitol. The changes of Proline (Pro) were quite limited both in the short and in the long term, and generally occurred later than Polyamine (PAs) changes took place, suggesting a regulatory mechanism of PAs metabolism on Pro biosynthesis. In the long-term, no drastic accumulations of Pro or PAs in response to NaCl and mannitol were observed, suggesting that their physiological role is unlikely to be that of osmo-compatible solutes in this plant system. The salt induced a higher callus growth inhibition effect than did mannitol and this inhibition was associated with the reduction of endogenous levels of PAs, especially Pu. However, while a diverging time course was observed under lethal salt concentration (0.2 mol/L NaCl), a high parallelism in the endogenous changes of Pro and Pu was observed under all non-lethal conditions (control--0.2 and 0.4 mol/L mannitol--0.1 mol/L NaCl). Therefore the synchronous changes of Pro and Pu can be considered as a physiological trait associated with cell survival. These results indicate a strong metabolic co-ordination between PAs and Pro pathways and suggest that the metabolic fluxes through these pathways start competing only when the stress level is high enough to be lethal for cells.  相似文献   

4.
The physiological changes induced by a daily increase of NaCl level, over a period of 4 d, were studied in leaves of the salt-sensitive cultivated tomato species Lycopersicon esculentum and its wild salt-tolerant relative Lycopersicon pennellii. A higher solute contribution to the osmotic adjustment was observed in NaCl-treated leaves of L. pennellii than in those of L. esculentum. This response together with the higher accumulation of inorganic solutes in the wild species and of organic solutes in the cultivated species verified the different salt tolerance mechanisms operating in the two species in the short-term. With regard to the changes induced by salt stress on the free polyamine levels, the putrescine and spermine levels increased with salinity, whereas the spermine levels decreased in both tomato species; nevertheless, the main difference between the two species lays in an earlier and greater accumulation of putrescine induced by salinity in L. pennellii than in L. esculentum. The changes in putrescine levels were associated to changes in amino acids related to its synthesis, and the changes were different in both species. In L. esculentum, the high concentrations of some intermediate compounds (glutamate and arginine) were related to the low accumulation rate of both proline and putrescine. In contrast, in L. pennellii, important reductions in glutamate and arginine levels were found at the end of the salinization period. Moreover, in this last situation, a decline in the putrescine level ran parallel to a high proline accumulation, which suggests that the higher the stress level, the higher the deviation of glutamate to proline occurring in the salt tolerant species. It could be concluded that an early accumulation of the diamine putrescine seems to be associated with salt tolerance in the short-term.  相似文献   

5.
在含NaCl营养液中培养的小麦幼苗较之无NaCl营养液中的幼苗。其脯氨酸氧化酶活性降低,而游离脯氨酸含量则升高;培养液的渗透势越低,培养时间越长,则脯氨酸氧化酶的活性越低,且游离脯氨酸的含量越高。去除胁迫后酶活性恢复,脯氯酸含量下降。不同渗透剂对氧化酶活性抑制强弱顺序为MgCl_2>NaCl>甘露醇,引起脯氨酸累积效应的强度顺序为MgCl_2>NaCl>甘露醇。超微结构显示,高NaCl浓度下部分线粒体结构受损伤,膜和嵴部分消失。  相似文献   

6.
Effects of iso-osmotic concentrations of NaCl and mannitol were studied in Mammilaria gracilis (Cactaceae) in both calli and tumors grown in vitro. In both tissues, relative growth rates were reduced under osmotic stress, which were accompanied by a decrease in both tissue water and K+ content. However, growth was inhibited to a lesser extent after exposure to NaCl, when accumulation of Na+ ions was observed. In calli, only salinity increased proline content, whereas with tumors proline accumulated after both osmotic stresses. Osmotic stresses also induced oxidative damage in both cactus tissues, although higher oxidative injury was caused by mannitol in calli and by salt in tumors. Low iso-osmotic concentrations of NaCl (75 mM) and mannitol (150 mM) increased peroxidase, ascorbate peroxidase, and esterase activities, whereas elevated catalase activity was recorded only after mannitol treatment in both tissues. High osmotic stress generally decreased enzymatic activities. However, in calli, esterase activity increased in response to high salinity, whereas ascorbate peroxidase activity was enhanced after high mannitol stress. In conclusion, both in vitro-grown cactus tissues were found to be sensitive to osmotic stress caused by either mannitol or NaCl, but accumulation of Na+ ions in response to salt somewhat contributed to osmotic adjustment. However, more prominent oxidative damage induced by NaCl compared to mannitol in tumor could be related to ion toxicity. The mechanisms that mediate responses to salt- and mannitol-induced osmotic stresses differed and were dependent on tissue type.  相似文献   

7.
Accumulation of compatible solutes is a strategy widely employed by bacteria to achieve cellular protection against high osmolarity. These compounds are also used in some microorganisms as thermostress protectants. We found that Bacillus subtilis uses the compatible solute glycine betaine as an effective cold stress protectant. Glycine betaine strongly stimulated growth at 15°C and permitted cell proliferation at the growth-inhibiting temperature of 13°C. Initial uptake of glycine betaine at 15°C was low but led eventually to the buildup of an intracellular pool whose size was double that found in cells grown at 35°C. Each of the three glycine betaine transporters (OpuA, OpuC, and OpuD) contributed to glycine betaine accumulation in the cold. Protection against cold stress was also accomplished when glycine betaine was synthesized from its precursor choline. Growth of a mutant defective in the osmoadaptive biosynthesis for the compatible solute proline was not impaired at low temperature (15°C). In addition to glycine betaine, the compatible solutes and osmoprotectants l-carnitine, crotonobetaine, butyrobetaine, homobetaine, dimethylsulfonioactetate, and proline betaine all served as cold stress protectants as well and were accumulated via known Opu transport systems. In contrast, the compatible solutes and osmoprotectants choline-O-sulfate, ectoine, proline, and glutamate were not cold protective. Our data highlight an underappreciated facet of the acclimatization of B. subtilis to cold environments and allow a comparison of the characteristics of compatible solutes with respect to their osmotic, heat, and cold stress-protective properties for B. subtilis cells.  相似文献   

8.
AIM: To evaluate the effect of modifications of water activity (aw 0. 996-0.92) of a molasses medium with different solutes (glycerol, glucose, NaCl, proline or sorbitol) on growth, intracellular water potentials (psi(c)) and endogenous accumulation of polyols/sugars in the biocontrol yeast Candida sake. METHODS AND RESULTS: Modification of solute stress significantly influenced growth, psi(c) and accumulation of sugars (glucose/trehalose) and polyols (glycerol, erythritol, arabitol and mannitol) in the yeast cells. Regardless of the solute used to modify aw, growth was always decreased as water stress increased. Candida sake cells grew better in glycerol- and proline-amended media, but were sensitive to NaCl. The psi(c) measured using psychrometry showed a significant effect of solutes, aw and time. Cells from the 0.96 aw NaCl treatment presented the lowest psic value (- 5.20 MPa) while cells from unmodified media (aw = 0. 996) had the highest value (- 0.30 MPa). In unmodified medium, glycerol was the predominant reserve accumulated. Glycerol and arabitol were the major compounds accumulated in media modified with glucose or NaCl. In proline media, the concentration of arabitol increased. In glycerol- and sorbitol-amended media, the concentration of glycerol rose. Some correlations were obtained between compatible solutes and psi(c). CONCLUSIONS AND SIGNIFICANCE: This study demonstrates that subtle changes in physiological parameters significantly affect the endogenous contents of C. sake cells. It may be possible to utilize such physiological information to develop biocontrol inocula with improved quality.  相似文献   

9.
In Mesembryanthemum crystallinum, salt stress induces the accumulation of proline and a specific isoform of the enzyme phosphoenolpyruvate carboxylase (PEPCase) prior to the switch from C3 to Crassulacean acid metabolism (CAM). To determine whether plant growth regulators initiate or imitate these responses, we have compared the effects elicited by NaCl, abscisic acid (ABA), and cytokinins using PEPCase and proline levels as diagnostic tools. Exogenously applied ABA is a poor substitute for NaCl in inducing proline and CAM-specific PEPCase accumulation. Even though ABA levels increase 8- to 10-fold in leaves during salt stress, inhibition of ABA accumulation does not affect these salt-induced responses. In contrast, the addition of cytokinins (6-benzylaminopurine, zeatin, 2-isopentyladenine) mimic salt by greatly increasing proline and PEPCase amounts. Endogenous zeatin levels remain unchanged during salt stress. We conclude: (a) The salt-induced accumulation of proline and PEPCase is coincident with, but is not attributable to, the rise in ABA or zeatin concentration. (b) For the first time, cytokinins and NaCl are implicated as independent initiators of a sensing pathway that signals leaves to alter PEPCase gene expression. (c) During stress, the sensing of osmotic imbalances leading to ABA, proline, and CAM-specific PEPCase accumulation may be mediated directly by NaCl.  相似文献   

10.
Seedlings of maize (Zea mays L. cv Pioneer 3906), hydroponically grown in the dark, were exposed to NaCl either gradually (salt acclimation) or in one step (salt shock). In the salt-acclimation treatment, root extension was indistinguishable from that of unsalinized controls for at least 6 d at concentrations up to 100 mM NaCl. By contrast, salt shock rapidly inhibited extension, followed by a gradual recovery, so that by 24 h extension rates were the same as for controls, even at 150 mM NaCl. Salt shock caused a rapid decrease in root water and solute potentials for the apical zones, and the estimated turgor potential showed only a small decline; similar but more gradual changes occurred with salt acclimation. The 5-bar decrease in root solute potential with salt shock (150 mM NaCl) during the initial 10 min of exposure could not be accounted for by dehydration, indicating that substantial osmotic adjustment occurred rapidly. Changes in concentration of inorganic solutes (Na+, K+, and Cl-) and organic solutes (proline, sucrose, fructose, and glucose) were measured during salt shock. The contribution of these solutes to changes in root solute potential with salinization was estimated.  相似文献   

11.
Arabis stelleri var.japonica evidenced stronger osmotic stress tolerance than Arabidopsis thaliana.Using an A.thaliana microarray chip,we determined changes in the expression of approximately 2 800genes between A.stelleri plants treated with 0.2 M mannitol versus mock-treated plants.The most significant changes in the gene expression patterns were in genes defining cellular components or in genes associated with the endomembrane system,stimulus response,stress response,chemical stimulus response,and defense response.The expression patterns of three de novo proline biosynthesis enzymes were evaluated in A.stelleri var.japonica seedlings treated with 0.2 M mannitol,0.2 M sorbitol,and 0.2 M NaCl.The expression of Δ1-pyrroline-5-carboxylate synthetase was not affected by NaCl stress but was similarly induced by mannitol and sorbitol.The proline dehydrogenase gene,which is known to be repressed by dehydration stress and induced by free L-proline,was induced at an early stage by mannitol treatment,but the level of proline dehydrogenase was increased later by treatment with both mannitol and NaCl.The level of free L-proline accumulation increased progressively in response to treatments with mannitol,sorbitol,and NaCl.Mannitol induced L-proline accumulation more rapidly than NaCl or sorbitol.These findings demonstrate that the osmotic tolerance of the novel halophyte,Arabis stelleri,is associated with the accumulation of L-proline.  相似文献   

12.
Jung Y  Park J  Choi Y  Yang JG  Kim D  Kim BG  Roh K  Lee DH  Auh CK  Lee S 《植物学报(英文版)》2010,52(10):891-903
Arabis stelleri var.japonica evidenced stronger osmotic stress tolerance than Arabidopsis thaliana.Using an A.thaliana microarray chip,we determined changes in the expression of approximately 2 800genes between A.stelleri plants treated with 0.2 M mannitol versus mock-treated plants.The most significant changes in the gene expression patterns were in genes defining cellular components or in genes associated with the endomembrane system,stimulus response,stress response,chemical stimulus response,and defense response.The expression patterns of three de novo proline biosynthesis enzymes were evaluated in A.stelleri var.japonica seedlings treated with 0.2 M mannitol,0.2 M sorbitol,and 0.2 M NaCl.The expression of Δ1-pyrroline-5-carboxylate synthetase was not affected by NaCl stress but was similarly induced by mannitol and sorbitol.The proline dehydrogenase gene,which is known to be repressed by dehydration stress and induced by free L-proline,was induced at an early stage by mannitol treatment,but the level of proline dehydrogenase was increased later by treatment with both mannitol and NaCl.The level of free L-proline accumulation increased progressively in response to treatments with mannitol,sorbitol,and NaCl.Mannitol induced L-proline accumulation more rapidly than NaCl or sorbitol.These findings demonstrate that the osmotic tolerance of the novel halophyte,Arabis stelleri,is associated with the accumulation of L-proline.  相似文献   

13.
Natural-abundance (13)C-nuclear magnetic resonance was used to probe the intracellular organic solute content of the moderately halophilic bacterium Tetragenococcus halophila. When grown in complex growth media supplemented or not with NaCl, T. halophila accumulates glycine betaine and carnitine. Unlike other moderate halophiles, T. halophila was not able to produce potent osmoprotectants (such as ectoines and glycine betaine) through de novo synthesis when cultured in defined medium under hyperosmotic constraint. Addition of 2 mM carnitine, glycine betaine, or choline to defined medium improved growth parameters, not only at high salinity (up to 2.5 M NaCl) but also in media lacking NaCl. These compounds were taken up when available in the surrounding medium. The transport activity occurred at low and high salinities and seems to be constitutive. Glycine betaine and carnitine were accumulated by T. halophila in an unmodified form, while exogenously provided choline led to an intracellular accumulation of glycine betaine. This is the first evidence of the existence of a choline-glycine betaine pathway in a lactic acid bacterium. An assay showed that the compatible solutes strikingly repressed the accumulation of glutamate and slightly increased the intracellular potassium level only at high salinity. Interestingly, osmoprotectant-treated cells were able to maintain the intracellular sodium concentration at a relatively constant level (200 to 300 nmol/mg [dry weight]), independent of the NaCl concentration of the medium. In contrast, in the absence of osmoprotectant, the intracellular sodium content increased sharply from 200 to 2,060 nmol/mg (dry weight) when the salinity of the medium was raised from 1 to 2 M. Indeed, the imported compatible solutes play an actual role in regulating the intracellular Na(+) content and confer a much higher salt tolerance to T. halophila.  相似文献   

14.
The effects of ABA treatment on the contents of proline, polyamines (PA), and cytokinins (CK) in the facultative halophyte the common ice plant (Mesembryanthemum crystallinum L.) subjected to salt stress were studied. Plants grown in the phytotron chamber on Jonson nutrient medium for 6 weeks were subjected to 6-day-long salinity by a single NaCl adding to medium. During first three days of salinity, half plants of each treatment were placed for 30 min on nutrient medium containing 0, 100, or 300 mM NaCl plus ABA in the final concentration of 1 μM. Salinity reduced biomass accumulation and water and chlorophyll contents in plants. This was accompanied by the increase in the levels of MDA, proline, and sodium ions. ABA treatment of salt-stressed plants favored biomass accumulation and photosynthetic pigment protection, reduced the intensity of oxidative stress and the level of NaCl-induced proline accumulation. ABA treatment increased the contents of putrescine (Put) and spermidine (Spd) in the leaves and roots of control plants (not subjected to salt stress), reduced the losses of Put in the leaves and roots and Spd in the roots in the presence of 100 mM NaCl, and suppressed cadaverine (Cad) accumulation in the roots in the presence of 300 mM NaCl. In the presence of NaCl, ABA reduced the contents of zeatin and zeatin riboside and increased the level of zeatin-O-glucoside in the roots and isopentenyladenosine and isopentenyladenine in the leaves. Thus, ABA protective action under salinity can be realized through the weakening of oxidative stress (a decrease in MDA content) and the regulation of PA, proline, and CK metabolism, which has a great significance in plant adaptation to injurious factors.  相似文献   

15.
The effects of ABA treatment on the contents of polyamines (PAs) and proline (Pro) in the glycophyte Phaseolus vulgaris L. during plant adaptation to salt stress were studied. Two-week-old common bean seedlings grown in the phytotron chamber on the Jonson nutrient medium were subjected to salinity for 6 days by one-time NaCl addition to medium up to final concentrations of 50 and 100 mM. During first three days of salinity, the root system was daily treated with ABA (1, 5, 10, or 50 μM) for 30 min. Salt stress (100 mM NaCl) elevated the level of endogenous ABA, increased the content of Pro 14-fold, reduced sharply the content of free PAs (putrescine, spermidine, spermine, and cadaverine), and the accumulation of 1,3-diaminopropan, a product of oxidation of high-molecular PAs. Common bean plant treatment with 1 μM ABA weakened the adverse effects of salt stress (100 mM NaCl), which was manifested in the maintenance of plant growth, stimulation of chlorophyll (a and b) and carotenoid accumulation, a stabilization of water and Na+ balance. Seedling treatment with ABA suppressed NaCl-induced Pro and intracellular ABA accumulation and restored the levels of putrescine and spermidine. The content of spermine in the leaves of plants subjected to salt stress and treated with ABA was approximately threefold higher than in control plants, whereas the content of cadaverine increased under similar conditions more than fivefold. Simultaneously, the contents of 1,3-diaminopropan and malondialdehyde as well as activity of superoxide dismutase were reduced, which indicates a weakening of oxidative stress, one of the possible causes of defensive ABA effects against salt stress. In addition, the suppression by exogenous ABA of Pro accumulation and stimulation of PA content under salt stress confirm indirectly our hypothesis that ABA is involved in the coordinated regulation of two biosynthetic pathways, Pro and PA formation, which use a common precursor, glutamate, and play an important protective role during stress in plants.  相似文献   

16.
Abiotic stress is a major limiting factor in crop production. Physiological comparisons between contrasting abiotic stress-tolerant genotypes will improve understanding of stress-tolerant mechanisms. Rice seedlings (S3 stage) of a chilling-tolerant (CT) genotype (CT6748-8-CA-17) and a chilling-sensitive (CS) genotype (INIAP12) were subjected to abiotic stresses including chilling (13/12 degrees C), salt (100mM NaCl), and osmotic (200mM mannitol). Measures of physiological response to the stresses included changes in stress-related sugars, oxidative products and protective enzymes, parameters that could be used as possible markers for selection of improved tolerant varieties. Metabolite analyses showed that the two genotypes responded differently to different stresses. Genotype survival under chilling-stress was as expected, however, CT was more sensitive to salt stress than the CS genotype. The CT genotype was able to maintain membrane integrity better than CS, perhaps by reduction of lipid peroxidation via increased levels of antioxidant enzymes during chilling stress. This genotype accumulated sugars in response to stress, but the accumulation was usually less than in the CS genotype. Chill-stressed CT accumulated galactose and raffinose whereas these saccharides declined in CS. On the other hand, the tolerance mechanism in the more salt- and water-deficit-tolerant CS may be associated with accumulation of osmoprotectants such as glucose, trehalose and mannitol.  相似文献   

17.
Both mannitol and sucrose (Suc) are primary photosynthetic products in celery (Apium graveolens L.). In other biological systems mannitol has been shown to serve as a compatible solute or osmoprotectant involved in stress tolerance. Although mannitol, like Suc, is translocated and serves as a reserve carbohydrate in celery, its role in stress tolerance has yet to be resolved. Mature celery plants exposed to low (25 mM NaCl), intermediate (100 mM NaCl), and high (300 mM NaCl) salinities displayed substantial salt tolerance. Shoot fresh weight was increased at low NaCl concentrations when compared with controls, and growth continued, although at slower rates, even after prolonged exposure to high salinities. Gas-exchange analyses showed that low NaCl levels had little or no effect on photosynthetic carbon assimilation (A), but at intermediate levels decreases in stomatal conductance limited A, and at the highest NaCl levels carboxylation capacity (as measured by analyses of the CO2 assimilation response to changing internal CO2 partial pressures) and electron transport (as indicated by fluorescence measurements) were the apparent prevailing limits to A. Increasing salinities up to 300 mM, however, increased mannitol accumulation and decreased Suc and starch pools in leaf tissues, e.g. the ratio of mannitol to Suc increased almost 10-fold. These changes were due in part to shifts in photosynthetic carbon partitioning (as measured by 14C labeling) from Suc into mannitol. Salt treatments increased the activity of mannose-6-phosphate reductase (M6PR), a key enzyme in mannitol biosynthesis, 6-fold in young leaves and 2-fold in fully expanded, mature leaves, but increases in M6PR protein were not apparent in the older leaves. Mannitol biosynthetic capacity (as measured by labeling rates) was maintained despite salt treatment, and relative partitioning into mannitol consequently increased despite decreased photosynthetic capacity. The results support a suggested role for mannitol accumulation in adaptation to and tolerance of salinity stress.  相似文献   

18.
Soil salinity affects plant growth and development by way of osmotic stress. Compatible osmolytes are potent osmoprotectants that playa role in counteracting the effect of saline stress. Proline biosynthesis and catabolism were investigated in both the control and salt stressed calli. Proline content showed a steady increase in the calli of all NaCI treated media. Calli on CaCl2 containing media did not show any increase in proline level compared to control calli. When the salinized media were supplemented with CaCl2 the proline level drastically increased compared to the corresponding calli grown on salt alone. Similarly, the activity of proline biosynthetic enzyme, pyrroline-5-carboxylate synthetase (P5CS) under salt stress was higher in NaCl + CaCl2 supplemented medium than the calli on the salinized medium alone. This suggested that the alleviation effect of calcium under saline condition was through modulation of the enzyme complexes that accelerate the rate of proline biosynthesis under salt stress. Similarly, the activity of proline degrading enzyme, proline oxidase was found to be lower in calli of all salt stressed media than control.  相似文献   

19.
Miscanthus x ogiformis Honda 'Giganteus' shoot cultures were stored in vitro on proliferation or rooting medium for up to 27 weeks at temperatures of 8, 12, 16, or 20 °C and photosynthetic photon flux densities of 5, 10, or 20 μmol m−2 s−1. Plants survived storage much better on rooting medium than on proliferation medium. Plants stored on rooting medium for 1 week survived well when survival was assessed immediately after storage or after 14 days of acclimatization, but had the lowest survival 28 days after transplantation. With increasing storage period on rooting medium increasing survival was found 28 days after transplantation. This was probably a result of the development of rhizomes and/or roots during storage. Best survival was observed at 20 μmol m−2 s−1 and a temperature of 8-16 °C. Increasing the temperature to 25 °C during the last week of storage improved survival considerably. Root formation was slow at 8 °C, but after 27 weeks of storage the rooting percentage was the same at all storage temperatures. An increasing number of shoots per plant 28 days after transplantation was found with increasing PPFD during storage.Miscanthus shoot cultures can be stored in vitro for at least 27 weeks with limited losses when stored on rooting medium at 20 μmol m−2 s−1, a temperature of 16 °C, and given a 1-week end-of-storage treatment of 25 °C. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Excess of ammonia generates oxidative and osmotic stress, and results in an accumulation of compatible solutes. The aim of this study was to investigate the physiological significance of excess ammonium-induced proline and sucrose accumulation on antioxidative activity and osmotic adjustment. The detached leaves of white clover (Trifolium repense L.) were fed with 0, 10, 50, 100, and 200 mM NH4Cl, and the contribution of proline and sucrose to osmotic adjustment and their relationship with antioxidative enzymes activity were assessed. A gradual decline of relative water content and osmotic potential (Ψπ) with increasing NH4Cl feeding level was accompanied by an increase in ammonia concentration. Significant accumulation of proline and sucrose was observed when NH4Cl was fed over 100 mM compared with control (0 mM NH4Cl). The increase in enzyme activity was significant only at 200 mM for ascorbate peroxidase (APOD) and over 100 mM NH4Cl for guaiacol peroxidase (GPOD) and catalase (CAT). The contribution of proline and sucrose to osmotic adjustment over 100 mM, where proline and sucrose accumulation was more important, maintained at control levels or significantly decreased. The content of proline and sucrose as affected by NH4Cl feeding level was positively related with the activity of APOD, GPOD, and CAT. These results suggest that proline and sucrose accumulation induced by the excess of ammonium has a more influential role in antioxidative activity rather than osmotic adjustment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号