首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Saccharomyces cerevisiae, activation of Cdc42 by its guanine-nucleotide exchange factor Cdc24 triggers polarization of the actin cytoskeleton at bud emergence and in response to mating pheromones. The adaptor protein Bem1 localizes to sites of polarized growth where it interacts with Cdc42, Cdc24 and the PAK-like kinase Cla4. We have isolated Bem1 mutants (Bem1-m), which are specifically defective for binding to Cdc24. The mutations map within the conserved PB1 domain, which is necessary and sufficient to interact with the octicos peptide repeat (OPR) motif of Cdc24. Although Bem1-m mutant proteins localize normally, bem1-m cells are unable to maintain Cdc24 at sites of polarized growth. As a consequence, they are defective for apical bud growth and the formation of mating projections. Localization of Bem1 to the incipient bud site requires activated Cdc42, and conversely, expression of Cdc42-GTP is sufficient to accumulate Bem1 at the plasma membrane. Thus, our results suggest that Bem1 functions in a positive feedback loop: local activation of Cdc24 produces Cdc42-GTP, which recruits Bem1. In turn, Bem1 stabilizes Cdc24 at the site of polarization, leading to apical growth.  相似文献   

2.
In budding yeast cells, the cytoskeletal polarization and depolarization events that shape the bud are triggered at specific times during the cell cycle by the cyclin-dependent kinase Cdc28p. Polarity establishment also requires the small GTPase Cdc42p and its exchange factor, Cdc24p, but the mechanism whereby Cdc28p induces Cdc42p-dependent polarization is unknown. Here we show that Cdc24p becomes phosphorylated in a cell cycle-dependent manner, triggered by Cdc28p. However, the role of Cdc28p is indirect, and the phosphorylation appears to be catalyzed by the p21-activated kinase family member Cla4p and also depends on Cdc42p and the scaffold protein Bem1p. Expression of GTP-Cdc42p, the product of Cdc24p-mediated GDP/GTP exchange, stimulated Cdc24p phosphorylation independent of cell cycle cues, raising the possibility that the phosphorylation is part of a feedback regulatory pathway. Bem1p binds directly to Cdc24p, to Cla4p, and to GTP-bound Cdc42p and can mediate complex formation between these proteins in vitro. We suggest that Bem1p acts to concentrate polarity establishment proteins at a discrete site, facilitating polarization and promoting Cdc24p phosphorylation at specific times during the cell cycle.  相似文献   

3.
Specific protein-protein interactions play crucial roles in the regulation of any biological process. Recently, a new protein-protein interaction domain termed PB1 (Phox and Bem1) was identified, which is conserved throughout evolution and present in diverse proteins functioning in signal transduction, cell polarity and survival. Here, we investigated the structure and molecular interactions of the PB1 heterodimer complex composed of the PB1 domains of the yeast proteins Bem1 and Cdc24. A structural model of the Cdc24 PB1 was built by homology modeling and molecular dynamics simulations, and experimentally validated by 15N nuclear Overhauser effect spectroscopy (NOESY)-heteronuclear single quantum coherence (HSQC) analysis. Residues at the interface of the complex for both proteins were identified by NMR titration experiments. A model of the heterodimer was obtained by docking of the two PB1 domains with HADDOCK, which applies ambiguous interaction restraints on residues at the interface to drive the docking procedure. The refined model was validated by site-directed mutagenesis on both Bem1 and Cdc24. Finally, the docking was repeated from the newly published NMR structure of Cdc24, allowing us to assess the performance of homology-based docking. Our results provide insight into the molecular structure of the Bem1-Cdc24 PB1-mediated heterodimer, which allowed identification of critical residues at the binding interface.  相似文献   

4.
Ito T  Matsui Y  Ago T  Ota K  Sumimoto H 《The EMBO journal》2001,20(15):3938-3946
Modular domains mediating specific protein-protein interactions play central roles in the formation of complex regulatory networks to execute various cellular activities. Here we identify a novel domain PB1 in the budding yeast protein Bem1p, which functions in polarity establishment, and mammalian p67(phox), which activates the microbicidal phagocyte NADPH oxidase. Each of these specifically recognizes an evolutionarily conserved PC motif to interact directly with Cdc24p (an essential protein for cell polarization) and p40(phox) (a component of the signaling complex for the oxidase), respectively. Swapping the PB1 domain of Bem1p with that of p67(phox), which abolishes its interaction with Cdc24p, confers on cells temperature- sensitive growth and a bilateral mating defect. These phenotypes are suppressed by a mutant Cdc24p harboring the PC motif-containing region of p40(phox), which restores the interaction with the altered Bem1p. This domain-swapping experiment demonstrates that Bem1p function requires interaction with Cdc24p, in which the PB1 domain and the PC motif participate as responsible modules.  相似文献   

5.
The yeast protein Bem1p, which bears two src homology region 3 (SH3) domains, is involved in cell polarization. A Rho-type GTPase, Rho3p, is involved in the maintenance of cell polarity for bud formation, and the rho3 defect is suppressed by a high dose of BEM1. Mutational analysis revealed that the second SH3 domain from the NH2 terminus (SH3-2) of Bem1p is important for the functions of Bem1p in bud formation and in the suppression of the rho3 defect. Boi2p, which bound to SH3-2 Bem1p, was identified using the two-hybrid system. Boi2p has a proline-rich sequence that is critical for displaying the Boi2p-Bem1p two-hybrid interaction, an SH3 domain in its NH2-terminal half, and a pleckstrin homology domain in its COOH-terminal half. A BOI2 homologue, BOI1, was identified as a gene whose overexpression inhibited cell growth. Cells overexpressing either BOI1 or BOI2 were arrested as large, round, and unbudded cells, indicating that the Boi proteins affect cell polarization. Genetic analysis revealed that BOI1 and BOI2 are functionally redundant and important for cell growth. delta boi1 delta boi2 cells became large round cells or lysed with buds, displaying defects in bud formation and in the maintenance of cell polarity. Analysis using several truncated versions of BOI2 revealed that the COOH-terminal half, which contains the pleckstrin homology domain is essential for the function of Boi2p in cell growth, while the NH2- terminal half is not, and the NH2-terminal half might be required for modulating the function of Bem1p. Overproduction of either Rho3p or the Rho3p-related GTPase Rho4p suppressed the boi defect. These results demonstrate that Rho3p GTPases and Boi proteins function in the maintenance of cell polarity for bud formation.  相似文献   

6.
In Saccharomyces cerevisiae, the Rho-type small GTPase Cdc42 is activated by its guanine-nucleotide exchange factor Cdc24 to polarize the cell for budding and mating. A multidomain protein Bem1 interacts not only with Cdc42 but also with Cdc24 and the effectors of Cdc42, including the p21-activated kinase Ste20, to function as a scaffold for cell polarity establishment. Although Bem1 interacts with Cdc24 and Ste20 via its PB1 and the second SH3 domains (SH3b), respectively, it is unclear how Bem1 binds Cdc42. Here we show that a region comprising the SH3b and its C-terminal flanking segment termed CI (SH3b-CI) directly interacts with Cdc42. A dual-bait reverse two-hybrid approach revealed that the CI is critical to the interaction: N253D substitution in the CI abolishes the binding of the SH3b-CI to Cdc42 but not to the proline-rich region of Ste20, whereas W192K substitution in the SH3b has the opposite effect. Nevertheless, the SH3b-CI interacts with Ste20 proline-rich region and Cdc42 in a mutually exclusive manner. The N253D substitution renders cellular growth temperature-sensitive and suppresses mating. The W192K-induced mating defect is exacerbated by the N253D substitution and suppressed by increasing the dosage of Ste20 provided that the CI is intact. Intriguingly, Cdc42 can mediate an indirect interaction of the SH3b-CI to the CRIB domain of Ste20. These results suggest that the SH3b and the CI collaborate in tethering of Ste20 to Bem1 to ensure efficient mating pheromone signaling.  相似文献   

7.
Cdc24p is the guanine-nucleotide exchange factor for the Cdc42p GTPase, which controls cell polarity in Saccharomyces cerevisiae. To identify new genes that may affect cell polarity, we characterized six UV-induced csl (CDC24 synthetic-lethal) mutants that exhibited synthetic-lethality with cdc24-4(ts) at 23°. Five mutants were not complemented by plasmid-borne CDC42, RSR1, BUD5, BEM1, BEM2, BEM3 or CLA4 genes, which are known to play a role in cell polarity. The csl3 mutant displayed phenotypes similar to those observed with calcium-sensitive, Pet(-) vma mutants defective in vacuole function. CSL5 was allelic to VMA5, the vacuolar H(+)-ATPase subunit C, and one third of csl5 cdc24-4(ts) cells were elongated or had misshapen buds. A cdc24-4(ts) Δvma5::LEU2 double mutant did not exhibit synthetic lethality, suggesting that the csl5/vma5 cdc24-4(ts) synthetic-lethality was not simply due to altered vacuole function. The cdc24-4(ts) mutant, like Δvma5::LEU2 and csl3 mutants, was sensitive to high levels of Ca(2+) as well as Na(+) in the growth media, which did not appear to be a result of a fragile cell wall because the phenotypes were not remedied by 1 M sorbitol. Our results indicated that Cdc24p was required in one V-ATPase mutant and another mutant affecting vacuole morphology, and also implicated Cdc24p in Na(+) tolerance.  相似文献   

8.
Shimada Y  Wiget P  Gulli MP  Bi E  Peter M 《The EMBO journal》2004,23(5):1051-1062
Site-specific activation of the Rho-type GTPase Cdc42p by its guanine-nucleotide exchange factor (GEF) Cdc24p is critical for the establishment of cell polarity. Here we show that binding of Cdc24p to the small GTPase Rsr1p/Bud1p is required for its recruitment to the incipient bud site. Rsr1p/Bud1p binds to the CH-domain of Cdc24p, which is essential for its function in vivo. We have identified a cdc24-mutant allele, which is specifically defective for bud-site selection. Our results suggest that Cdc24p is auto-inhibited by an intramolecular interaction with its carboxy-terminal PB1-domain. Rsr1p/Bud1p appears to activate the GEF activity of Cdc24p in vivo, possibly by triggering a conformational change that dissociates the PB1-domain from its intramolecular binding site. Genetic experiments suggest that Bem1p functions as a positive regulator of Cdc24p by binding to the PB1-domain of Cdc24p, thereby preventing its re-binding to the intramolecular inhibitory site. Taken together, our results support a two-step molecular mechanism for the site-specific activation of Cdc24p, which involves Rsr1p/Bud1p and the adaptor protein Bem1p.  相似文献   

9.
The Rho-type GTPase Cdc42p is required for cell polarization and bud emergence in Saccharomyces cerevisiae. To identify genes whose functions are linked to CDC42, we screened for (i) multicopy suppressors of a Ts- cdc42 mutant, (ii) mutants that require multiple copies of CDC42 for survival, and (iii) mutations that display synthetic lethality with a partial-loss-of-function allele of CDC24, which encodes a guanine nucleotide exchange factor for Cdc42p. In all three screens, we identified a new gene, BEM4. Cells from which BEM4 was deleted were inviable at 37 degrees C. These cells became unbudded, large, and round, consistent with a model in which Bem4p acts together with Cdc42p in polarity establishment and bud emergence. In some strains, the ability of CDC42 to serve as a multicopy suppressor of the Ts- growth defect of deltabem4 cells required co-overexpression of Rho1p, which is an essential Rho-type GTPase necessary for cell wall integrity. This finding suggests that Bem4p also affects Rho1p function. Bem4p displayed two-hybrid interactions with Cdc42p, Rho1p, and two of the three other known yeast Rho-type GTPases, suggesting that Bem4p can interact with multiple Rho-type GTPases. Models for the role of Bem4p include that it serves as a chaperone or modulates the interaction of these GTPases with one or more of their targets or regulators.  相似文献   

10.
Site-specific activation of the Rho-type GTPase Cdc42p is critical for the establishment of cell polarity. Here we investigated the role and regulation of the GTPase-activating enzymes (GAPs) Bem2p and Bem3p for Cdc42p activation and actin polarization at bud emergence in Saccharomyces cerevisiae. Bem2p and Bem3p are localized throughout the cytoplasm and the cell cortex in unbudded G1 cells, but accumulate at sites of polarization after bud emergence. Inactivation of Bem2p results in hyperactivation of Cdc42p and polarization toward multiple sites. Bem2p and Bem3p are hyperphosphorylated at bud emergence most likely by the Cdc28p-Cln2p kinase. This phosphorylation appears to inhibit their GAP activity in vivo, as non-phosphorylatable Bem3p mutants are hyperactive and interfere with Cdc42p activation. Taken together, our results indicate that Bem2p and Bem3p may function as global inhibitors of Cdc42p activation during G1, and their inactivation by the Cdc28p/Cln kinase contributes to site-specific activation of Cdc42p at bud emergence.  相似文献   

11.
PB1 domains are novel protein modules capable of binding to target proteins that contain PC motifs. We report here the NMR structure and ligand-binding site of the PB1 domain of the cell polarity establishment protein, Bem1p. In addition, we identify the topology of the PC motif-containing region of Cdc24p by NMR, another cell polarity establishment protein that interacts with Bem1p. The PC motif-containing region is a structural domain offering a scaffold to the PC motif. The chemical shift perturbation experiment and the mutagenesis study show that the PC motif is a major structural element that binds to the PB1 domain. A structural database search reveals close similarity between the Bem1p PB1 domain and the c-Raf1 Ras-binding domain. However, these domains are functionally distinct from each other.  相似文献   

12.
The PC motif is evolutionarily conserved together with the PB1 domain, a binding partner of the PC motif-containing protein. For interaction with the PB1 domain, the PC motif-containing region (PCCR) comprising the PC motif and its flanking regions is required. Because the PB1 domain and the PCCR are novel binding modules found in a variety of signaling proteins, their structural and functional characterization is crucial. Bem1p and Cdc24p interact through the PB1-PCCR interaction and regulate cell polarization in budding yeast. Here, we determined a tertiary structure of the PCCR of Cdc24p by NMR. The tertiary structure of the PCCR is similar to that of the PB1 domain of Bem1p, which is classified into a ubiquitin fold. The PC motif portion takes a compact betabetaalpha-fold, presented on the ubiquitin scaffold. Mutational studies indicate that the PB1-PCCR interaction is mainly electrostatic. Based on the structural information, we group the PB1 domains and the PCCRs into a novel family, named the PB1 family. Thus, the PB1 family proteins form a specific dimer with each other.  相似文献   

13.
Candida albicans, the most common human fungal pathogen, is particularly problematic for immunocompromised individuals. The reversible transition of this fungal pathogen to a filamentous form that invades host tissue is important for its virulence. Although different signaling pathways such as a mitogen-activated protein kinase and a protein kinase A cascade are critical for this morphological transition, the function of polarity establishment proteins in this process has not been determined. We examined the role of four different polarity establishment proteins in C. albicans invasive growth and virulence by using strains in which one copy of each gene was deleted and the other copy expressed behind the regulatable promoter MET3. Strikingly, mutants with ectopic expression of either the Rho G-protein Cdc42 or its exchange factor Cdc24 are unable to form invasive hyphal filaments and germ tubes in response to serum or elevated temperature and yet grow normally as a budding yeast. Furthermore, these mutants are avirulent in a mouse model for systemic infection. This function of the Cdc42 GTPase module is not simply a general feature of polarity establishment proteins. Mutants with ectopic expression of the SH3 domain containing protein Bem1 or the Ras-like G-protein Bud1 can grow in an invasive fashion and are virulent in mice, albeit with reduced efficiency. These results indicate that a specific regulation of Cdc24/Cdc42 activity is required for invasive hyphal growth and suggest that these proteins are required for pathogenicity of C. albicans.  相似文献   

14.
The PB1 (Phox and Bem 1) domain is a recently identified module that mediates formation of a heterodimeric complex with other PB1 domain, e.g. the complexes between the phagocyte oxidase activators p67phox and p40phox and between the yeast polarity proteins Bem1p and Cdc24p. These PB1 domains harbor either a conserved lysine residue on one side or an acidic OPCA (OPR/PC/AID) motif around the other side; the lysine of p67phox or Bem1p likely binds to the OPCA of p40phox or Cdc24p, respectively, via electrostatic interactions. To further understand molecular recognition by PB1 domains, here we investigate the interactions mediated by proteins presenting both the lysine and OPCA on a single PB1 domain, namely Par6, atypical protein kinase C (aPKC), and ZIP. Par6 and aPKC form a complex via the interaction of the Par6 lysine with aPKC-OPCA but not via that between the aPKC lysine and Par6-OPCA, thereby localizing to the tight junction of epithelial cells. aPKC also uses its OPCA to interact with ZIP, another protein that has a PB1 domain presenting both the lysine and OPCA, whereas aPKC binds via the conserved lysine to MEK5 in the same manner as ZIP interacts with MEK5. In addition, ZIP can form a homotypic complex via the conserved electrostatic interactions. Thus the PB1 domain appears to be a protein module that fully exploits its two mutually interacting elements in molecular recognition to expand its repertoire of protein-protein interactions.  相似文献   

15.
Polarized cell growth requires the coupling of a defined spatial site on the cell cortex to the apparatus that directs the establishment of cell polarity. In the budding yeast Saccharomyces cerevisiae, the Ras-family GTPase Rsr1p/Bud1p and its regulators select the proper site for bud emergence on the cell cortex. The Rho-family GTPase Cdc42p and its associated proteins then establish an axis of polarized growth by triggering an asymmetric organization of the actin cytoskeleton and secretory apparatus at the selected bud site. We explored whether a direct linkage exists between the Rsr1p/Bud1p and Cdc42p GTPases. Here we show specific genetic interactions between RSR1/BUD1 and particular cdc42 mutants defective in polarity establishment. We also show that Cdc42p coimmunoprecipitated with Rsr1p/Bud1p from yeast extracts. In vitro studies indicated a direct interaction between Rsr1p/Bud1p and Cdc42p, which was enhanced by Cdc24p, a guanine nucleotide exchange factor for Cdc42p. Our findings suggest that Cdc42p interacts directly with Rsr1p/Bud1p in vivo, providing a novel mechanism by which direct contact between a Ras-family GTPase and a Rho-family GTPase links the selection of a growth site to polarity establishment.  相似文献   

16.
Cdc42p, a Rho family GTPase of the Ras superfamily, is a key regulator of cell polarity and morphogenesis in eukaryotes. Using 37 site-directed cdc42 mutants, we explored the functions and interactions of Cdc42p in the budding yeast Saccharomyces cerevisiae. Cytological and genetic analyses of these cdc42 mutants revealed novel and diverse phenotypes, showing that Cdc42p possesses at least two distinct essential functions and acts as a nodal point of cell polarity regulation in vivo. In addition, mapping the functional data for each cdc42 mutation onto a structural model of the protein revealed as functionally important a surface of Cdc42p that is distinct from the canonical protein-interacting domains (switch I, switch II, and the C terminus) identified previously in members of the Ras superfamily. This region overlaps with a region (alpha5-helix) recently predicted by structural models to be a specificity determinant for Cdc42p-protein interactions.  相似文献   

17.
The highly conserved GTP-binding proteins Cdc42 and Rac1 regulate cytokinesis, establishment of cell polarity and vesicular trafficking. In the dimorphic fungus Ustilago maydis , Rac1 is required for cell polarity and budding, while Cdc42 is essential for cell separation during cytokinesis. The same cell separation defect is also observed in mutants that lack Don1, a guanine nucleotide exchange factor (GEF) of the Dbl family. We have generated a series of chimeric GTP-binding proteins consisting of different portions of Cdc42 and Rac1. In vivo complementation analysis revealed that a short region encompassing amino acids 41–56 determines signalling specificity. Remarkably, substitution of a single amino acid at position 56 within this specificity domain is sufficient to confer Cdc42 function to Rac1 in vivo . Expression of Rac1W56F in Δ cdc42 mutant cells resulted in complementation of the cell separation defect. In vitro GDP/GTP exchange assays demonstrated that the Dbl family GEF Don1 is highly specific for Cdc42 and cannot activate Rac1. However, if Rac1W56F is used as a substrate, Don1 is able to stimulate GDP/GTP exchange. Together these data indicate that activation by the GEF Don1 is an important determinant of Cdc42-specific signalling in vivo .  相似文献   

18.
Pheromone signalling in Saccharomyces cerevisiae is mediated by the STE4-STE18 G-protein beta gamma subunits. A possible target for the subunits is Ste20p, whose structural homolog, the serine/threonine kinase PAK, is activated by GTP-binding p21s Cdc42 and Rac1. The putative Cdc42p-binding domain of Ste20p, expressed as a fusion protein, binds human and yeast GTP-binding Cdc42p. Cdc42p is required for alpha-factor-induced activation of FUS1.cdc24ts strains defective for Cdc42p GDP/GTP exchange show no pheromone induction at restrictive temperatures but are partially rescued by overexpression of Cdc42p, which is potentiated by Cdc42p12V mutants. Epistatic analysis indicates that CDC24 and CDC42 lie between STE4 and STE20 in the pathway. The two-hybrid system revealed that Ste4p interacts with Cdc24p. We propose that Cdc42p plays a pivotal role both in polarization of the cytoskeleton and in pheromone signalling.  相似文献   

19.
Yeast cells can initiate bud formation at the G1/S transition in a cue-independent manner. Here, we investigate the dynamic nature of the polar cap and the regulation of the GTPase Cdc42 in the establishment of cell polarity. Using analysis of fluorescence recovery after photobleaching, we found that Cdc42 exchanged rapidly between the polar caps and cytosol and that this rapid exchange required its GTPase cycle. A previously proposed positive feedback loop involving actomyosin-based transport of the Cdc42 GTPase is required for the generation of robust cell polarity during bud formation in yeast. Inhibition of actin-based transport resulted in unstable Cdc42 polar caps. Unstable polarity was also observed in mutants lacking Bem1, a protein previously implicated in a feedback loop for Cdc42 activation through a signaling pathway. When Bem1 and actin were both inhibited, polarization completely failed. These results suggest that cell polarity is established through coupling of transport and signaling pathways and maintained actively by balance of flux.  相似文献   

20.
The cell cycle phase at starvation influences post-starvation differentiation and morphogenesis in Dictyostelium discoideum. We found that when expressed in Saccharomyces cerevisiae, a D. discoideum cDNA that encodes the ribosomal protein S4 (DdS4) rescues mutations in the cell cycle genes cdc24, cdc42 and bem1. The products of these genes affect morphogenesis in yeast via a coordinated moulding of the cytoskeleton during bud site selection. D. discoideum cells that over- or under-expressed DdS4 did not show detectable changes in protein synthesis but displayed similar developmental aberrations whose intensity was graded with the extent of over- or under-expression. This suggested that DdS4 might influence morphogenesis via a stoichiometric effect--specifically, by taking part in a multimeric complex similar to the one involving Cdc24p, Cdc42p and Bem1p in yeast. In support of the hypothesis, the S. cerevisiae proteins Cdc24p, Cdc42p and Bem1p as well as their D. discoideum cognates could be co-precipitated with antibodies to DdS4. Computational analysis and mutational studies explained these findings: a C-terminal domain of DdS4 is the functional equivalent of an SH3 domain in the yeast scaffold protein Bem1p that is central to constructing the bud site selection complex. Thus in addition to being part of the ribosome, DdS4 has a second function, also as part of a multi-protein complex. We speculate that the existence of the second role can act as a safeguard against perturbations to ribosome function caused by spontaneous variations in DdS4 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号